Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Med Sci ; 21(2): 265-276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169586

RESUMEN

Melanoma is a highly malignant tumor in the body. Long non-coding RNAs (lncRNAs) have been reported to be involved in the development of various tumors. Emerging evidence demonstrates the critical role of lncRNAs in melanoma development. In this study, we aimed to investigate the expression, biological function and regulatory mechanism of LINC00662 in melanomas. First, we found that LINC00662 was up-regulated in melanoma tissues and cell lines. High expression of LINC00662 in melanomas was associated with a poor patient prognosis. Silencing of LINC00662 suppressed the proliferation, migration, and invasion of melanoma cells in vitro and in vivo, while overexpression of LINC00662 promoted melanoma cell proliferation in vitro. Bioinformatics analysis, dual-luciferase assay, and RIP assay confirmed that LINC00662 competitively regulated miR-107. Silencing of LINC00662 upregulated miR-107 expression in a melanoma cell line. Inhibition of miR-107 significantly reversed the inhibitory effect of LINC00662 silencing on cell proliferation and migration. Furthermore, POU3F2 was validated as a downstream target of LINC00662/miR107 and was downregulated when LINC00662 was silenced. Overexpressing POU3F2 attenuated the effect of si-LINC00662 on cellular functions. In addition, the results also showed that the ß-catenin pathway was involved in a si-LINC00662-induced function in melanoma. Overall, our results confirmed that LINC00662 promoted melanoma progression by sponging miR107 and inducing POU3F2, highlighting the mechanism of the LINC00662/miR-107/POU3F2 axis in melanoma cell proliferation and invasion.


Asunto(s)
Melanoma , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Melanoma/genética , beta Catenina/genética , beta Catenina/metabolismo , Línea Celular Tumoral , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal/genética , Proliferación Celular/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica
2.
Drug Chem Toxicol ; : 1-9, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38192027

RESUMEN

Tauroursodeoxycholic acid (TUDCA) can activate farnesoid X receptor (FXR) to involve in the formation of gallstones. Here, this study aimed to probe the potential mechanism of TUDCA-FXR network in the formation of bile duct stone. The levels of TUDCA, FXR and NCK1 were decreased, while the level of miR-107 was increased in the serum of bile duct stone patients. FXR expression was positively correlated with TUDCA or NCK1 expression in patients, moreover, TUDCA pretreatment in biliary epithelial cells increased the levels of FXR and NCK1, and rescued the decrease of NCK1 caused by FXR knockdown in cells. Then functional analysis showed FXR knockdown caused apoptosis and endoplasmic reticulum stress (ERS) as well as suppressed proliferation in biliary epithelial cells in vitro, which were attenuated by TUDCA pretreatment or NCK1 overexpression Mechanistically, NCK1 was a target of miR-107, which was up-regulated by FXR silencing, and FXR knockdown-induced decrease of NCK1 was rescued by miR-107 inhibition. Additionally, miR-107 expression was negatively correlated with TUDCA expression in bile duct stone patients, and TUDCA pretreatment in biliary epithelial cells decreased miR-107 expression by FXR. Functionally, the pretreatment of TUDCA or FXR agonist suppressed miR-107-evoked apoptosis and ERS in biliary epithelial cells. In conclusion, TUDCA up-regulates FXR expression to activate NCK1 through absorbing miR-107, thus suppressing the apoptosis and ERS in biliary epithelial cells, these results provided a theoretical basis for elucidating the mechanism of bile duct stone formation.

3.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892156

RESUMEN

Hypopharyngeal squamous cell carcinoma (HSCC) is a kind of malignant tumor with a poor prognosis and low quality of life in the otolaryngology department. It has been found that microRNA (miRNA) plays an important role in the occurrence and development of various tumors. This study found that the expression level of miRNA-107 (miR-107) in HSCC was significantly reduced. Subsequently, we screened out the downstream direct target gene Neuronal Vesicle Trafficking Associated 1 (NSG1) related to miR-107 through bioinformatics analysis and found that the expression of NSG1 was increased in HSCC tissues. Following the overexpression of miR-107 in HSCC cells, it was observed that miR-107 directly suppressed NSG1 expression, leading to increased apoptosis, decreased proliferation, and reduced invasion capabilities of HSCC cells. Subsequent experiments involving the overexpression and knockdown of NSG1 in HSCC cells demonstrated that elevated NSG1 levels enhanced cell proliferation, migration, and invasion, while the opposite effect was observed upon NSG1 knockdown. Further investigations revealed that changes in NSG1 levels in the HSCC cells were accompanied by alterations in ERK signaling pathway proteins, suggesting a potential regulatory role of NSG1 in HSCC cell proliferation, migration, and invasion through the ERK pathway. These findings highlight the significance of miR-107 and NSG1 in hypopharyngeal cancer metastasis, offering promising targets for therapeutic interventions and prognostic evaluations for HSCC.


Asunto(s)
Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hipofaríngeas , Sistema de Señalización de MAP Quinasas , MicroARNs , Humanos , Masculino , Apoptosis/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Neoplasias Hipofaríngeas/genética , Neoplasias Hipofaríngeas/patología , Neoplasias Hipofaríngeas/metabolismo , Sistema de Señalización de MAP Quinasas/genética , MicroARNs/genética , MicroARNs/metabolismo , Invasividad Neoplásica , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
Cancer Cell Int ; 23(1): 51, 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934264

RESUMEN

BACKGROUND: Non-small cell lung cancer is a heterogeneous disease driven by extensive molecular alterations. Exosomes are small vesicles with diameters ranging from 30 to 150 nm released by various cell types and are important mediators of information transmission in tumor cells. Exosomes contain proteins, lipids, and various types of nucleic acids, including miRNAs and even DNA and RNA. MFI2 Antisense RNA 1 (MFI2-AS1) is a long noncoding RNA known to promote cell proliferation, metastasis and invasion in a variety of malignancies. METHODS: The relative expression of MFI2-AS1 in NSCLC tissues was examined using RNA fluorescence in situ hybridization (FISH) staining. Transwell migration and wound healing assays were used to analyze cell migration and invasion abilities. Tube formation is used to assess angiogenic capacity. CCK8 was used to assess cell proliferation ability. RNA immunoprecipitation (RIP) experiments confirmed that MFI2-AS1 acts as a competing endogenous RNA (ceRNA) for miR-107. Dual-luciferase reporter assays were used to identify potential binding between MFI2-miRNA and target mRNA. In vivo experiments were performed by injecting exosomes into subcutaneous tumors to establish animal models. RESULT: Exosomal MFI2-AS1 increases NFAT5 expression by sponging miR-107, which in turn activates the PI3K/AKT pathway. We found that the MFI2-AS1/miR-107/NFAT5 axis plays an important role in exosome-mediated NSCLC progression, is involved in pre-metastatic niche formation, and can be used as a blood-based biomarker for NSCLC metastasis. CONCLUSION: We demonstrate that MFI2-AS1 is upregulated in exosomes secreted by metastatic NSCLC cells and can be transferred to HUVECs, promoting angiogenesis and migration.

5.
Cells Tissues Organs ; 212(6): 523-534, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35717938

RESUMEN

Sepsis is a public health problem worldwide. This study investigated the mechanism of miR-107 on sepsis-induced myocardial injury. Sepsis rat models were established by cecal ligation and puncture (CLP), and the cell model was established using lipopolysaccharide (LPS)-induced cardiomyocytes. Cardiac function indexes of rats were measured using echocardiography. Pathological changes in the rat myocardium were observed using histological staining. Expression of miR-107 in the serum of rats and in cardiomyocytes was detected after the treatment with miR-107 mimic and/or pcDNA3.1-PTEN, followed by assessment of cell cycle, proliferation, and apoptosis. Binding sites of miR-107 and PTEN were predicted. PTEN, PI3K, p-PI3K, AKT, and p-AKT levels in LPS-induced cardiomyocytes were measured. miR-107 was significantly downregulated in the serum of CLP rats and LPS-induced cardiomyocytes. miR-107 overexpression remarkably improved cardiac function and histological changes, decreased inflammatory factors, and alleviated the sepsis-induced myocardial injury in rats. In LPS-induced cardiomyocytes, miR-107 overexpression increased cardiomyocyte proliferation, inhibited apoptosis, and enhanced the proportion of cardiomyocytes arrested in S and G2/M phases. miR-107 targeted PTEN. PTEN overexpression partially reversed the inhibition of miR-107 mimic on cardiomyocyte apoptosis. miR-107 overexpression activated the PI3K/AKT pathway by inhibiting PTEN. To conclude, miR-107 activates the PI3K/AKT pathway by inhibiting PTEN, thus attenuating sepsis-induced myocardial injury and LPS-induced cardiomyocyte apoptosis.


Asunto(s)
MicroARNs , Sepsis , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Lipopolisacáridos/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Miocitos Cardíacos , Sepsis/complicaciones , Sepsis/genética , Apoptosis/genética
6.
J Surg Res ; 292: 264-274, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37666089

RESUMEN

INTRODUCTION: Endothelial injury is a major characteristic of sepsis and contributes to sepsis-induced multiple-organ dysfunction. In this study, we investigated the role of miR-107-3p in sepsis-induced endothelial injury. METHODS: Human umbilical vein endothelial cells (HUVECs) were exposed to 20 µg/mL of lipopolysaccharide (LPS) for 6-48 h. The levels of miR-107-3p and kallikrein-related peptidase 5 (KLK5) were examined. HUVECs were treated with LPS for 12 h and subsequently transfected with miR-107-3p inhibitor, KLK5 siRNA, or cotransfected with KLK5 siRNA and miR-107-3p inhibitor/negative control inhibitor. Cell survival, apoptosis, invasion, cell permeability, inflammatory response, and the Toll-like receptor 4/nuclear factor κB signaling were evaluated. In addition, the relationship between miR-107-3p and KLK5 expression was predicted and verified. RESULTS: LPS significantly elevated miR-107-3p levels, which peaked at 12 h. Conversely, the KLK5 level was lower in the LPS group than in the control group and was lowest at 12 h. MiR-107-3p knockdown significantly attenuated reductions in cell survival and invasion, apoptosis promotion, hyperpermeability and inflammation induction, and activation of the NF-κB signaling caused by LPS. KLK5 knockdown had the opposite effect. Additionally, KLK5 was demonstrated as a target of miR-107-3p. MiR-107-3p knockdown partially reversed the effects of KLK5 depletion in LPS-activated HUVECs. CONCLUSIONS: Our findings indicate that miR-107-3p knockdown may protect against sepsis-induced endothelial cell injury by targeting KLK5. This study identified a novel therapeutic target for sepsis-induced endothelial injury.


Asunto(s)
MicroARNs , Sepsis , Humanos , Apoptosis/genética , Células Endoteliales de la Vena Umbilical Humana , Calicreínas/genética , Calicreínas/metabolismo , Calicreínas/farmacología , Lipopolisacáridos/farmacología , MicroARNs/metabolismo , FN-kappa B/metabolismo , ARN Interferente Pequeño/metabolismo , Sepsis/complicaciones , Sepsis/genética , Sepsis/metabolismo
7.
Future Oncol ; 19(14): 1003-1012, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37199277

RESUMEN

Background & aim: MicroRNAs associated with the Notch pathway play a critical role in the progression of pancreatic carcinoma. Our aim was to study the clinical significance of miR-107 and NOTCH2 in pancreatic ductal adenocarcinoma (PDAC). Methods: The circulating miR-107 levels in PDAC and controls were determined by qPCR. NOTCH2 protein (target) expression in tissue of PDAC, periampullary carcinoma, chronic pancreatitis and normal pancreatic tissue was assessed by immunohistochemistry. Results: The circulating miR-107 levels were found to be significantly reduced in PDAC as compared with controls. Additionally, NOTCH2 protein expression was higher in PDAC tissue as compared with controls and was clinically associated with metastasis. Conclusion: Our findings demonstrate the utility of circulating miR-107 as a potential differentiating marker in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , MicroARNs , Neoplasias Pancreáticas , Humanos , Receptor Notch2/genética , Receptor Notch2/metabolismo , Relevancia Clínica , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , MicroARNs/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Neoplasias Pancreáticas
8.
Oral Dis ; 29(5): 1979-1990, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35403775

RESUMEN

BACKGROUND: Accumulating articles have suggested the important regulatory roles of circular RNAs in human cancers, including oral squamous cell carcinoma (OSCC). However, the role of circ_0001971 in OSCC progression remains to be determined. METHODS: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assays were conducted to analyze cell proliferation ability. Cell migration and invasion abilities were assessed by transwell assays. Dual-luciferase reporter assay was conducted to confirm the target relation between miR-107 and circ_0001971 or FZD4. Xenograft tumor model was established to analyze the biological role of circ_0001971 in regulating tumor growth in vivo. RESULTS: Circ_0001971 was markedly up-regulated in OSCC tissues and cell lines. Circ_0001971 knockdown inhibited the growth of xenograft tumors in vivo. miR-107 was confirmed as a direct target of circ_0001971, and circ_0001971 depletion-mediated anti-tumor effects in OSCC cells could be largely alleviated by silencing miR-107. miR-107 directly targeted the 3' untranslated region of FZD4, and FZD4 overexpression largely reversed the anti-tumor effects of circ_0001971 in OSCC cells. Circ_0001971 could positively regulate FZD4 expression by targeting miR-107 in OSCC cells. CONCLUSION: Circ_0001971 promoted the proliferation, migration, and glycolysis of OSCC cells through mediating miR-107/FZD4 axis. Circ_0001971 might be a new effective target for OSCC treatment in future.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , MicroARNs , Neoplasias de la Boca , Animales , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de la Boca/genética , Movimiento Celular/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad , MicroARNs/genética , Línea Celular Tumoral , Receptores Frizzled/genética
9.
Chin J Physiol ; 66(3): 171-180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37322627

RESUMEN

Long non-coding RNAs (lncRNAs) are important players in cancer development. LncRNA FGD5-AS1 has been reported as a potential oncogene in ovarian cancer (OC). The present paper focused on the action mechanism of FGD5-AS1 in OC. Clinical OC samples were collected for expression analyses of FGD5-AS1, RBBP6, and miR-107. The expression of FGD5-AS1, RBBP6, and miR-107 in OC cells was altered by transfection. OC cell proliferation was assessed by MTT and colony formation assays, and angiogenesis of human umbilical vein endothelial cells (HUVECs) cultured with OC cell supernatants by matrigel angiogenesis assay. The interactions among FGD5-AS1, miR-107, and RBBP6 were detected by luciferase reporter assay. FGD5-AS1 and RBBP6 were strongly expressed and miR-107 was poorly expressed in clinical OC samples and OC cell lines. FGD5-AS1 or RBBP6 overexpression in Hey and SKOV3 cells could potentiate OC cell proliferation and HUVEC angiogenesis, while FGD5-AS1 or RBBP6 knockdown in OC cells inhibited the above cellular processes. FGD5-AS1 targeted miR-107 to positively regulate RBBP6 expression. Additionally, miR-107 overexpression or RBBP6 knockdown in SKOV3 cells partially reversed the FGD5-AS1-dependent stimulation of OC cell proliferation and HUVEC angiogenesis. FGD5-AS1 may act as a promoter of OC via miR-107/RBBP6 axis.


Asunto(s)
MicroARNs , Neoplasias Ováricas , ARN Largo no Codificante , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Neoplasias Ováricas/genética , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo
10.
Biochem Biophys Res Commun ; 592: 99-105, 2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-35033873

RESUMEN

long non-coding RNAs (lncRNAs), as tumor suppressors or oncogenes, have been identified to play key roles in tumorigenesis. The present study explored the roles and potential mechanisms of LINC00960 in osteosarcoma (OS). In vitro study showed that silencing LINC00960 inhibited proliferation, migration and invasion of 143B and MG63. In vivo study demonstrated that knockdown of LINC00960 repressed tumor growth. Further investigation revealed that LINC00960 could regulate SALL4 by sponging miR-107 to promote the progression of OS. Together, LINC00960 is a tumor oncogene in the development and prognosis of OS, which may be a new therapeutic target for OS.


Asunto(s)
Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , MicroARNs/metabolismo , Osteosarcoma/genética , Osteosarcoma/patología , ARN Largo no Codificante/metabolismo , Factores de Transcripción/genética , Animales , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Ratones Desnudos , MicroARNs/genética , ARN Largo no Codificante/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética
11.
BMC Cancer ; 22(1): 533, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35549691

RESUMEN

BACKGROUND: As a metastasis-related protein, NEDD9 has been reported in breast cancer (BC) metastasis research. However, there are few studies on the upstream regulators of NEDD9, especially involving the potential role of miRNAs. The purpose of this study was to explain whether miR-107 potentially regulates NEDD9, which may lead to invasion and metastasis of BC. METHODS: MCF-7 and MDA-MB-231 cells were transduced with lentiviruses to construct stably transduced cells with miR-107 overexpression, miR-107 silencing or empty vectors. A luciferase reporter assay was performed to verify the binding of miR-107 and NEDD9. The scratch test and Transwell assay were used to measure cell migration and invasion ability, respectively. For the study of metastasis in vivo, we injected MDA-MB-231 cells into the fat pad of nude mice to develop an orthotopic breast cancer model. RESULTS: We found that NEDD9 expression correlates with the prognosis of BC patients. In BC cell lines, NEDD9 was positively correlated with cell migration ability. Further research revealed that miR-107 inhibited NEDD9 expression by targeting the 3'-untranslated region of NEDD9. Overexpression of miR-107 suppressed the expression of NEDD9, thereby inhibiting the invasion, migration and proliferation of BC cells, but interference with miR-107 promoted the expression of NEDD9 as well as invasion, migration and proliferation. In an in vivo model, overexpression of miR-107 decreased the expression of NEDD9 and inhibited tumour growth, invasion and metastasis; however, these effects were reversed by inhibiting miR-107. CONCLUSIONS: These findings indicated the potential role of miR-107 in regulating NEDD9 in the invasion, migration and proliferation of BC.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Regiones no Traducidas 3' , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , MicroARNs/genética , Invasividad Neoplásica/genética
12.
Mol Cell Biochem ; 477(4): 1127-1138, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35076816

RESUMEN

Although doxorubicin (DOX) is a broad-spectrum and anthracycline chemotherapeutic agent, cardiotoxicity limits its clinical application. Therefore, it is meant to prevent the clinical side effects of DOX. Human cardiomyocyte-like AC16 cells were treated with DOX to induce intracellular toxicity. AC16 cell viability was determined by Cell Counting Kit 8 and 5-ethynyl-2'-deoxyuridine assays. The tumor necrosis factor-α and interleukin-6 abundances were quantified by matched kits. The apoptosis rate was measured by flow cytometry. Western blot analysis was conducted to measure the protein expression levels in AC16 cells. Oxidative stress was analyzed by measuring superoxide dismutase and malondialdehyde production. The quantitative real-time polymerase chain reaction was conducted to assess the expression levels of circ-latent transforming growth factor-beta binding protein-1 (circ-LTBP1), microRNA-107 (miR-107), and Adenylate cyclase 1 (ADCY1) expression in AC16 cells. The interaction relationship among circ-LTBP1, miR-107, and ADCY1 was verified by dual-luciferase reporter and RNA immunoprecipitation assays. As a result, treatment with DOX induced the proliferation inhibition, inflammation, apoptosis, and oxidative stress in AC16 cells, which were rescued by circ-LTBP1 inhibition or miR-107 upregulation. MiR-107 was confirmed as a target of circ-LTBP1, and inhibition of circ-LTBP1-mediated effects on DOX-stimulated cells were abolished by downregulation of miR-107. Circ-LTBP1 mediated ADCY1 expression by sponging miR-107 in AC16 cells. The upregulation of miR-107 increased cell proliferation and inhibited inflammation, apoptosis, and oxidative stress in DOX-stimulated cells through downregulation of ADCY1. Circ-LTBP1 was found to enhance DOX-induced effects on proliferation inhibition, inflammation, apoptosis, and oxidative stress in AC16 cells through competitively sponging miR-107 and elevating ADCY1.


Asunto(s)
Adenilil Ciclasas/metabolismo , Doxorrubicina/efectos adversos , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , ARN Circular/metabolismo , Transducción de Señal/efectos de los fármacos , Adenilil Ciclasas/genética , Línea Celular , Doxorrubicina/farmacología , Humanos , MicroARNs/genética , ARN Circular/genética , Transducción de Señal/genética
13.
Exp Brain Res ; 240(9): 2299-2309, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35881155

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease that seriously affects the life and health of the elderly. Studies have found that circular RNAs (circRNAs) are associated with human diseases, including AD. Hsa_circ_0049472 has been uncovered to be overexpressed in AD, but the role of circ_0049472 remains unclear. AD patients were recruited to collect cerebrospinal fluid (CSF) and serum samples. Amyloid beta (Aß)-induced SK-N-SH and CHP-212 cells were used as the AD cell models in vitro. Quantitative real-time PCR (qRT-PCR) was used to assess the expression of circ_0049472, microRNA-107 (miR-107) and kinesin family member 1B (KIF1B). Cell counting kit-8 assay tested the cell viability, and flow cytometry measured cell apoptosis. The levels of proliferating cell nuclear antigen (PCNA), BCL2 Associated X (Bax) and kinesin family member 1B (KIF1B) protein were examined by western blot. In addition, the relative inflammatory cytokines (TNF-α, IL-6 and IL-1ß) were detected by enzyme-linked immunosorbent assay (ELISA). The malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured by relative kits. Dual-luciferase reporter assays and RNA pull-down assay verified the relationship between miR-107 and circ_0049472 or KIF1B. Circ_0049472 and KIF1B were overexpressed in AD patient-derived cerebrospinal fluid (CSF) and serum samples, as well as Aß-induced SK-N-SH and CHP-212 cells. Silencing circ_0049472 promoted cell proliferation, and inhibited cell apoptosis in Aß-induced SK-N-SH and CHP-212 cells. MiR-107 was a target of circ_0049472. MiR-107 silencing abolished the cell viability and apoptosis affected by down-regulation of circ_0049472 in Aß-induced SK-N-SH and CHP-212 cells. Besides, miR-107 targeted KIF1B, and overexpressed KIF1B reverted miR-107 elevation-mediated effects on cell apoptosis, inflammation, and oxidative stress of Aß-induced SK-N-SH and CHP-212 cells. Circ_0049472 modulated KIF1B by serving as a miR-107 decoy, thereby mediating Aß-induced neurotoxicity, suggesting that circ_0049472 may be involved in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedades Neurodegenerativas , Anciano , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides , Apoptosis/genética , Humanos , Cinesinas/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética
14.
BMC Pulm Med ; 22(1): 371, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180862

RESUMEN

OBJECTIVE: Acute lung injury (ALI) increases sepsis morbidity and mortality. LncRNA H19 plays a critical role in sepsis. miR-107 is highly-expressed and TGFß type III receptor (TGFBR3) is poorly-expressed in sepsis, yet their roles in sepsis development require further investigation. This study aimed to investigate the mechanism of H19 in alleviating sepsis-induced ALI through the miR-107/TGFBR3 axis. METHODS: Mice were intravenously injected with Ad-H19 adenovirus vector or control vector one week before establishing the mouse model of cecal ligation and puncture (CLP). Pulmonary microvascular endothelial cells (PMVECs) were transfected with oe-H19 or oe-NC plasmids and then stimulated by lipopolysaccharide (LPS). Lung injury was assessed via hematoxylin-eosin staining, measurement of wet-to-dry (W/D) ratio, and TUNEL staining. Levels of H19, miR-107, and TGFBR3 were determined by RT-qPCR. Apoptosis of PMVECs was evaluated by flow cytometry. Levels of Bax and Bcl-2 in lung tissues and PMVECs were measured using Western blot. Total protein concentration and the number of total cells, neutrophils, and macrophages in bronchoalveolar lavage fluid (BALF) were quantified. Levels of TNF-α, IL-1ß, IL-6, and IL-10 in BALF, lung tissues, and PMVECs were measured by ELISA. Cross-linking relationships among H19, miR-107 and TGFBR3 were verified by dual-luciferase and RIP assays. RESULTS: H19 was poorly-expressed in CLP-operated mice. H19 overexpression attenuated sepsis-induced ALI, which was manifested with complete alveolar structure, decreased lung injury score and lung W/D ratio, and inhibited apoptosis in CLP-operated mice, which was manifested with decreased number of TUNEL-positive cells and Bax level and increased Bcl-2 level. CLP-operated mice had increased concentration of total protein and number of total cells, neutrophils, and macrophages in BALF, which was nullified by H19 overexpression. H19 overexpression declined levels of TNF-α, IL-1ß, and IL-6 and elevated IL-10 levels. H19 inhibited LPS-induced PMVEC apoptosis and pro-inflammatory cytokine production. H19 targeted TGFBR3 as the ceRNA of miR-107. miR-107 overexpression or silencing TGFBR3 partially averted the inhibition of H19 overexpression on LPS-induced PMVEC apoptosis and pro-inflammatory cytokine production. CONCLUSION: LncRNA H19 inhibited LPS-induced PMVEC apoptosis and pro-inflammatory cytokine production and attenuated sepsis-induced ALI by targeting TGFBR3 as the ceRNA of miR-107.


Asunto(s)
Lesión Pulmonar Aguda , MicroARNs , ARN Largo no Codificante , Sepsis , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Animales , Células Endoteliales/metabolismo , Eosina Amarillenta-(YS)/efectos adversos , Eosina Amarillenta-(YS)/metabolismo , Hematoxilina/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/efectos adversos , Pulmón/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteoglicanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Receptores de Factores de Crecimiento Transformadores beta , Sepsis/complicaciones , Sepsis/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2
15.
J Stroke Cerebrovasc Dis ; 31(4): 106295, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35093630

RESUMEN

OBJECTIVES: The aberrant expression of miR-107 has been confirmed in some neurological diseases, including ischemic stroke (IS). However, the function of miR-107 and underlying mechanisms are ambiguous. MATERIALS AND METHODS: Oxygen-Glucose Deprivation/Reoxygenation (OGD/R)-induced PC12 cells were used to mimic IS condition. MiR-107 expression and differentially expressed genes (DEGs) responding to IS were analyzed by GSE97532 and GSE61616 datasets, respectively. The target genes of miR-107 were predicted by TargetScan and confirmed by dual-luciferase reporter assay. Cell counting kit-8 and apoptosis assays were conducted to explore the role of miR-107 in biological behaviors of OGD/R-induced PC12 cells. RESULTS: Bioinformatics analysis revealed that miR-107 expression was elevated in rats with middle cerebral artery occlusion (MCAO), which was confirmed in OGD/R-treated PC12 cells. Notably, miR-107 strongly inhibited the proliferation of OGD/R-treated PC12 cells. As most DEGs were enriched in PI3K-AKT signaling pathway, which was critical for IS, DEGs in this pathway was compared with the down-regulated genes and the predicted genes to obtain potential target genes of miR-107, and ultimately fibroblast growth factor (FGF)9 and FGF12 stood out. The experiments demonstrated that miR-107 inhibited viability and promoted apoptosis of OGD/R-treated PC12 cells by down-regulating FGF9/FGF12 level. Mechanically, for the first time, we clarified the mechanism via which miR-107 inactivated PI3K-AKT signaling pathway by targeting FGF9/FGF12. CONCLUSIONS: We summarized that miR-107 aggravates OGD/R-induced injury through inactivating PI3K-AKT signaling pathway via targeting FGF9/FGF12. Therefore, our study elucidates the neurotoxicity of miR-107 in IS development and provides a new promising therapy strategy for IS.


Asunto(s)
MicroARNs , Daño por Reperfusión , Animales , Apoptosis , Factor 9 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Glucosa , MicroARNs/genética , MicroARNs/metabolismo , Oxígeno , Células PC12 , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Daño por Reperfusión/metabolismo , Transducción de Señal
16.
Am J Physiol Heart Circ Physiol ; 320(2): H520-H534, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33216617

RESUMEN

Microvascular pericytes have been demonstrated as an origin for myofibroblasts that produce excessive extracellular matrix (ECM) proteins such as α-smooth muscle actin (α-SMA) and type I collagen (ColIA1) and contribute to pulmonary fibrosis (PF). However, the signaling mechanism responsible for ECM production within pericytes is poorly understood. In this study, we examined exosomal miR-107 in the fibrotic phenotypes of pericytes and the pathogenesis of PF. Using RT-qPCR, MiR-107 level was compared between clinical or bleomycin-induced PF and normal pulmonary tissues. Exosomes were isolated from cultured microvascular endothelial cells (ECs) derived from either normal or PF tissues, characterized using dynamic light scattering, transmission electron microscopy, flow cytometry, Western blot, and immunofluorescence, and then applied to pericytes. The effects of exosomes or different fibrosis-related signaling molecules were examined by Western blot, and the potential regulations between the signaling molecules were identified using bioinformatic analysis and assessed by electrophoretic mobility shift assay, chromatin immunoprecipitation, luciferase assay, and RNA binding protein immunoprecipitation. MiR-107 was downregulated in clinical or experimental PF tissues and also in exosomes from PF-derived ECs. EC-derived exosomal miR-107 essentially controlled the miR-107 level and inhibited α-SMA and ColIA1 expression in pericytes. The antifibrosis effect of miR-107 was mediated through the suppression of a pathway involving HIF-1α/Notch1/PDGFRß/YAP1/Twist1, where miR-107 directly targeted HIF-1α mRNA, whereas the latter directly activated the transcriptions of both Notch1 and PDGFRß. Functionally, targeting miR-107 promoted and targeting HIF-1α abolished the fibrotic phenotypes of pericytes. Exosomal miR-107 produced by pulmonary vascular ECs may alleviate pericyte-induced fibrosis by inhibiting a signaling pathway involving HIF-1α/Notch1/PDGFRß/YAP1/Twist1.NEW & NOTEWORTHY This work reveals a novel mechanism by which pulmonary vascular endothelial cells, via regulating the transdifferentiation of microvascular pericytes into myofibroblasts, contribute to the pathogenesis of pulmonary fibrosis. Since targeting the formation of myofibroblasts may prevent the development and benefit the treatment of pulmonary fibrosis, this study provides not only mechanistic understanding but also promising therapeutic targets for pulmonary fibrosis.


Asunto(s)
Exosomas/metabolismo , MicroARNs/metabolismo , Pericitos/metabolismo , Fibrosis Pulmonar/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Pericitos/patología , Fenotipo , Fibrosis Pulmonar/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo , Proteínas Señalizadoras YAP
17.
Cancer Cell Int ; 21(1): 495, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34530825

RESUMEN

BACKGROUND: Increasing studies focused on the regulatory roles of circular RNAs (circRNAs) in diverse cancers. This study was to evaluate the function and mechanism of circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) in esophageal cancer (EC). METHODS: The circ-SFMBT2, microRNA-107 (miR-107) and solute-linked carrier family A1 member 5 (SLC1A5) levels were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was evaluated by 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) assay, colony formation assay and EdU assay. Cell apoptosis and invasion were detected by flow cytometry and transwell assay. Glutamine metabolism was assessed by the corresponding kits for glutamine consumption, α-ketoglutarate production and glutamate production. Western blot was used for protein quantification. The binding analysis was performed using dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and pull-down assays. The functional research of circ-SFMBT2 in vivo was performed by xenograft tumor assay. Exosomes were identified by morphological observation and protein detection. RESULTS: Circ-SFMBT2 was overexpressed in EC samples and cells. Circ-SFMBT2 downregulation inhibited EC cell proliferation, invasion and glutamine metabolism. Circ-SFMBT2 targeted miR-107 and the regulation of circ-SFMBT2 was achieved by sponging miR-107. SLC1A5 was a target of miR-107, and it worked as an oncogene in EC cells. MiR-107 retarded the EC progression by downregulating SLC1A5. Circ-SFMBT2 could affect the SLC1A5 expression by targeting miR-107. Circ-SFMBT2 regulated EC progression in vivo by miR-107/SLC1A5 axis. Circ-SFMBT2 was transferred by exosomes in EC cells. CONCLUSION: These results suggested that circ-SFMBT2 upregulated the SLC1A5 expression to promote the malignant development of EC by serving as a miR-107 sponge.

18.
BMC Cancer ; 21(1): 1290, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34856955

RESUMEN

BACKGROUND: RNA cargo in exosomes, especially microRNAs (miRNAs), play an important role in the chemotherapy drug resistance of human cancers. However, the role and mechanism of exosomal miR-107 on multidrug resistance of gastric cancer cells was still not clear. In this study, we sought to explore whether exosomal miR-107 could reverse the resistance of gastric cancer cells to the chemotherapy drugs. METHODS: We extracted exosomes from sensitive (SGC-7901, MGC-803) and resistant (SGC-7901/5-FU) gastric cancer cells by ultracentrifugation and the isolated exosomes were identified using transmission electron microscopy (TEM) and dynamic light scattering analysis (DLS). The expression of miR-107 and high mobility group A2 (HMGA2) were detected by real-time quantitative PCR (RT-qPCR). MTT assay was used to investigate the effect of exosomes on gastric cancer cells growth in vitro. The uptake of exosomes by recipient cells were observed using a fluorescence microscope. The predicted target relationship between miR-107 and HMGA2 was verified by gauss-luciferase reporter assay. The expression of HMGA2, p-mTOR/mTOR, P-gp and other exosomal indicated marker proteins was detected by western blot. RESULTS: Our results indicated that the isolated exosomes were typically cup-like lipid bilayer membranes structure. SGC-7901/5-FU cells were cross-resistant to chemotherapy drug cisplatin (CDDP), and the sensitive cells-secreted exosomes drastically reversed the resistance of the resistant GC cells to the chemotherapeutic drugs, which was verified by exosomal inhibitor GW4896. Mechanistically, the reversal effect was mainly mediated by exosome-secreted miR-107 through downregulating the expression of target molecular HMGA2 and inhibiting HMGA2/mTOR/P-gp pathway, which were supported by results from luciferase reporter assay and rescue assay. CONCLUSIONS: These findings demonstrated that exosome-transmitted miR-107 significantly enhanced the sensitivity of resistant gastric cancer cells to chemotherapeutic agents by mediating the HMGA2/mTOR/P-gp axis and exosomal miR-107 may be a novel target in gastric cancers treatment.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Resistencia a Antineoplásicos/genética , Exosomas/metabolismo , Proteína HMGA2/metabolismo , MicroARNs/metabolismo , Neoplasias Gástricas/genética , Serina-Treonina Quinasas TOR/metabolismo , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Cisplatino/uso terapéutico , Regulación hacia Abajo , Resistencia a Múltiples Medicamentos/genética , Exosomas/trasplante , Exosomas/ultraestructura , Colorantes Fluorescentes , Fluorouracilo/uso terapéutico , Proteína HMGA2/genética , Humanos , Microscopía Electrónica de Transmisión , Compuestos Orgánicos , Neoplasias Gástricas/tratamiento farmacológico
19.
J Neurooncol ; 154(3): 285-299, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34478013

RESUMEN

PURPOSE: Aberrant expression of long noncoding RNAs plays a pivotal role in tumorigenesis. Recently, several studies have showed that the LINC00152 gene is upregulated in a variety of tumors and plays an oncogene role; however, its underlying molecular mechanisms in glioblastoma remain unclear. In this study, we prepare to investigate the biological role and underlying molecular mechanisms of LINC00152 in glioblastoma cells. METHODS: Bioinformatics analysis to identify LINC00152 expression, Cell Counting kit-8 assay and Colony formation assay were used to evaluate proliferation, Flow cytometric analysis was used to evaluate apoptosis, Cell Matrigel invasion assay and Wound healing assay was used to evaluate invasion, Western blot analysis to check protein expression level, Mouse xenograft models was used to check cell proliferation in vivo. RESULTS: In this study, we found that LINC00152 was upregulated in gliomas and its expression was significantly associated with high tumor aggressiveness and poor outcomes for glioma patients. Functionally, the knockdown of LINC00152 not only inhibited malignant behaviors of glioma, such as proliferation and invasion of glioma cells and induced apoptosis in vitro but also suppressed tumorigenesis in vivo. Mechanistically, results of the bioinformatics analysis and experimental studies confirmed that LINC00152 and RAB10 as the targets of miR-107, and LINC00152 might act as a sponge for miR-107 to regulate the expression of RAB10 in glioblastoma. Additionally, silencing miR-107 reversed the effects induced by LINC00152 knockdown on glioblastoma cells both in vitro and in vivo. CONCLUSION: Our data suggested that LINC00152 is a candidate prognostic marker of glioma, and that the LINC00152/MIR-107/RAB10 axis plays a pivotal role in regulation of the glioma malignancy, and therefore, targeting the axis might be an effective therapeutic strategy to treat glioma.


Asunto(s)
Glioblastoma , Glioma , Animales , Carcinogénesis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioma/genética , Humanos , Ratones , MicroARNs/genética , Invasividad Neoplásica , ARN Largo no Codificante/genética , Proteínas de Unión al GTP rab
20.
Cell Biol Int ; 45(3): 674-685, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33314408

RESUMEN

Laryngeal squamous cell carcinoma (LSCC) is the most common malignant tumor, which occurs in the head and neck. Current treatments for LSCC are all largely weakened by increasing drug resistance. Our study aimed to investigate the effects of long noncoding RNA (lncRNA) H19 on drug resistance in LSCC. In our study, we found that the level of H19 was sharply upregulated in LSCC tissues and drug-resistant cells compared with the control. Besides, the expression of high-mobility group B1 (HMGB1) was elevated, and microRNA107 (miR-107) was suppressed in drug-resistant cells compared with the control. Further study revealed that the interference of H19 by short hairpin RNA (shRNA) effectively suppressed high autophagy level and obvious drug resistance in drug-resistant cells. Besides that, miR-107 was predicted as a target of H19 and inhibiting effects of H19 shRNA on autophagy and drug resistance were both reversed by miR-107 inhibitor. Moreover, HMGB1 was predicted as a target of miR-107 in LSCC cells and knockdown of HMGB1 was able to suppress autophagy and drug resistance in LSCC cells. In addition, our investigation demonstrated that H19 shRNA exerted an inhibiting effect on autophagy and drug resistance by downregulating HMGB1 by targeting miR-107. Finally, the in vivo experiment revealed that LV-H19 shRNA strongly suppressed drug resistance compared with the usage of cisplatin individually. Taken together, our research indicated an H19-miR-107-HMGB1 axis in regulating the autophagy-induced drug resistance in LSCC in vitro and in vivo, providing novel targets for molecular-targeted therapy and broadening the research for LSCC.


Asunto(s)
Autofagia , Cisplatino/farmacología , Proteína HMGB1/metabolismo , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patología , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Anciano , Animales , Autofagia/genética , Secuencia de Bases , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , ARN Largo no Codificante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA