Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(3): 514-525.e6, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33657395

RESUMEN

MicroRNAs are important regulators of immune responses. Here, we show miR-221 and miR-222 modulate the intestinal Th17 cell response. Expression of miR-221 and miR-222 was induced by proinflammatory cytokines and repressed by the cytokine TGF-ß. Molecular targets of miR-221 and miR-222 included Maf and Il23r, and loss of miR-221 and miR-222 expression shifted the transcriptomic spectrum of intestinal Th17 cells to a proinflammatory signature. Although the loss of miR-221 and miR-222 was tolerated for maintaining intestinal Th17 cell homeostasis in healthy mice, Th17 cells lacking miR-221 and miR-222 expanded more efficiently in response to IL-23. Both global and T cell-specific deletion of miR-221 and miR-222 rendered mice prone to mucosal barrier damage. Collectively, these findings demonstrate that miR-221 and miR-222 are an integral part of intestinal Th17 cell response that are induced after IL-23 stimulation to constrain the magnitude of proinflammatory response.


Asunto(s)
Inflamación/inmunología , Interleucina-23/metabolismo , Mucosa Intestinal/inmunología , MicroARNs/genética , Células Th17/inmunología , Animales , Retroalimentación Fisiológica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-maf/metabolismo , Receptores de Interleucina/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
2.
Eur J Neurosci ; 59(2): 283-297, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043936

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, leading to various motor and non-motor symptoms. Several cellular and molecular mechanisms such as alpha-synuclein (α-syn) accumulation, mitochondrial dysfunction, oxidative stress and neuroinflammation are involved in the pathogenesis of this disease. MicroRNAs (miRNAs) play important roles in post-transcriptional gene regulation. They are typically about 21-25 nucleotides in length and are involved in the regulation of gene expression by binding to the messenger RNA (mRNA) molecules. miRNAs like miR-221 play important roles in various biological processes, including development, cell proliferation, differentiation and apoptosis. miR-221 promotes neuronal survival against oxidative stress and neurite outgrowth and neuronal differentiation. Additionally, the role of miR-221 in PD has been investigated in several studies. According to the results of these studies, (1) miR-221 protects PC12 cells against oxidative stress induced by 6-hydroxydopamine; (2) miR-221 prevents Bax/caspase-3 signalling activation by stopping Bim; (3) miR-221 has moderate predictive power for PD; (4) miR-221 directly targets PTEN, and PTEN over-expression eliminates the protective action of miR-221 on p-AKT expression in PC12 cells; and (5) miRNA-221 controls cell viability and apoptosis by manipulating the Akt signalling pathway in PD. This review study suggested that miR-221 has the potential to be used as a clinical biomarker for PD diagnosis and stage assignment.


Asunto(s)
MicroARNs , Enfermedad de Parkinson , Ratas , Animales , Humanos , Enfermedad de Parkinson/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis , Neuronas Dopaminérgicas/metabolismo , Biomarcadores/metabolismo
3.
Toxicol Appl Pharmacol ; 485: 116904, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503349

RESUMEN

Manganese (Mn)-induced pulmonary toxicity and the underlying molecular mechanisms remain largely enigmatic. Further, in recent years, microRNAs (miRNAs) have emerged as regulators of several pollutants-mediated toxicity. In this context, our study aimed at elucidating whether miRNAs are involved in manganese (II) chloride (MnCl2) (Mn2+)-induced cytotoxicity in lung epithelial cells. Growth inhibition of Mn2+ towards normal human bronchial epithelial (BEAS-2B) and adenocarcinomic human alveolar basal epithelial (A549) cells was analyzed by MTT assay following 24 or 48 h treatment. Reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm), cell cycle arrest, and apoptosis were evaluated by flow cytometry. RT-qPCR and Western blot were performed to analyze the expression of cyclins, anti-oxidant genes, and miRNAs. We used small RNA sequencing to investigate Mn2+-induced changes in miRNA expression patterns. In both cell lines, Mn2+ treatment inhibited growth in a dose-dependent manner. Further, compared with vehicle-treated cells, Mn2+ (250 µM) treatment induced ROS generation, cell cycle arrest, apoptosis, and decreased ΔΨm as well as altered the expression of cyclins and anti-oxidant genes. Sequencing data revealed that totally 296 miRNAs were differentially expressed in Mn2+-treated cells. Among them, miR-221-3p was one of the topmost down-regulated miRNAs in Mn2+-treated cells. We further confirmed this association in A549 cells. In addition, transient transfection was performed to study gain-of-function experiments. Forced expression of miR-221-3p significantly improved cell viability and reduced Mn2+-induced cell cycle arrest and apoptosis in BEAS-2B cells. In conclusion, miR-221-3p may be the most likely target that accounts for the cytotoxicity of Mn2+-exposed lung epithelial cells.


Asunto(s)
Apoptosis , Células Epiteliales , Pulmón , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Células A549 , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Apoptosis/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Compuestos de Manganeso , Manganeso/toxicidad , Línea Celular , Cloruros/toxicidad , Puntos de Control del Ciclo Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga
4.
Diabet Med ; 41(9): e15386, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38887963

RESUMEN

AIM: Impaired wound healing in patients with diabetes can develop into nonhealing ulcerations. Because bone marrow mesenchymal stem cells (BMSCs) exosomes can promote wound healing, this study aims to investigate the mechanism of BMSCs-isolated exosomal miR-221-3p in angiogenesis and diabetic wound healing. METHODS: To mimic diabetes in vitro, human umbilical vein endothelial cells (HUVECs) were subjected to high glucose (HG). Exosomes were derived from BMSCs and identified by transmission electron microscopy (TEM), western blot analysis and dynamic light scattering (DLS). The ability to differentiate BMSCs was assessed via Oil red O staining, alkaline phosphatase (ALP) staining and alizarin red staining. The ability to internalise PKH26-labelled exosomes was assessed using confocal microscopy. Migration, cell viability and angiogenesis were tested by scratch, MTT and tube formation assays separately. The miRNA and protein levels were analysed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) or western blotting. The relationship among miR-221-3p, FOXP1 and SPRY1 was determined using the dual-luciferase reporter, ChIP and RIP assays. RESULTS: Exosomal miR-221-3p was successfully isolated from BMSCs and delivered into HUVECs. HG was found to suppress the angiogenesis, cell viability and migration of HUVECs and exosomal miR-221-3p separated from BMSCs inhibited the above phenomenon. FOXP1 could transcriptionally upregulate SPRY1, and the silencing of FOXP1 reversed the HG-stimulated angiogenesis inhibition, cell viability and migration in HUVECs via the downregulation of SPRY1. Meanwhile, miR-221-3p directly targeted FOXP1 and the overexpression of FOXP1 reversed the positive effect of exosomal miR-221-3p on HUVEC angiogenesis. CONCLUSION: Exosomal miR-221-3p isolated from BMSCs promoted angiogenesis in diabetic wounds through the mediation of the FOXP1/SPRY1 axis. Furthermore, the findings of this study can provide new insights into probing strategies against diabetes.


Asunto(s)
Angiogénesis , Factores de Transcripción Forkhead , Células Madre Mesenquimatosas , MicroARNs , Neovascularización Fisiológica , Proteínas Represoras , Cicatrización de Heridas , Humanos , Movimiento Celular/genética , Regulación hacia Abajo , Exosomas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Neovascularización Fisiológica/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Cicatrización de Heridas/genética
5.
J Periodontal Res ; 59(2): 336-345, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38041212

RESUMEN

OBJECTIVE: To investigate the effects of miR-221 and miR-222 and high glucose on human periodontal ligament (PL) cells morphology, cytoskeleton, adhesion, and migration. BACKGROUND: Chronic hyperglycemia is common in uncontrolled diabetes mellitus (DM) and plays a central role in long-term DM complications, such as impaired periodontal healing. We have previously shown that high glucose increases apoptosis of human PL cells by inhibiting miR-221 and miR-222 and consequently augmenting their target caspase-3. However, other effects of miR-221/222 downregulation on PL cells are still unknown. METHODS: Cells from young humans' premolar teeth were cultured for 7 days under 5 or 30 mM glucose. Directional and spontaneous migration on fibronectin were studied using transwell and time-lapse assays, respectively. F-actin staining was employed to study cell morphology and the actin cytoskeleton. MiR-221 and miR-222 were inhibited using antagomiRs, and their expressions were evaluated by real-time RT-PCR. RESULTS: High glucose inhibited PL cells early adhesion, spreading, and migration on fibronectin. Cells exposed to high glucose showed reduced polarization, velocity, and directionality. They formed several simultaneous unstable and short-lived protrusions, suggesting impairment of adhesion maturation. MiR-221 and miR-222 inhibition also reduced migration, decreasing cell directionality but not significantly cell velocity. After miR-221 and miR-222 downregulation cells showed morphological resemblance with cells exposed to high glucose. CONCLUSION: High glucose impairs human PL cells migration potentially through a mechanism involving reduction of microRNA-221 and microRNA-222 expression. These effects may contribute to the impairment of periodontal healing, especially after surgery and during guided regeneration therapies.


Asunto(s)
MicroARNs , Humanos , MicroARNs/metabolismo , Fibronectinas/farmacología , Ligamento Periodontal/metabolismo , Movimiento Celular , Glucosa/farmacología , Células Cultivadas
6.
Mol Biol Rep ; 51(1): 69, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175275

RESUMEN

BACKGROUND: Gastric cancer (GC) is one of the most common digestive malignancies. Although miR-221-3p was defined as a novel biomarker in many types of cancer, the relationship between its expression differences and the clinicopathological characteristics and prognosis of GC patients was yet to be fully understood. METHODS AND RESULTS: TCGA database was utilized to predict the potential biological function of miR-221-3p in GC. QRT-PCR and RNA FISH were performed to detect the expression levels of miR-221-3p in GC. The miR-221-3p expression levels in GC tissues and cells were significantly higher than those in paracancerous tissues (p < 0.001) and normal gastric mucosal cells (p < 0.05). Higher expression levels of miR-221-3p were associated with tumor diameter ≥ 4 cm (χ2 = 5.519, p = 0.019), cTNM stage (III + IV) (χ2 = 28.013, p = 0.000), lymph node metastasis (χ2 = 23.272, p = 0.000) and distant metastasis (χ2 = 7.930, p = 0.005). Kaplan-Meier survival analysis showed a better prognosis for GC patients with miR-221-3p low expression(HR = 4.520, 95% CI: 1.844-11.075). CONCLUSIONS: miR-221-3p is highly expressed in GC tissues, which plays an important role in tumorigenesis, invasion and metastasis. miR-221-3p may become an important biomarker and potential molecular therapeutic target for patients with GC.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Carcinogénesis , Transformación Celular Neoplásica , Biomarcadores , MicroARNs/genética
7.
Mol Biol Rep ; 51(1): 275, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38310615

RESUMEN

BACKGROUND: Tumor cell spheroids are organized multicellular structures that form during the expansive growth of carcinoma cells. Spheroids formation is thought to contribute to metastasis by supporting growth and survival of mobile tumor cell populations. METHODS AND RESULTS: We investigated how spheroid architecture affects OXPHOS activity, microRNA expression, and intraperitoneal survival of an ovarian carcinoma cell line using high resolution respirometry, quantitative RT-PCR, and a rodent intraperitoneal growth model. Rates of oxidative phosphorylation/respiration per cell of cells growing as spheroids were nearly double those of a variant of the same cell type growing in suspension as loosely aggregated cells. Further, inhibition of spheroid formation by treatment with CDH2 (N-cadherin) siRNA reduced the rate of OXPHOS to that of the non-spheroid forming variant. Cells growing as spheroids showed greatly enhanced expression of miR-221/222, an oncomiR that targets multiple tumor suppressor genes and promotes invasion, and reduced expression of miR-9, which targets mitochondrial tRNA-modification enzymes and inhibits OXPHOS. Consistent with greater efficiency of ATP generation, tumor cells growing as spheroids injected into the nutrient-poor murine peritoneum survived longer than cells growing in suspension as loosely associated aggregates. CONCLUSIONS: The data indicate that growth in spheroid form enhances the OXPHOS activity of constituent tumor cells. In addition, spheroid architecture affects expression of microRNA genes involved in growth control and mitochondrial function. During the mobile phase of metastasis, when ovarian tumor cells disperse through nutrient-poor environments such as the peritoneum, enhanced OXPHOS activity afforded by spheroid architecture would enhance survival and metastatic potential.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Animales , Femenino , Humanos , Ratones , Cadherinas/genética , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Ováricas/patología , Fosforilación Oxidativa , Esferoides Celulares/metabolismo
8.
Exp Cell Res ; 431(1): 113716, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37488006

RESUMEN

Papillary thyroid cancer (PTC) has seen a worldwide expansion in incidence in the past three decades. Tumor-derived exosomes have been associated with the metastasis of cancer cells and are present within the local hypoxic tumor microenvironment, where they mediate intercellular communication by transferring molecules including microRNAs (miRNAs) between cells. Although miRNAs have been shown to serve as non-invasive biomarkers for cancer diagnosis, the role of hypoxia-induced tumor-derived exosomes in PTC progression remains unclear. Herein, we investigated the differentially expressed miRNA expression profiles from GEO datasets (GSE191117 and GSE151180) by using the DESeq package in R and identified a novel role for miR-221-3p as an oncogene in PTC development. In vivo and in vitro loss and gain assays were used to clarify the mechanism of hypoxic PTC cells derived exosomal-miR-221-3p in PTC. miR-221-3p was upregulated in human PTC plasma exosomes, tissues and cell lines. We found that hypoxic PTC cells derived exosomal-miR-221-3p promoted normoxic PTC cells proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro, while inhibition of miR-221-3p limited PTC tumor growth in our PTC xenograft model in nude mice. We finally identified ZFAND5, to be a miR-221-3p target. Mechanistically, hypoxic PTC cell lines-derived exosomes carrying miR-221-3p promoted PTC tumorigenesis by regulating ZFAND5. Our findings further the understanding of the underlying mechanisms associated with PTC progression and identify exosomal-miR-221-3p as a potential biomarker for the diagnosis and prognosis of PTC patients. Our study also suggests that miR-221-3p inhibitors could be a potential treatment strategy for PTC.


Asunto(s)
Exosomas , MicroARNs , Neoplasias de la Tiroides , Animales , Ratones , Humanos , Cáncer Papilar Tiroideo/patología , Exosomas/metabolismo , Ratones Desnudos , MicroARNs/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Neoplasias de la Tiroides/patología , Hipoxia/genética , Hipoxia/metabolismo , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Microambiente Tumoral
9.
Brain Inj ; 38(3): 194-201, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38297513

RESUMEN

AIM: To explore the potential role of microRNA miR-221-5p on the angiopoietin-1 (Ang-1)/Ang-2/Tie-2 signaling axis after subarachnoid hemorrhage (SAH) in a rat model. METHODS: Aspects of the rat's behavior were measured using the Kaoutzanis scoring system to test neurological responses. This included feeding behavior, body contraction, motor, and eye-opening responses. Brain sections were studied using transmission electron microscopy and Evans blue extravasation. Levels of Ang-1, Ang-2, and Tie-2 were determined by Western blot, while miR-221-5p was quantified using stem-loop real-time quantitative PCR (RT-qPCR). RESULTS: The SAH group responded worse to the neurological response test than the sham-operated group. The intercellular space was widened in the SAH group, but not in the sham-operated group. Evans blue dye leaked significantly more into brain tissue cells of the SAH group. Stem-loop qRT-PCR showed elevated miR-221-5p levels. Additionally, Ang-1 and Tie-2 were reduced but Ang-2 expression was increased after SAH. This led to a significant reduction of the Ang-1/Ang-2 ratio in the brain tissue, which was associated with the destruction of the blood-brain barrier. CONCLUSION: The data indicate that miR-221-5p might regulate blood-brain barrier dysfunction through the Ang-1/Ang-2/Tie-2 signaling axis, suggesting that it should be further investigated as a potential novel biomarker.


Asunto(s)
MicroARNs , Hemorragia Subaracnoidea , Ratas , Animales , Barrera Hematoencefálica , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Azul de Evans/metabolismo , MicroARNs/metabolismo
10.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000343

RESUMEN

Mesenchymal stem cells (MSCs) have shown great potential for the treatment of liver injuries, and the therapeutic efficacy greatly depends on their homing to the site of injury. In the present study, we detected significant upregulation of hepatocyte growth factor (HGF) in the serum and liver in mice with acute or chronic liver injury. In vitro study revealed that upregulation of miR-9-5p or miR-221-3p promoted the migration of human MSCs (hMSCs) toward HGF. Moreover, overexpression of miR-9-5p or miR-221-3p promoted hMSC homing to the injured liver and resulted in significantly higher engraftment upon peripheral infusion. hMSCs reduced hepatic necrosis and inflammatory infiltration but showed little effect on extracellular matrix (ECM) deposition. By contrast, hMSCs overexpressing miR-9-5p or miR-221-3p resulted in not only less centrilobular necrosis and venous congestion but also a significant reduction of ECM deposition, leading to obvious improvement of hepatocyte morphology and alleviation of fibrosis around central vein and portal triads. Further studies showed that hMSCs inhibited the activation of hepatic stellate cells (HSCs) but could not decrease the expression of TIMP-1 upon acute injury and the expression of MCP-1 and TIMP-1 upon chronic injury, while hMSCs overexpressing miR-9-5p or miR-221-3p led to further inactivation of HSCs and downregulation of all three fibrogenic and proinflammatory factors TGF-ß, MCP-1, and TIMP-1 upon both acute and chronic injuries. Overexpression of miR-9-5p or miR-221-3p significantly downregulated the expression of α-SMA and Col-1α1 in activated human hepatic stellate cell line LX-2, suggesting that miR-9-5p and miR-221-3p may partially contribute to the alleviation of liver injury by preventing HSC activation and collagen expression, shedding light on improving the therapeutic efficacy of hMSCs via microRNA modification.


Asunto(s)
Células Estrelladas Hepáticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Animales , Ratones , Trasplante de Células Madre Mesenquimatosas/métodos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/terapia , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Masculino , Tetracloruro de Carbono/efectos adversos , Factor de Crecimiento de Hepatocito/metabolismo , Factor de Crecimiento de Hepatocito/genética , Ratones Endogámicos C57BL , Movimiento Celular
11.
J Cell Mol Med ; 27(21): 3247-3258, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37525394

RESUMEN

Postembryonic angiogenesis is mainly induced by various proangiogenic factors derived from the original vascular network. Previous studies have shown that the role of Ang-2 in angiogenesis is controversial. Tip cells play a vanguard role in angiogenesis and exhibit a transdifferentiated phenotype under the action of angiogenic factors. However, whether Ang-2 promotes the transformation of endothelial cells to tip cells remains unknown. Our study found that miR-221-3p was highly expressed in HCMECs cultured for 4 h under hypoxic conditions (1% O2 ). Moreover, miR-221-3p overexpression inhibited HCMECs proliferation and tube formation, which may play an important role in hypoxia-induced angiogenesis. By target gene prediction, we further demonstrated that Ang-2 was a downstream target of miR-221-3p and miR-221-3p overexpression inhibited Ang-2 expression in HCMECs under hypoxic conditions. Subsequently, qRT-PCR and western blotting methods were performed to analyse the role of miR-221-3p and Ang-2 on the regulation of tip cell marker genes. MiR-221-3p overexpression inhibited CD34, IGF1R, IGF-2 and VEGFR2 proteins expression while Ang-2 overexpression induced CD34, IGF1R, IGF-2 and VEGFR2 expression in HCMECs under hypoxic conditions. In addition, we further confirmed that Ang-2 played a dominant role in miR-221-3p inhibitors promoting the transformation of HCMECs to tip cells by using Ang-2 shRNA to interfere with miR-221-3p inhibitor-treated HCMECs under hypoxic conditions. Finally, we found that miR-221-3p expression was significantly elevated in both serum and myocardial tissue of AMI rats. Hence, our data showed that miR-221-3p may inhibit angiogenesis after acute myocardial infarction by targeting Ang-2 to inhibit the transformation of HCMECs to tip cells.


Asunto(s)
MicroARNs , Animales , Ratas , Células Endoteliales/metabolismo , Hipoxia/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , MicroARNs/metabolismo , Humanos
12.
BMC Genomics ; 24(1): 369, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393242

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are small endogenous non-coding RNAs that regulate gene expression by down-regulating it. Several studies have suggested that miRNAs plays a crucial role in mammalian skin color production. The TYRP1 gene, a member of the tyrosine family, is an important candidate gene that affects melanogenesis. This study aimed to identify genes and miRNAs that affect melanin production in Xiang pigs by transcriptome sequencing, and to validate their targeted regulatory relationships. RESULTS: 17 miRNAs and 1,230 genes were significantly differentially expressed (P < 0.05) in the black and white skin tissues of Jianbai Xiang pigs. miRNA-221-3p was identified as a candidate miRNA for melanin formation and its target gene, TYRP1, was selected. The TYRP1 gene is a member of the TYR gene family, which evolved from the TYR gene through chromosome segmental duplication. The function of the gene was highly conserved throughout the evolutionary process. overexpression of TYRP1 gene significantly increased the expression of TYR, TYRP1, and DCT genes P < 0.01, which led to an increase in the relative content of melanin. Silencing of TYRP1 through the use of TYRP1-siRNA significantly reduced the expression of TYR, TYRP1, and DCT genes in Jianbai Xiang pig melanocytes P < 0.01, which in turn decreased the relative melanin content. The targeted binding relationship between ssc-miR-221-3p and TYRP1 gene was validated. After transfection of porcine melanocytes with ssc-miR-221-3p mimic, the expression of ssc-miR-221-3p was significantly up-regulated (P < 0.01). Furthermore, the mRNA and protein levels of TYR, TYRP1, and DCT genes were significantly down-regulated (P < 0.01), and melanin content in cells was significantly reduced (P < 0.01). CONCLUSION: The TYRP1 gene affects melanogenesis in melanocytes of Jianbai Xiang pigs, and ssc-miR-221-3p targets the TYRP1 gene to regulate melanogenesis in melanocytes of Jianbai Xiang pigs.


Asunto(s)
MicroARNs , ARN Pequeño no Traducido , Porcinos , Animales , Melaninas , Melanocitos , Tirosina , Evolución Biológica , Duplicación Cromosómica , MicroARNs/genética , Mamíferos
13.
Mol Carcinog ; 62(12): 1817-1831, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37606187

RESUMEN

The atypical cadherin FAT1 function either as a pro or antitumorigenic in tumors of different tissue origins. Our group previously demonstrated the protumorigenic nature of FAT1 signaling in glioblastoma (GBM). In this study, we investigated how FAT1 influences the expression of clustered oncomiRs (miR-221-3p/miR-222-3p) and their downstream effects in GBM. Through several experiments involving the measurement of specific gene/microRNA expression, gene knockdowns, protein and cellular assays, we have demonstrated a novel oncogenic signaling pathway mediated by FAT1 in glioma. These results have been verified using antimiRs and miR-mimic assays. Initially, in glioma-derived cell lines (U87MG and LN229), we observed FAT1 as a novel up-regulator of the transcription factor NFκB-RelA. RelA then promotes the expression of the clustered-oncomiRs, miR-221-3p/miR-222-3p, which in turn suppresses the expression of the tumor suppressor gene (TSG), PDCD10 (Programmed cell death protein10). The suppression of PDCD10, and other known TSG targets (PTEN/PUMA), by miR-221-3p/miR-222-3p, leads to increased clonogenicity, migration, and invasion of glioma cells. Consistent with our in-vitro findings, we observed a positive expression correlation of FAT1 and miR-221-3p, and an inverse correlation of FAT1 and the miR-targets (PDCD10/PTEN/PUMA), in GBM tissue-samples. These findings were also supported by publicly available GBM databases (The Cancer Genome Atlas [TCGA] and The Repository of Molecular Brain Neoplasia Data [Rembrandt]). Patients with tumors displaying high levels of FAT1 and miR-221-3p expression (50% and 65% respectively) experienced shorter overall survival. Similar results were observed in the TCGA-GBM database. Thus, our findings show a novel FAT1/RelA/miR-221/miR-222 oncogenic-effector pathway that downregulates the TSG, PDCD10, in GBM, which could be targeted therapeutically in a specific manner.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , MicroARNs , Humanos , Glioblastoma/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Glioma/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Movimiento Celular/genética , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas/genética
14.
Mol Cell Biochem ; 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38145448

RESUMEN

The epidermal growth factor receptor 1 (EGFR) plays a crucial role in the progression of various malignant tumors and is considered a potential target for treating triple-negative breast cancer (TNBC). However, the effectiveness of representative tyrosine kinase inhibitors (TKIs) used in EGFR-targeted therapy is limited in TNBC patients. In our study, we observed that the TNBC cell lines MDA-MB-231 and MDA-MB-468 exhibited resistance to Gefitinib. Treatment with Gefitinib caused an upregulation of Fascin-1 (FSCN1) protein expression and a downregulation of miR-221-3p in these cell lines. However, sensitivity to Gefitinib was significantly improved in both cell lines with either inhibition of FSCN1 expression or overexpression of miR-221-3p. Our luciferase reporter assay confirmed that FSCN1 is a target of miR-221-3p. Moreover, Gefitinib treatment resulted in an upregulation of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in MDA-MB-231 cells. Using Stattic, a small-molecule inhibitor of STAT3, we observed a significant enhancement in the inhibitory effect of Gefitinib on the growth, migration, and invasion of MDA-MB-231 cells. Additionally, Stattic treatment upregulated miR-221-3p expression and downregulated FSCN1 mRNA and protein expression. A strong positive correlation was noted between the expression of STAT3 and FSCN1 in breast cancer tissues. Furthermore, patients with high expression levels of both STAT3 and FSCN1 had a worse prognosis. Our findings suggest that elevated FSCN1 expression is linked to primary resistance to EGFR TKIs in TNBC. Moreover, we propose that STAT3 regulates the expression of miR-221-3p/FSCN1 and therefore modulates resistance to EGFR TKI therapy in TNBC. Combining EGFR TKI therapy with inhibition of FSCN1 or STAT3 may offer a promising new therapeutic option for TNBC.

15.
Mol Biol Rep ; 50(12): 9793-9803, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37831346

RESUMEN

BACKGROUND: Diabetic nephropathy (DN), which is a chronic outcome of diabetes mellitus (DM), usually progresses to end-stage renal disease (ESRD). The DN pathophysiology, nevertheless, is not well-defined. Several miRNAs were reported to be either risk or protective factors in DN. METHODS, AND RESULTS: The present study sought to inspect the potential diagnostic and prognostic value of hsa-miR-221 in DN. The study included 200 participants divided into four groups: Group 1 (50 patients with DN), Group 2 (50 diabetic patients without nephropathy), Group 3 (50 nondiabetic patients with CKD), and Group 4 (50 healthy subjects as a control group). Patients in groups 1 and 3 were further classified based on the presence of macroalbuminuria and microalbuminuria. Hsa-miR-221 expression was measured by RT- qRT-PCR. DN patients had significantly elevated serum hsa-miR-221 levels than the other groups, while diabetic patients without nephropathy exhibited elevated levels compared to both nondiabetic patients with CKD, and the control group. The DN patients with macroalbuminuria revealed significantly higher mean values of hsa-miR-221 relative to the patients with microalbuminuria. Significant positive associations were observed in the DN group between serum hsa-miR-221 and fasting insulin, fasting glucose, HOMA IR, ACR, and BMI. The ROC curve analysis of serum hsa-miR-221 in the initial diagnosis of DN in DM revealed high specificity and sensitivity. CONCLUSIONS: It is concluded that hsa-miR-221 has the potential to be a useful biomarker for prognostic and diagnostic purposes in DN.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , MicroARNs , Insuficiencia Renal Crónica , Humanos , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/genética , Pronóstico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , MicroARNs/genética , Biomarcadores , Albuminuria/diagnóstico
16.
Exp Cell Res ; 417(1): 113132, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35398161

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disease. Here, the purpose of the study was to explore the function of long non-coding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR) in PD and its underlying mechanism. An in vivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-hydrochloride (MPTP)-induced mouse model of PD was generated and the SH-SY5Y cells were treated with MPP + to induce neuronal damage in vitro. Quantitative real-time polymerase chain reaction (QRT-PCR) and Western blot were used to detect the expression of HOTAIR, miR-221-3p, α-synuclein and apoptosis-related genes. MTT, flow cytometry and TUNEL assay was used to detect cell viability and apoptosis, respectively. The levels of inflammatory cytokines TNF-α,IL-1ß and IL-6 were detected by ELISA assay. The levels of lactate dehydrogenase (LDH), reactive oxygen species (ROS), and superoxide dismutase (SOD) were determined using the appropriate assay kits. The interactions between miR-221-3p and HOTAIR or α-synuclein were determined by dual luciferase assay and RNA binding protein immunoprecipitation (RIP). Co-localization of HOTAIR and miR-221-3p was also proved by immunofluorescence staining. The results showed that HOTAIR was highly expressed, while miR-221-3p expression was decreased in PD model in vivo and in vitro. In SH-SY5Y cells treated with MPP+, the knockdown of HOTAIR increased cell viability and reduced cell apoptosis, the secretion of inflammatory cytokines and oxidative stress reaction, while HOTAIR overexpression led to opposite effects. Furthermore, HOTAIR sponged miR-221-3p which directly targeted α-synuclein and thus regulated the expression of α-synuclein. Meanwhile, inhibiting miR-221-3p could partially reverse the neuroprotective effects of HOTAIR knockdown. In conclusion, HOTAIR attenuated the injury of SH-SY5Y cells induced by MPP+ via miR-221-3p/α-synuclein axis, suggesting the potential therapeutic value of HOTAIR in PD.


Asunto(s)
MicroARNs , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , ARN Largo no Codificante/metabolismo , alfa-Sinucleína/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
17.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38139277

RESUMEN

The progression of obesity and type 2 diabetes (T2D) is intricately linked with adipose tissue (AT) angiogenesis. Despite an established network of microRNAs (miRNAs) regulating AT function, the specific role of angiogenic miRNAs remains less understood. The miR-221/222 cluster has recently emerged as being associated with antiangiogenic activity. However, no studies have explored its role in human AT amidst the concurrent development of obesity and T2D. Therefore, this study aims to investigate the association between the miR-221-3p/222-3p cluster in human AT and its regulatory network with obesity and T2D. MiR-221-3p/222-3p and their target gene (TG) expression levels were quantified through qPCR in visceral (VAT) and subcutaneous (SAT) AT from patients (n = 33) categorized based on BMI as normoweight (NW) and obese (OB) and by glycemic status as normoglycemic (NG) and type 2 diabetic (T2D) subjects. In silico analyses of miR-221-3p/222-3p and their TGs were conducted to identify pertinent signaling pathways. The results of a multivariate analysis, considering the simultaneous expression of miR-221-3p and miR-222-3p as dependent variables, revealed statistically significant distinctions when accounting for variables such as tissue depot, obesity, sex, and T2D as independent factors. Furthermore, both miRNAs and their TGs exhibited differential expression patterns based on obesity severity, glycemic status, sex, and type of AT depot. Our in silico analysis indicated that miR-221-3p/222-3p cluster TGs predominantly participate in angiogenesis, WNT signaling, and apoptosis pathways. In conclusion, these findings underscore a promising avenue for future research, emphasizing the miR-221-3p/222-3p cluster and its associated regulatory networks as potential targets for addressing obesity and related metabolic disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , MicroARNs , Humanos , Diabetes Mellitus Tipo 2/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/metabolismo , Tejido Adiposo/metabolismo
18.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38139440

RESUMEN

MicroRNAs and the WNT signaling cascade regulate the pathogenetic mechanisms of atherosclerotic coronary artery disease (CAD) development. OBJECTIVE: To evaluate the expression of microRNAs (miR-21a, miR-145, and miR-221) and the role of the WNT signaling cascade (WNT1, WNT3a, WNT4, and WNT5a) in obstructive CAD and ischemia with no obstructive coronary arteries (INOCA). METHOD: The cross-sectional observational study comprised 94 subjects. The expression of miR-21a, miR-145, miR-221 (RT-PCR) and the protein levels of WNT1, WNT3a, WNT4, WNT5a, LRP6, and SIRT1 (ELISA) were estimated in the plasma of 20 patients with INOCA (66.5 [62.8; 71.2] years; 25% men), 44 patients with obstructive CAD (64.0 [56.5; 71,0] years; 63.6% men), and 30 healthy volunteers without risk factors for cardiovascular diseases (CVD). RESULTS: Higher levels of WNT1 (0.189 [0.184; 0.193] ng/mL vs. 0.15 [0.15-0.16] ng/mL, p < 0.001) and WNT3a (0.227 [0.181; 0.252] vs. 0.115 [0.07; 0.16] p < 0.001) were found in plasma samples from patients with obstructive CAD, whereas the INOCA group was characterized by higher concentrations of WNT4 (0.345 [0.278; 0.492] ng/mL vs. 0.203 [0.112; 0.378] ng/mL, p = 0.025) and WNT5a (0.17 [0.16; 0.17] ng/mL vs. 0.01 [0.007; 0.018] ng/mL, p < 0.001). MiR-221 expression level was higher in all CAD groups compared to the control group (p < 0.001), whereas miR-21a was more highly expressed in the control group than in the obstructive (p = 0.012) and INOCA (p = 0.003) groups. Correlation analysis revealed associations of miR-21a expression with WNT1 (r = -0.32; p = 0.028) and SIRT1 (r = 0.399; p = 0.005) protein levels in all CAD groups. A positive correlation between miR-145 expression and the WNT4 protein level was observed in patients with obstructive CAD (r = 0.436; p = 0.016). Based on multivariate regression analysis, a mathematical model was constructed that predicts the type of coronary lesion. WNT3a and LRP6 were the independent predictors of INOCA (p < 0.001 and p = 0.002, respectively). CONCLUSIONS: Activation of the canonical cascade of WNT-ß-catenin prevailed in patients with obstructive CAD, whereas in the INOCA and control groups, the activity of the non-canonical pathway was higher. It can be assumed that miR-21a has a negative effect on the formation of atherosclerotic CAD. Alternatively, miR-145 could be involved in the development of coronary artery obstruction, presumably through the regulation of the WNT4 protein. A mathematical model with WNT3a and LRP6 as predictors allows for the prediction of the type of coronary artery lesion.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , MicroARNs , Vía de Señalización Wnt , Femenino , Humanos , Masculino , Enfermedad de la Arteria Coronaria/metabolismo , Estudios Transversales , MicroARNs/genética , MicroARNs/metabolismo , Sirtuina 1/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética , Proteína Wnt4/genética
19.
J Cell Mol Med ; 26(8): 2299-2311, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35201663

RESUMEN

Proliferation and migration of keratinocytes are vital processes for the successful epithelization specifically after wounding. MiR-221 has been identified to play a potential role in promoting wound regeneration by inducing blood vessel formation. However, little is known about the role of miR-221 in the keratinocyte proliferation and migration during wound healing. An in vivo mice wound-healing model was generated; the expression levels of miR-221 were assessed by qRT-PCR and fluorescence in situ hybridization. Initially, we found that miR-221 was upregulated in the proliferative phase of wound healing. Further, in an in vivo wound-healing mice model, targeted delivery of miR-221 mimics accelerated wound healing. Contrastingly, inhibition of miR-221 delayed healing. Additionally, we observed that overexpression of miR-221 promoted cell proliferation and migration, while inhibition of miR-221 had the opposite effects. Moreover, we identified SOCS7 as a direct target of miR-221 in keratinocytes and overexpression of SOCS7 reversed the effects of miR-221 in HaCaT keratinocytes. Finally, we identified that YB-1 regulates the expression of miR-221 in HaCaT keratinocytes. Overall, our experiments suggest that miR-221 is regulated by YB-1 in HaCaT keratinocytes and acts on SOCS7, thereby playing an important role in HaCaT keratinocyte proliferation and migration during wound healing.


Asunto(s)
MicroARNs , Proteínas Supresoras de la Señalización de Citocinas , Factores de Transcripción , Animales , Movimiento Celular , Proliferación Celular/genética , Hibridación Fluorescente in Situ , Queratinocitos/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Factores de Transcripción/metabolismo
20.
Apoptosis ; 27(7-8): 531-544, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35618996

RESUMEN

Although previous studies have revealed that long noncoding RNAs (lncRNAs) regulate the progression of ischemic acute kidney injury (AKI), the exact role and mechanism of lncRNA ENSMUST_147219 in ischemic AKI are not clear. In the present study, lncRNA ENSMUST_147219 was induced by ischemic injury in vitro and in vivo. Functionally, lncRNA ENSMUST_147219 mediated apoptosis in mouse proximal tubule-derived cell line (BUMPT). Mechanistically, lncRNA ENSMUST_147219 sponged the microRNA (miR)-221-5p to upregulate the expression of interferon regulatory factor 6 (IRF6) to drive apoptosis. Finally, knockdown of lncRNA ENSMUST_147219 markedly attenuated the ischemic AKI by targeting the miR-221-5p/IRF6 axis. Collectively, our data demonstrated that lncRNA ENSMUST_147219 promoted the development of ischemic AKI by regulating the miR-221-5p/IRF6 pathway, which could be considered a new therapeutic target for ischemic AKI.


Asunto(s)
Lesión Renal Aguda , MicroARNs , ARN Largo no Codificante , Lesión Renal Aguda/genética , Animales , Apoptosis/genética , Línea Celular , Factores Reguladores del Interferón , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA