Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biochem Biophys Res Commun ; 640: 1-11, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36495604

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) was one of the most prevalent life-threatening cancers. Metastasis is the leading cause of cancer-related death in HCC. MiRNAs play essential roles in cancer metastasis. METHODS: Expression of miR-652-3p in HCC was assessed. Function experiments of miR-652-3p and trinucleotide repeat-containing gene 6A protein (TNRC6A) were performed both in vitro and in vivo. mRNA sequencing, PCR, and western blot were performed to verify the target genes and pathway of miR-652-3p. The lung metastasis and xenograft cancer model in nude mice was established to investigate the effects of the miR-652-3p and TRNC6A on tumor metastasis in vivo. The relationship between the expression of the miR-652-3p, TNRC6A and the prognosis of HCC patients was analyzed. RESULTS: Upregulated miR-652-3p was found in the tumor tissues of HCC, especially in metastatic HCC patients. Overexpression of miR-652-3p promoted and knockdown of miR-652-3p suppressed HCC metastasis both in vitro and in vivo. MiR-652-3p promoted HCC metastasis via regulating the EMT pathway. TNRC6A was identified as a direct target of miR-652-3p, and the knockdown of TNRC6A restored repressed EMT and HCC metastasis caused by the inhibition of miR-652-3p. Clinical results revealed that high expression of miR-652-3p and low expression of TNRC6A were positively correlated to shortened overall survival and disease-free survival in HCC patients. CONCLUSIONS: MiR-652-3p promotes EMT and HCC metastasis by inhibiting TNRC6A expression in HCC. MiR-652-3p and TNRC6A may serve as potential biomarkers to predict prognosis in HCC patients with metastasis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Animales , Humanos , Ratones , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Metástasis de la Neoplasia
2.
J Biol Regul Homeost Agents ; 34(3): 893-900, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32657103

RESUMEN

Previous studies have shown that lncRNAs play crucial roles in cerebral ischemia/reperfusion injury. In this study, the function and possible mechanism of lncRNA HCP5 in cerebral ischemia/reperfusion injury was investigated. An oxygen glucose deprivation (OGD) model in N2a cells was used to simulate cerebral ischemia/reperfusion injury in vitro. The functional mechanism of lncRNA HCP5 was detected using Trypan blue staining, JC-1, MTT and dual luciferase reporter assays. The expression of apoptosis-related proteins (Bcl-2 and Bax) was measured by Western blot analysis. We found that lncRNA HCP5 was upregulated in N2a cells treated with OGD/R, and knockdown of lncRNA HCP5 enhanced cell viability and reduced cell death. In addition, miR-652-3p was found to act as a sponge for lncRNA HCP5. The overexpression of miR- 652-3p can prevent cerebral ischemic reperfusion injury, however, lncRNA HCP5 attenuated the protective effect of miR-652-3p in cerebral ischemic reperfusion injury. In conclusion, upregulation of lncRNA HCP5 may exacerbate cerebral ischemic reperfusion injury by sponging miR-652-3p.


Asunto(s)
Isquemia Encefálica , ARN Largo no Codificante/genética , Daño por Reperfusión , Apoptosis , Isquemia Encefálica/genética , Isquemia Encefálica/prevención & control , Humanos , MicroARNs/genética , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control
3.
Clin Exp Pharmacol Physiol ; 46(6): 587-596, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30839116

RESUMEN

MicroRNAs (miRNAs) are emerging as novel modulators in the pathogenesis of preeclampsia (PE). Multiple miRNAs have been shown to regulate the proliferation and invasion of trophoblast cells, which play a critical role in successful pregnancies. miR-652-3p has been identified as a novel disease-associated miRNA that is dysregulated in various pathological processes. However, whether miR-652-3p is dysregulated in PE and regulates the cellular function of trophoblast cells remains unknown. In the present study, we aimed to investigate the expression pattern of miR-652-3p in PE and explore its potential function in trophoblast cells. Herein, we found that miR-652-3p expression was significantly decreased in the placental tissues of pregnant women with PE. Cellular function experiments showed that overexpression of miR-652-3p promoted the viability, proliferation, and invasion of trophoblast cells in vitro. By contrast, inhibition of miR-652-3p had the opposite effect. Bioinformatics analysis predicted that homeobox A9 (HOXA9), a crucial regulator of trophoblast cell function, was a potential target gene of miR-652-3p. A luciferase reporter assay confirmed that miR-652-3p directly interacted with the 3'-untranslated region of HOXA9. Moreover, miR-652-3p was shown to negatively regulate the expression of HOXA9 and ephrin receptor B4 (EphB4) in trophoblast cells. Notably, overexpression of HOXA9 or EphB4 significantly reversed the regulatory effect of miR-652-3p on proliferation and invasion of trophoblast cells. Taken together, our findings demonstrate that miR-652-3p regulates the proliferation and invasion of trophoblast cells, possibly through targeting HOXA9 and modulating EphB4 expression.


Asunto(s)
Regulación de la Expresión Génica/genética , Proteínas de Homeodominio/genética , MicroARNs/genética , Receptor EphB4/genética , Trofoblastos/citología , Secuencia de Bases , Línea Celular , Proliferación Celular/genética , Femenino , Humanos , Placenta/metabolismo , Placenta/patología , Preeclampsia/genética , Preeclampsia/patología , Embarazo , Trofoblastos/patología
4.
Cardiovasc Toxicol ; 24(7): 646-655, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38801481

RESUMEN

This research is concentrated on investigating the role and mechanism of miR-652-3p in the protective effects of isoflurane (ISO) against myocardial ischemia-reperfusion (I/R) injury. H9c2 cells underwent pretreatment with varying concentrations of ISO, and subsequently, a hypoxia/reoxygenation (H/R) model was constructed. The levels of miR-652-3p, ISL LIM homeobox 1 (ISL1), and inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) were evaluated through reverse transcription polymerase chain reaction (RT-qPCR). Enzyme-linked immunosorbent assay was employed to investigate concentrations of myocardial injury markers, such as creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI). Cell counting kit-8 was used to evaluate cell viability, while flow cytometry was utilized to measure apoptosis. Additionally, a dual luciferase reporter assay was conducted to validate the targeting relationship between ISL1 and miR-652-3p. Herein, we confirmed that the level of miR-652-3p was gradually increased with prolonged hypoxia; nevertheless, this increase was suppressed by ISO pretreatment (P < 0.05). Additionally, ISO pretreatment prevented the decrease in cell viability, increase in apoptosis, and overproduction of IL-6, TNF-α, CK-MB, and cTnI induced by H/R (P < 0.05). However, the inhibitory effects of ISO were counteracted by the increased levels of miR-652-3p (P < 0.05). ISL1 is a potential target of miR-652-3p. H/R induction suppressed ISL1 levels compared to the control, but ISO treatment increased its expression (P < 0.05). Overexpression of ISL1 inhibited the elimination of the protective effect of ISO on myocardial damage induced by the elevation of miR-652-3p (P < 0.05). The findings of this research confirm that miR-652-3p attenuated the protective effect of ISO on cardiomyocytes in myocardial ischemia by targeting ISL1.


Asunto(s)
Apoptosis , Hipoxia de la Célula , Interleucina-6 , Isoflurano , Proteínas con Homeodominio LIM , MicroARNs , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Factores de Transcripción , MicroARNs/metabolismo , MicroARNs/genética , Isoflurano/farmacología , Proteínas con Homeodominio LIM/metabolismo , Proteínas con Homeodominio LIM/genética , Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/enzimología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/genética , Línea Celular , Apoptosis/efectos de los fármacos , Ratas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Forma MB de la Creatina-Quinasa/metabolismo , Forma MB de la Creatina-Quinasa/sangre , Troponina I/metabolismo , Citoprotección
5.
Curr Med Sci ; 44(3): 611-622, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842772

RESUMEN

OBJECTIVE: Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by abnormal myeloid blast expansion. Recent studies have demonstrated that circular RNAs play a role in AML pathogenesis. In this study, we aimed to investigate the clinical significance of circ_0012152 in AML and elucidate its underlying molecular mechanism in the pathogenesis of this condition. METHODS: Circ_0012152 expression was detected by quantitative real-time polymerase chain reaction in samples obtained from 247 patients with AML and 40 healthy controls. A systematic analysis of clinical characteristics and prognostic factors was also conducted. Cell growth was assessed using the Cell Counting Kit-8 (CCK-8) assay, and apoptosis and cell cycle progression were evaluated by flow cytometry. Moreover, RNA pull-down was performed to identify target microRNAs, and transcriptome RNA sequencing and bioinformatics analyses were utilized to identify downstream mRNA targets. RESULTS: Circ_0012152 was significantly upregulated in samples from patients with AML and served as an independent adverse prognostic factor for overall survival (OS) (hazard ratio: 2.357; 95% confidence interval 1.258-4.415). The circ_0012152 knockdown reduced cell growth, increased apoptosis, and inhibited cell cycle progression in AML cell lines. RNA pull-down and sequencing identified miR-652-3p as a target microRNA of circ_0012152. Cell growth inhibition by circ_0012152 knockdown was significantly relieved by miR-652-3p inhibitors. We suggested that miR-652-3p targeted SOX4, as the decrease in SOX4 expression resulting from circ_0012152 knockdown was upregulated by miR-652-3p inhibitors in AML cells. CONCLUSION: Circ_0012152 is an independent poor prognostic factor for OS in AML, and it promotes AML cell growth by upregulating SOX4 through miR-652-3p.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , ARN Circular , Factores de Transcripción SOXC , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Progresión de la Enfermedad , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , MicroARNs/genética , Pronóstico , ARN Circular/genética , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Regulación hacia Arriba/genética
6.
Aging (Albany NY) ; 15(22): 12780-12793, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37976119

RESUMEN

Cancer microenvironment plays an important role in the proliferation and metastasis of hepatocarcinoma cancer cells (HCC). Exosomes from bone marrow-derived mesenchymal stem cells (BMSCs) are a component of the cancer microenvironment. In this study, we reveal that miRNA-652-3P from BMSC-derived exosomes promotes proliferation and metastasis in HCC. The ability of cancer proliferation, migration and invasion can be evaluated after co-culture by CCK-8, wound healing and transwell assay. Isolated exosomes were identified by transmission electron microscopy (TEM) and the biomarkers of the purified exosomes were showed in West-blotting (WB). MiR-652-3p was detected in the HepG2 and 7721 after co-culturing with exosome derived from BMSCs under different conditions. Target authentication was performed by a luciferase reporter assay to confirm the presumptive target of miR-652-3p. After overexpressing miR-652-3p, the mRNA and protein expression level of TNRC6A in HCC was examined by q-PCR and WB. Further, we observed greater miR-652-3p upregulation in hypoxic BMSCs-exosomes than in normal- exosomes. In addition, a miR-652-3p inhibitor attenuates the proliferation and metastasis of HCC cells after co-culturing with BMSCs. Our data demonstrate that hypoxic BMSCs-derived exosomal miR-652-3p promotes proliferation in HCC cells by inhibiting TNRC6A. The BMSCs-derived exosomal miR-652-3p may help find patient-targeted therapies in hepatocarcinoma cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/genética , Proliferación Celular/genética , Hipoxia , Neoplasias Hepáticas/genética , MicroARNs/genética , MicroARNs/metabolismo , Microambiente Tumoral/genética
7.
Bioengineered ; 12(1): 7519-7528, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34608826

RESUMEN

As powerful regulatory factors, microRNAs (miRNAs) are involved in tumor progression. The current research aimed to excavate the prognostic significance and potential regulatory mechanisms of miR-652-3p in hepatocellular carcinoma (HCC). Expression of miR-652-3p in HCC tissues and cells was exposed by Quantitative real-time polymerase chain reaction (RT-qPCR) assay, and we found that miR-652-3p was elevated in HCC tissues and cells than in the control group (P < 0.05). Then, the relationship between miR-652-3p levels and clinical characteristics was obtained from the Chi-square test. Kaplan-Meier survival analysis and Cox regression model to explore the outcome of miR-652-3p on the prognosis of HCC. The results investigated that overexpression of miR-652-3p was related to clinical tumor-node-metastasis (TNM) stage (P = 0.020) and differentiation (P = 0.031). HCC patients with elevated miR-652-3p levels were correlated with poor overall survival (log-rank, P = 0.007), and maybe a possible prognostic marker for HCC. Finally, CCK-8, colony formation, wound healing and Transwell assay was detected after transfection of HCC cells with miR-652-3p mimic or inhibitor. And the results confirmed that elevation miR-652-3p promoted the proliferation, migration, and invasion of tumor cells (P < 0.05). All data indicated that elevated miR-652-3p is a prognostic marker and would be able to participate in tumor progression of HCC by regulating cell proliferation, migration, and invasion.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular/genética , Neoplasias Hepáticas , MicroARNs/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Movimiento Celular/genética , Femenino , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/genética , Pronóstico , Regulación hacia Arriba
8.
Oncotarget ; 9(27): 19159-19176, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29721191

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNA molecules that post-transcriptionally regulate gene expression. Dysregulation of miRNAs is frequently associated with disease and, in particular, is involved in prostate cancer progression. Next generation miRNA sequencing identified a panel of five miRNAs associated with prostate cancer recurrence and metastasis. High expression of one of these five miRNAs, miR-652, correlated significantly with an increased rate of prostate cancer biochemical recurrence. Overexpression of miR-652 in prostate cancer cells, PC3 and LNCaP, resulted in increased growth, migration and invasion. Prostate cancer cell xenografts overexpressing miR-652 showed increased tumorigenicity and metastases. We found that miR-652 directly targets the B" regulatory subunit, PPP2R3A, of the tumor suppressor PP2A, inducing epithelial-mesenchymal transition (EMT) in PC3 cells and neuroendocrine-like differentiation (NED) in LNCaP cells. The mesenchymal marker N-cadherin increased and epithelial marker E-cadherin decreased in PC3 cells overexpressing miR-652. In LNCaP cells and xenografted tumors, overexpression of miR-652 increased markers of NED, including chromogranin A, neuron specific enolase, and synaptophysin. MiR-652 may contribute to prostate tumor progression by promoting NED through decreased PP2A function. MiR-652 expression could serve as a biomarker for aggressive prostate cancer, as well as provide an opportunity for novel therapy in prostate cancer.

9.
Oncotarget ; 7(13): 16703-15, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26934648

RESUMEN

Our previous study found that miR-652-3p is markedly upregulated in the serum of patients with NSCLC and suggesting that miR-652-3p is a potential biomarker for the early diagnosis of NSCLC. In this study, we detected the expression of miR-652-3p in NSCLC tumor tissues and cell lines and investigated the effect of miR-652-3p on the proliferation and metastasis of NSCLC cells. Our results showed that the expression of miR-652-3p was significantly upregulated in tumor tissues of 50 patients with NSCLC, and it was significantly higher in patients with positive lymph node metastasis, advanced TNM stage and poor prognosis. Using functional analyses by overexpressing or suppressing miR-652-3p in NSCLC cells, we demonstrated that miR-652-3p promoted cell proliferation, migration, invasion and inhibited cell apoptosis. Moreover, the lethal(2) giant larvae 1 (Lgl1) was identified as a direct and functional target of miR-652-3p. Overexpression or knockdown of miR-652-3p led to decreased or increased expression of Lgl1 protein, and the binding site mutation of LLGL1 3'UTR abrogated the responsiveness of the luciferase reporters to miR-652-3p. Overexpression of Lgl1 partially attenuated the function of miR-652-3p. Collectively, these results revealed that miR-652-3p execute a tumor-promoter function in NSCLC through direct binding and regulating the expression of Lgl1.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas del Citoesqueleto/biosíntesis , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pulmonares/patología , MicroARNs/biosíntesis , Carcinoma de Pulmón de Células no Pequeñas/genética , Movimiento Celular/genética , Proliferación Celular/genética , Proteínas del Citoesqueleto/genética , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/genética , MicroARNs/genética , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA