Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(2): 324-334.e5, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33007265

RESUMEN

Infants born by vaginal delivery are colonized with maternal fecal microbes. Cesarean section (CS) birth disturbs mother-to-neonate transmission. In this study (NCT03568734), we evaluated whether disturbed intestinal microbiota development could be restored in term CS-born infants by postnatal, orally delivered fecal microbiota transplantation (FMT). We recruited 17 mothers, of whom seven were selected after careful screening. Their infants received a diluted fecal sample from their own mothers, taken 3 weeks prior to delivery. All seven infants had an uneventful clinical course during the 3-month follow-up and showed no adverse effects. The temporal development of the fecal microbiota composition of FMT-treated CS-born infants no longer resembled that of untreated CS-born infants but showed significant similarity to that of vaginally born infants. This proof-of-concept study demonstrates that the intestinal microbiota of CS-born infants can be restored postnatally by maternal FMT. However, this should only be done after careful clinical and microbiological screening.


Asunto(s)
Trasplante de Microbiota Fecal/métodos , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Adulto , Cesárea/efectos adversos , Parto Obstétrico , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Microbiota/fisiología , Madres , Embarazo , Prueba de Estudio Conceptual , Vagina/microbiología
2.
Eur Child Adolesc Psychiatry ; 33(3): 847-860, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37071196

RESUMEN

Relations between the gut microbiota and host mental health have been suggested by a growing number of case-control and cross-sectional studies, while supporting evidence is limited in large community samples followed during an extended period. Therefore, the current preregistered study ( https://osf.io/8ymav , September 7, 2022) described child gut microbiota development in the first 14 years of life and explored its relations to internalizing and externalizing difficulties and social anxiety in puberty, a period of high relevance for the development of mental health problems. Fecal microbiota composition was analysed by 16S ribosomal RNA gene amplicon sequencing in a total of 1003 samples from 193 children. Through a clustering method, four distinct microbial clusters were newly identified in puberty. Most children within three of these clusters remained in the same clusters from the age of 12 to 14 years, suggesting stability in microbial development and transition during this period. These three clusters were compositionally similar to enterotypes (i.e., a robust classification of the gut microbiota based on its composition across different populations) enriched in Bacteroides, Prevotella, and Ruminococcus, respectively. Two Prevotella 9-predominated clusters, including one reported by us earlier in middle childhood and the other one in puberty, were associated with more externalizing behavior at age 14. One Faecalibacterium-depleted pubertal cluster was related to more social anxiety at age 14. This finding was confirmed by a negative cross-sectional relation between Faecalibacterium and social anxiety in the 14-year-olds. The findings of this study continue to map gut microbiota development in a relatively large community sample followed from birth onwards, importantly extending our knowledge to puberty. Results indicate that Prevotella 9 and Faecalibacterium may be relevant microbial taxa in relation to externalizing behavior and social anxiety, respectively. These correlational findings need validations from other similar cohort studies, as well as well-designed mechanistic pre-clinical investigations before inferring cause and effect.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Niño , Adolescente , Estudios Transversales , Pubertad , Ansiedad
3.
J Environ Manage ; 365: 121568, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936024

RESUMEN

Adding fruit tree branches to the compost pile in appropriate proportions is one of the methods used to address the challenge of tobacco waste recycling. However, the effects of different proportions of fruit tree branches on nicotine concentration and microbial diversity during tobacco waste composting have not been reported. In this study, a composting system with tobacco waste, cow dung, and fruit tree branches was established in a laboratory fermenter to assess the impact of adding 10%, 20%, and 30% fruit tree branches on quantity changes. In addition, the relationships between nicotine degradation, compost properties, enzyme activities, and microbial diversities were determined using biochemical assay methods and high-throughput sequencing. The results showed that adding appropriate proportions of fruit branch segments affected changes in physical and chemical properties during composting and promoted tobacco waste compost maturity. Aerobic composting effectively degraded nicotine in tobacco waste. Increased proportions of fruit branch segments led to elevations in nicotine degradation rates and enzyme activities related to lignocellulose degradation. The addition of fruit branches influenced the relative abundance and species of dominant bacteria and fungi at the phylum and genus levels. However, it did not significantly affect the relative abundance of the main bacterial genera involved in nicotine degradation. Nevertheless, it reduced the sensitivity of enzyme activity to nicotine content within heaps, increasing reliance on total nitrogen changes. The results of this study provide a theoretical basis for the utilization of tobacco waste in composting systems and indicate that fruit tree branches can enhance nicotine degradation efficiency during tobacco waste composting.


Asunto(s)
Compostaje , Nicotiana , Nicotina , Nicotiana/metabolismo , Nicotina/metabolismo , Nicotina/análisis , Frutas , Microbiología del Suelo , Árboles
4.
J Environ Manage ; 352: 120048, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38246105

RESUMEN

Understanding the porosity of biochar (BC) that promotes the heavy metal (HM) passivation during composting can contribute to the sustainable management of pig manure (PM). The current work aimed to explore the influence of BC with varying pore sizes on the physicochemical properties and morphological changes of HMs (including Zn, Cu, Cr, As, and Hg), and microbiota development during PM composting. The various pore sizes of BC were generated by pyrolyzing pine wood at 400 (T1), 500 (T2), 600 (T3) and 700 (T4) °C, respectively. The results revealed a positive correlation between specific surface area of BC and pyrolysis temperature. BC addition contributed to a significantly extended compost warming rate and duration of high-temperature period, as well as HM passivation, reflected in the decrease in Exc-Zn (63-34%) and Red-Cu (28-13%) content, and the conversion of Oxi-Cr (29-21%) and Red-Hg (16-5%) to more stable forms. Moreover, BC at T4 exhibited the best effect on Zn and Cu passivation due to the highest specific surface area (380.03 m2/g). In addition to its impact on HM passivation, BC addition improved the microbial environment during PM composting, leading to enhanced microbial diversity and richness. Notably, Chloroflexi and Bacteroidota played key roles in promoting the transformation of Exc-Cu and Red-Hg into stable forms. This phenomenon further stimulated the enhanced decomposition of organic matter (OM) when BC prepared at 600-700 °C was added. Therefore, it can be concluded that the regulation of BC porosity is an effective strategy to improve HM passivation and the overall effectiveness of PM composting.


Asunto(s)
Compostaje , Mercurio , Metales Pesados , Microbiota , Porcinos , Animales , Estiércol , Suelo , Metales Pesados/análisis , Carbón Orgánico/química
5.
Gastroenterology ; 161(1): 94-106, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33741316

RESUMEN

BACKGROUND AND AIMS: Increasing evidence supports the role of early-life gut microbiota in developing atopic diseases, but ecological changes to gut microbiota during infancy in relation to food sensitization remain unclear. We aimed to characterize and associate these changes with the development of food sensitization in children. METHODS: In this observational study, using 16S rRNA amplicon sequencing, we characterized the composition of 2844 fecal microbiota in 1422 Canadian full-term infants. Atopic sensitization outcomes were measured by skin prick tests at age 1 year and 3 years. The association between gut microbiota trajectories, based on longitudinal shifts in community clusters, and atopic sensitization outcomes at age 1 and 3 years were determined. Ethnicity and early-life exposures influencing microbiota trajectories were initially examined, and post-hoc analyses were conducted. RESULTS: Four identified developmental trajectories of gut microbiota were shaped by birth mode and varied by ethnicity. The trajectory with persistently low Bacteroides abundance and high Enterobacteriaceae/Bacteroidaceae ratio throughout infancy increased the risk of sensitization to food allergens, particularly to peanuts at age 3 years by 3-fold (adjusted odds ratio [OR] 2.82, 95% confidence interval [CI] 1.13-7.01). A much higher likelihood for peanut sensitization was found if infants with this trajectory were born to Asian mothers (adjusted OR 7.87, 95% CI 2.75-22.55). It was characterized by a deficiency in sphingolipid metabolism and persistent Clostridioides difficile colonization. Importantly, this trajectory of depleted Bacteroides abundance mediated the association between Asian ethnicity and food sensitization. CONCLUSIONS: This study documented an association between persistently low gut Bacteroides abundance throughout infancy and sensitization to peanuts in childhood. It is the first to show a mediation role for infant gut microbiota in ethnicity-associated development of food sensitization.


Asunto(s)
Hipersensibilidad a los Alimentos/etnología , Microbioma Gastrointestinal/inmunología , Pueblo Asiatico , Canadá , Etnicidad , Heces , Hipersensibilidad a los Alimentos/inmunología , Hipersensibilidad a los Alimentos/microbiología , Humanos , Lactante
6.
Biol Chem ; 402(12): 1481-1491, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34599869

RESUMEN

Colonization of the intestine with commensal bacteria is known to play a major role in the maintenance of human health. An altered gut microbiome is associated with various ensuing diseases including respiratory diseases. Here, we summarize current knowledge on the impact of the gut microbiota on airway immunity with a focus on consequences for the host defense against respiratory infections. Specific gut commensal microbiota compositions and functions are depicted that mediate protection against respiratory infections with bacterial and viral pathogens. Lastly, we highlight factors that have imprinting effects on the establishment of the gut microbiota early in life and are potentially relevant in the context of respiratory infections. Deepening our understanding of these relationships will allow to exploit the knowledge on how gut microbiome maturation needs to be modulated to ensure lifelong enhanced resistance towards respiratory infections.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Intestinos , Infecciones del Sistema Respiratorio
7.
Physiol Genomics ; 51(8): 368-378, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31226006

RESUMEN

The gut microbiota of infants changes over time and is affected by various factors during early life. However, rarely have studies explored the gut microbiota development and affecting factors in the Chinese infant population. We enrolled 102 infants and collected stool samples from them at birth, 42 days, 3 mo, and 6 mo after delivery to characterize the microbiota signatures and the effects of different factors that modulate the gut microbiota diversity, composition, and function over time. DNA extracted from the bacteria in the stool samples was subjected to high-throughput sequencing and bioinformatics analysis. Microbial richness and diversity increased significantly during the first 6 mo of life. Beneficial microbes such as Bifidobacterium, Lactobacillus, and Blautia were found to be increased in the infant's gut at 6 mo, while pathological bacteria such as Escherichia-Shigella, Enterobacter, Staphylococcus, and Klebsiella decreased over time. The changes in the infant delivery mode and infant-feeding mode only produced changes in the microbial composition, whereas changes in bacterial richness, diversity and effects sizes on the microbial architecture were all time dependent. A comparison of infant delivery modes conveyed a decrease in abundance of Bacteroidetes over time in the gut of infants born via C-section, while the Bifidobacterium was the most dominant genus in the vaginal delivery group. The gut microbiota of infants changed extensively during the first 6 mo of life. Delivery and feeding modes were strong factors that significantly affected microbial architecture and functions.


Asunto(s)
Alimentación con Biberón , Lactancia Materna , Microbioma Gastrointestinal/genética , Parto/fisiología , Bacteroidetes/genética , Bifidobacterium/genética , Cesárea , China , ADN Bacteriano/genética , Heces/microbiología , Femenino , Estudios de Seguimiento , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Masculino , Estudios Prospectivos
8.
Proc Natl Acad Sci U S A ; 112(46): 14105-12, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26578751

RESUMEN

The human gut contains a microbial community composed of tens of trillions of organisms that normally assemble during the first 2-3 y of postnatal life. We propose that brain development needs to be viewed in the context of the developmental biology of this "microbial organ" and its capacity to metabolize the various diets we consume. We hypothesize that the persistent cognitive abnormalities seen in children with undernutrition are related in part to their persistent gut microbiota immaturity and that specific regions of the brain that normally exhibit persistent juvenile (neotenous) patterns of gene expression, including those critically involved in various higher cognitive functions such as the brain's default mode network, may be particularly vulnerable to the effects of microbiota immaturity in undernourished children. Furthermore, we postulate that understanding the interrelationships between microbiota and brain metabolism in childhood undernutrition could provide insights about responses to injury seen in adults. We discuss approaches that can be used to test these hypotheses, their ramifications for optimizing nutritional recommendations that promote healthy brain development and function, and the potential societal implications of this area of investigation.


Asunto(s)
Encéfalo/metabolismo , Trastornos de la Nutrición del Niño/metabolismo , Microbioma Gastrointestinal , Regulación de la Expresión Génica , Intestinos/microbiología , Modelos Biológicos , Adolescente , Adulto , Encéfalo/patología , Niño , Trastornos de la Nutrición del Niño/patología , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino
9.
Gut Microbes ; 16(1): 2295403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38197254

RESUMEN

The gut microbiota is vital for human body development and function. Its development in early life is influenced by various environmental factors. In this randomized controlled trial, the gut microbiota was obtained as a secondary outcome measure in a study on the effects of one hour of daily skin-to-skin contact (SSC) for five weeks in healthy full-term infants. Specifically, we studied the effects on alpha/beta diversity, volatility, microbiota maturation, and bacterial and gut-brain-axis-related functional abundances in microbiota assessed thrice in the first year. Pregnant Dutch women (n = 116) were randomly assigned to the SSC or care-as-usual groups. The SSC group participants engaged in one hour of daily SSC from birth to five weeks of age. Stool samples were collected at two, five, and 52 weeks and the V4 region was sequenced. We observed significant differences in the microbiota composition, bacterial abundances, and predicted functional pathways between the groups. The SSC group exhibited lower microbiota volatility during early infancy. Microbiota maturation was slower in the SSC group during the first year and our results suggested that breastfeeding duration may have partially mediated this relation. Our findings provide evidence that postpartum SSC may influence microbiota development. Replication is necessary to validate and generalize these results. Future studies should include direct stress measurements and extend microbiota sampling beyond the first year to investigate stress as a mechanism and research SSC's impact on long-term microbiota maturation trajectories.


Asunto(s)
Microbioma Gastrointestinal , Método Madre-Canguro , Femenino , Humanos , Lactante , Embarazo , Eje Cerebro-Intestino , Lactancia Materna , Etnicidad
10.
mBio ; 14(1): e0244422, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36475774

RESUMEN

Chicks are ideal to follow the development of the intestinal microbiota and to understand how a pathogen perturbs this developing population. Taxonomic/metagenomic analyses captured the development of the chick microbiota in unperturbed chicks and in chicks infected with Salmonella enterica serotype Typhimurium (STm) during development. Taxonomic analysis suggests that colonization by the chicken microbiota takes place in several waves. The cecal microbiota stabilizes at day 12 posthatch with prominent Gammaproteobacteria and Clostridiales. Introduction of S. Typhimurium at day 4 posthatch disrupted the expected waves of intestinal colonization. Taxonomic and metagenomic shotgun sequencing analyses allowed us to identify species present in uninfected chicks. Untargeted metabolomics suggested different metabolic activities in infected chick microbiota. This analysis and gas chromatography-mass spectrometry on ingesta confirmed that lactic acid in cecal content coincides with the stable presence of enterococci in STm-infected chicks. Unique metabolites, including 2-isopropylmalic acid, an intermediate in the biosynthesis of leucine, were present only in the cecal content of STm-infected chicks. The metagenomic data suggested that the microbiota in STm-infected chicks contained a higher abundance of genes, from STm itself, involved in branched-chain amino acid synthesis. We generated an ilvC deletion mutant (STM3909) encoding ketol-acid-reductoisomerase, a gene required for the production of l-isoleucine and l-valine. ΔilvC mutants are disadvantaged for growth during competitive infection with the wild type. Providing the ilvC gene in trans restored the growth of the ΔilvC mutant. Our integrative approach identified biochemical pathways used by STm to establish a colonization niche in the chick intestine during development. IMPORTANCE Chicks are an ideal model to follow the development of the intestinal microbiota and to understand how a pathogen perturbs this developing population. Using taxonomic and metagenomic analyses, we captured the development of chick microbiota to 19 days posthatch in unperturbed chicks and in chicks infected with Salmonella enterica serotype Typhimurium (STm). We show that normal development of the microbiota takes place in waves and is altered in the presence of a pathogen. Metagenomics and metabolomics suggested that branched-chain amino acid biosynthesis is especially important for Salmonella growth in the infected chick intestine. Salmonella mutants unable to make l-isoleucine and l-valine colonize the chick intestine poorly. Restoration of the pathway for biosynthesis of these amino acids restored the colonizing ability of Salmonella. Integration of multiple analyses allowed us to correctly identify biochemical pathways used by Salmonella to establish a niche for colonization in the chick intestine during development.


Asunto(s)
Microbiota , Enfermedades de las Aves de Corral , Salmonelosis Animal , Animales , Pollos/microbiología , Isoleucina , Salmonella typhimurium/metabolismo , Ciego/microbiología , Aminoácidos de Cadena Ramificada/metabolismo , Valina/metabolismo , Salmonelosis Animal/microbiología , Enfermedades de las Aves de Corral/microbiología
11.
Nutrients ; 15(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36678236

RESUMEN

Short-chain fatty acids (SCFAs) are important metabolites of the gut microbiota. The aim is to analyze the influence of perinatal factors, which can affect the gut microbiota, on the concentrations of fecal SCFAs over the first two years of life. Gas chromatography was used to analyze SCFA in a total of 456 fecal samples from 86 children. Total SCFA concentrations increased until 12 months and stabilized after that. Antibiotic treatment during pregnancy was associated with an increase in acetic acid, propionic acid and total SCFA in meconium and a decrease in the same SCFAs at 6 months. Butyric acid was increased after Caesarean delivery until 1 month. In formula-fed children, propionic acid (at 1 month) and butyric acid and total SCFA (at 12 months) were increased. Acetic and linear butyric acids and total SCFAs were also increased at 12 months in children born vaginally that were also formula-fed. Higher butyric acid was observed in children of mothers with normal pre-pregnancy weight and adequate weight gain during pregnancy. Butyric acid was also elevated in 6-month-old infants with a higher body weight (≥85th percentile). Acetic acid concentrations were significantly higher in 2-year-old females vs. males. We conclude that perinatal factors are linked to changes in fecal SCFAs and further long-term epidemiological studies are warranted.


Asunto(s)
Ácidos Grasos Volátiles , Propionatos , Masculino , Femenino , Humanos , Niño , Lactante , Preescolar , Propionatos/análisis , Ácido Butírico/análisis , Estudios Prospectivos , Ácidos Grasos Volátiles/metabolismo , Heces/química
12.
J Allergy Clin Immunol Pract ; 10(9): 2195-2204, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35718258

RESUMEN

Allergic diseases exclusively affect tissues that face environmental challenges and harbor endogenous bacterial microbiota. The microbes inhabiting the affected tissues may not be mere bystanders in this process but actively affect the risk of allergic sensitization, disease development, and exacerbation or abatement of symptoms. Experimental evidence provides several plausible means by which the human microbiota could influence the development of allergic diseases including, but not limited to, effects on antigen presentation and induction of tolerance and allergen permeation by endorsing or disrupting epithelial barrier integrity. Epidemiological evidence attests to the significance of age-appropriate, nonpathogenic microbiota development in skin, gastrointestinal tract, and airways for protection against allergic disease development. Thus, there exist potential targets for preventive actions either in the prenatal or postnatal period. These could include maternal dietary interventions, antibiotic stewardship for both the mother and infant, reducing elective cesarean deliveries, and understanding barriers to breastfeeding and timing of food diversification. In here, we will review the current understanding and evidence of allergy-associated human microbiota patterns, their role in the development of allergic diseases, and how we could harness these associations to our benefit against allergies.


Asunto(s)
Asma , Dermatitis Atópica , Hipersensibilidad a los Alimentos , Microbiota , Lactancia Materna , Femenino , Humanos , Lactante , Embarazo
13.
Anim Microbiome ; 4(1): 31, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551670

RESUMEN

BACKGROUND: Despite well-known effects of diet on gut microbiota diversity, relatively little is known about how maternal diet quality shapes the longitudinal maturation of gut microbiota in offspring. To investigate, we fed female rats standard chow (Chow) or a western-style, high-choice cafeteria diet (Caf) prior to and during mating, gestation and lactation. At weaning (3 weeks), male and female offspring were either maintained on their mother's diet (ChowChow, CafCaf groups) or switched to the other diet (ChowCaf, CafChow). Fecal microbial composition was assessed in dams and longitudinally in offspring at 3, 7 and 14 weeks of age. RESULTS: The effect of maternal diet on maturation of offspring gut microbiota was assessed by α- and ß-diversities, Deseq2/LEfSe, and SourceTracker analyses. Weanling gut microbiota composition was characterised by reduced α- and ß-diversity profiles that clustered away from dams and older siblings. After weaning, offspring gut microbiota came to resemble an adult-like gut microbiota, with increased α-diversity and reduced dissimilarity of ß-diversity. Similarly, Deseq2/LEfSe analyses found fewer numbers of altered operational taxonomic units (OTUs) between groups from weaning to adulthood. SourceTracker analyses indicated a greater overall contribution of Caf mothers' microbial community (up to 20%) to that of their offspring than the contribution of Chow mothers (up to 8%). Groups maintained on the maternal diet (ChowChow, CafCaf), versus those switched to the other diet (ChowCaf, CafChow) post-weaning significantly differed from each other at 14 weeks (Permutational Multivariate Analysis of Variance), indicating interactive effects of maternal and post-weaning diet on offspring gut microbiota maturation. Nevertheless, this developmental trajectory was unaffected by sex and appeared consistent between ChowChow, CafCaf, ChowCaf and CafChow groups. CONCLUSIONS: Introducing solid food at weaning triggered the maturation of offspring gut microbiota to an adult-like profile in rats, in line with previous human studies. Postweaning Caf diet exposure had the largest impact on offspring gut microbiota, but this was modulated by maternal diet history. An unhealthy maternal Caf diet did not alter the developmental trajectory of offspring gut microbiota towards an adult-like profile, insofar as it did not prevent the age-associated increase in α-diversity and reduction in ß-diversity dissimilarity.

14.
Microorganisms ; 10(9)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36144471

RESUMEN

Gut microbial composition codevelops with the host from birth and is influenced by several factors, including drug use, radiation, psychological stress, dietary changes and physical stress. Importantly, gut microbial dysbiosis has been clearly associated with several diseases, including cancer, rheumatoid arthritis and Clostridium difficile-associated diarrhoea, and is known to affect human health and performance. Herein, we discuss that a shift in the gut microbiota with age and reversal of age-related modulation of the gut microbiota could be a major contributor to the incidence of numerous age-related diseases or overall human performance. In addition, it is suggested that the gut microbiome of long-lived animals such as reptiles should be investigated for their unique properties and contribution to the potent defense system of these species could be extrapolated for the benefit of human health. A range of techniques can be used to modulate the gut microbiota to have higher abundance of "beneficial" microbes that have been linked with health and longevity.

15.
mSystems ; 7(3): e0024322, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35674393

RESUMEN

In mammals, the introduction of solid food is pivotal for the establishment of the gut microbiota. However, the effects of the first food consumed on long-term microbiota trajectory and host response are still largely unknown. This study aimed to investigate the influences of (i) the timing of first solid food ingestion and (ii) the consumption of plant polysaccharides on bacterial community dynamics and host physiology using a rabbit model. To modulate the first exposure to solid nutrients, solid food was provided to suckling rabbits from two different time points (3 or 15 days of age). In parallel, food type was modulated with the provision of diets differing in carbohydrate content throughout life: the food either was formulated with a high proportion of rapidly fermentable fibers (RFF) or was starch-enriched. We found that access to solid food as of 3 days of age accelerated the gut microbiota maturation. Our data revealed differential effects according to the digestive segment: precocious solid food ingestion influenced to a greater extent the development of bacterial communities of the appendix vermiformis, whereas life course polysaccharides ingestion had marked effects on the cecal microbiota. Greater ingestion of RFF was assumed to promote pectin degradation as revealed by metabolomics analysis. However, transcriptomic and phenotypic host responses remained moderately affected by experimental treatments, suggesting little outcomes of the observed microbiome modulations on healthy subjects. In conclusion, our work highlighted the timing of solid food introduction and plant polysaccharides ingestion as two different tools to modulate microbiota implantation and functionality. IMPORTANCE Our study was designed to gain a better understanding of how different feeding patterns affect the dynamics of gut microbiomes and microbe-host interactions. This research showed that the timing of solid food introduction is a key component of the gut microbiota shaping in early developmental stages, though with lower impact on settled gut microbiota profiles in older individuals. This study also provided in-depth analysis of dietary polysaccharide effects on intestinal microbiota. The type of plant polysaccharides reaching the gut through the lifetime was described as an important modulator of the cecal microbiome and its activity. These findings will contribute to better define the interventions that can be employed for modulating the ecological succession of young mammal gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Conejos , Bacterias/metabolismo , Polisacáridos/farmacología , Dieta , Mamíferos
16.
Vet Sci ; 8(9)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34564581

RESUMEN

In this research, the effects of early post-hatch inoculation of a competitive exclusion product (Br) and the continuous feeding of a synbiotic supplement (Sy) containing probiotic bacteria, yeast, and inulin on the production traits and composition of ileal chymus (IC), ileal mucosa (IM), and caecal chymus (CC) microbiota of broiler chickens were evaluated. The dietary treatments had no significant effects on the pattern of intestinal microbiota or production traits. The digestive tract bacteriota composition was affected mostly by the sampling place and age of birds. The dominant family of IC was Lactobacillaceae, without change with the age. The abundance of the two other major families, Enterococcaceae and Lachnospiraceae decreased with the age of birds. In the IM, Clostridiaceae was the main family in the first three weeks. Its ratio decreased later and Lactobacillaceae became the dominant family. In the CC, Ruminococcaceae and Lachnospiraceae were the main families with decreasing tendency in the age. In IC, Br treatment decreased the abundance of genus Lactobacillus, and both Br and Sy increased the ratio of Enterococcus at day 7. In all gut segments, a negative correlation was found between the IBD antibody titer levels and the ratio of genus Leuconostoc in the first three weeks, and a positive correlation was found in the case of Bifidobacterium, Rombutsia, and Turicibacter between day 21 and 40.

17.
Anim Microbiome ; 2(1): 32, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-33499974

RESUMEN

BACKGROUND: Little is known about maturation of calves' gut microbiome in veal farms, in which animals are confined under intensive-farming conditions and the administration of collective antibiotic treatment in feed is common. We conducted a field study on 45 calves starting seven days after their arrival in three veal farms. We collected monthly fecal samples over six months and performed 16S rRNA gene sequencing and quantitative PCR of Escherichia coli to follow the dynamics of their microbiota, including that of their commensal E. coli populations. We used mixed-effect models to characterize the dynamics of α-diversity indices and numbers of E. coli, and searched for an effect of collective antibiotic treatments on the estimated parameters. On two farms, we also searched for associations between recommended daily doses of milk powder and bacterial abundance. RESULTS: There was high heterogeneity between calves' microbiota upon their arrival at the farms, followed by an increase in similarity, starting at the first month. From the second month, 16 genera were detected at each sampling in all calves, representing 67.5% (± 9.9) of their microbiota. Shannon diversity index showed a two-phase increase, an inflection occurring at the end of the first month. Calves receiving antibiotics had a lower intercept estimate for Shannon index (- 0.17 CI95%[-0.27; - -0.06], p = 0.003) and a smaller number of E. coli/ gram of feces during the treatment and in the 15 days following it (- 0.37 log10 (E. coli/g) CI95%[- 0.66; - 0.08], p = 0.01) than unexposed calves. There were moderate to strong positive associations between the dose of milk powder and the relative abundances of the genera Megasphaera, Enterococcus, Dialister and Mitsuokella, and the number of E. coli (rs ≥ 0.40; Bonferroni corrected p < 0.05). CONCLUSIONS: This observational study shows early convergence of the developing microbiota between veal calves and associations between the dose of milk powder and members of their microbiota. It suggests that administration of collective antibiotic treatment results in a reduction of microbial diversity and size of the E. coli population and highlights the need for additional work to fully understand the impact of antibiotic treatment in the veal industry.

18.
BMJ Open ; 9(6): e028500, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31253623

RESUMEN

PURPOSE: HELMi (Health and Early Life Microbiota) is a longitudinal, prospective general population birth cohort, set up to identify environmental, lifestyle and genetic factors that modify the intestinal microbiota development in the first years of life and their relation to child health and well-being. PARTICIPANTS: The HELMi cohort consists of 1055 healthy term infants born in 2016-2018 mainly at the capital region of Finland and their parents. The intestinal microbiota development of the infants is characterised based on nine, strategically selected, faecal samples and connected to extensive online questionnaire-collected metadata at weekly to monthly intervals focusing on the diet, other exposures and family's lifestyle as well as the health and growth of the child. Motor and cognitive developmental screening takes place at 18 months. Infant's DNA sample, mother's breast milk sample and both parent's spot faecal samples have been collected. FINDINGS TO DATE: The mean age of the mothers was 32.8 (SD 4.1) and fathers/coparents 34.8 (5.3) years at the time of enrolment. Seventeen percentage (n=180) of the infants were born by caesarean section. Just under half (49%) were firstborns; 50.7% were males. At 3 months of age, 86% of the babies were exclusively breastfed and 2% exclusively formula-fed. FUTURE PLANS: The current follow-up from pregnancy to first 24 months will be completed in March 2020, totalling to over 10 000 biological samples and over 50 000 questionnaire entries. The results are expected to identify environmental and host factors that affect early gut microbiota development and health, and hence give indications of how to prevent or reverse microbiota perturbations in infancy. This prospective cohort will be followed up further to identify how the early microbiota relates to later health outcomes, especially weight gain, infections and allergic and other chronic diseases. TRIAL REGISTRATION NUMBER: NCT03996304; Pre-results.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Adulto , Lactancia Materna , Estudios de Cohortes , Femenino , Finlandia , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Masculino , Embarazo , Estudios Prospectivos
19.
Front Microbiol ; 8: 1388, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28785253

RESUMEN

Early-life intestinal microbiota development is crucial for host's long-term health and is influenced by many factors including gestational age, birth and feeding modes, birth environment, ethnic/geographical background, etc. However, 'quantitative' data on the actual population levels of gut bacterial communities when these influences are controlled for is relatively rare. Herein, we demonstrate a quantitative perspective of microbiota development in natural and healthy milieus, i.e., in healthy, full-term, vaginally born and breast-fed infants (n = 19) born at same clinic. Fecal microbiota at age 1 and 7 days, 1, 3, and 6 months and 3 years is quantified using highly sensitive reverse-transcription-quantitative-PCR assays targeting bacterial rRNA molecules. At day 1, we detect one or more bacteria in all (100%) of the babies, wherein the microbiota is composed mainly of enterobacteria (35%), Bacteroides fragilis group (23%), enterococci (18%), staphylococci (13%), and bifidobacteria (9%). Altogether, facultative anaerobes predominate during first few weeks whereafter obligate anaerobes including bifidobacteria, B. fragilis group, Clostridium coccoides group, and Clostridium leptum subgroup gradually start prevailing. At 3 years, the composition is represented almost entirely (99%) by obligate anaerobes including C. leptum subgroup (34%), bifidobacteria (22%), B. fragilis group (21%), C. coccoides group (17%), Atopobium cluster (4%), and Prevotella (1%). The overall obligate/facultative proportion is 32/68, 37/63, 54/46, 70/30, 64/36, and 99/1% at 1 and 7 days, 1, 3, and 6 months and 3 years, respectively. However, interestingly, considerable individual-specific variations in the obligate/facultative ratios as well as in the proportions of Firmicutes, Bacteroides, Actinobacteria, and Proteobacteria communities are seen among these babies. This disparity even within this highly homogenous cohort manifests the magnitude of diverse patterns of gut microbiota configuration and hence underpins the importance of considering not only the gestational age, birth, and feeding modes, and ethnic/geographical background but also other potential outstanding factors when investigating the elements shaping the early microbiota development. In summary, the data demonstrate a quantitative bird's-eye view of the ontogenesis of early-life gut microbiota in typically natural and healthy milieus and should be informative and facilitative for future studies exploring various aspects of the human gut microbiota.

20.
Nutrition ; 32(6): 620-7, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26946974

RESUMEN

Gut microbiota establishment and further microbiota shifts are very important for maintaining host health throughout life. There are some factors, including genetics, the mother's health and diet, delivery mode, breast or formula feeding, that may influence the gut microbiota. By the end of approximately the first 3 y of life, the gut microbiota becomes an adult-like stable system. Once established, 60 to 70% of the microbiota composition remains stable throughout life, but 30 to 40% can be altered by changes in the diet and other factors such as physical activity, lifestyle, bacterial infections, and antibiotic or surgical treatment. Diet-related factors that influence the gut microbiota in people of all ages are of great interest. Nutrition may have therapeutic success in gut microbiota correction. This review describes current evidence concerning the links between gut microbiota composition and dietary patterns throughout life.


Asunto(s)
Dieta/métodos , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/microbiología , Estilo de Vida , Adulto , Niño , Femenino , Humanos , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA