Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.288
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115188

RESUMEN

Carbon monoxide (CO) has emerged as a promising therapeutic agent, yet ensuring safe and precise CO delivery remains challenging. Here, we report a removable hydrogel-forming microneedle (MN) reactor for CO delivery via photocatalysis, with an emphasis on chemosensitization. Upon application, body fluids absorbed by the MNs dissolve the effervescent agents, leading to the generation of carbon dioxide (CO2) and triggering the release of the chemotherapeutics cisplatin. Meanwhile, the photocatalysts (PCs) trapped within MNs convert CO2 to CO under 660 nm light irradiation. These PCs can be removed by hydrogel-forming MNs, thereby mitigating potential biological risks associated with residual PCs. Both in vitro and in vivo experiments showed that MN-mediated CO delivery significantly improved tumor sensitivity to cisplatin by suppressing DNA repair, using an A375/CDDP melanoma model. This removable photocatalysis MN reactor offers safe and precise local delivery of CO, potentially creating new opportunities for CO or its combination therapies.

2.
Small ; 20(25): e2307281, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38225701

RESUMEN

Osteoarthritis (OA) is a typical joint degenerative disease that is prevalent worldwide and significantly affects the normal activities of patients. Traditional treatments using diclofenac (DCF) as an anti-inflammatory drug by oral administration and transdermal delivery have many inherent deficiencies. In this study, a lubricating microneedles (MNs) system for the treatment of osteoarthritis with multistage sustained drug delivery and great reduction in skin damage during MNs penetration is developed. The bilayer dissolvable MNs system, namely HA-DCF@PDMPC, is prepared by designating the composite material of hyaluronic acid (HA) and covalently conjugated drug compound (HA-DCF) as the MNs tips and then modifying the surface of MNs tips with a self-adhesive lubricating copolymer (PDMPC). The MNs system is designed to achieve sustained drug release of DCF via ester bond hydrolysis, physical diffusion from MNs tips, and breakthrough of lubrication coating. Additionally, skin damage is reduced due to the presence of the lubrication coating on the superficial surface. Therefore, the lubricating MNs with multistage sustained drug delivery show good compliance as a transdermal patch for OA treatment, which is validated from anti-inflammatory cell tests and therapeutic animal experiments, down-regulating the expression levels of pro-inflammatory factors and alleviating articular cartilage destruction.


Asunto(s)
Diclofenaco , Sistemas de Liberación de Medicamentos , Ácido Hialurónico , Agujas , Osteoartritis , Osteoartritis/tratamiento farmacológico , Animales , Diclofenaco/administración & dosificación , Diclofenaco/uso terapéutico , Diclofenaco/farmacología , Ácido Hialurónico/química , Lubrificación , Humanos , Preparaciones de Acción Retardada/química
3.
Small ; : e2401551, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109958

RESUMEN

Wound healing is a dynamic process involving the timely transition of organized phases. However, infected wounds often experience prolonged inflammation due to microbial overload. Thus, addressing the viable treatment needs across different healing stages is a critical challenge in wound management. Herein, a novel core-shell microneedle (CSMN) patch is designed for the sequential delivery of tannic acid-magnesium (TA-Mg) complexes and extracellular vesicles from Lactobacillus druckerii (LDEVs). Upon application to infected sites, CSMN@TA-Mg/LDEV releases TA-Mg first to counteract pathogenic overload and reduce reactive oxygen species (ROS), aiding the transition to proliferative phase. Subsequently, the sustained release of LDEVs enhances the activities of keratinocytes and fibroblasts, promotes vascularization, and modulates the collagen deposition. Notably, dynamic track of microbial composition demonstrates that CSMN@TA-Mg/LDEV can both inhibit the aggressive pathogen and increase the microbial diversity at wound sites. Functional analysis further highlights the potential of CSMN@TA-Mg/LDEV in facilitating wound healing and skin barrier restoration. Moreover, it is confirmed that CSMN@TA-Mg/LDEV can accelerate wound closure and improve post-recovery skin quality in the murine infected wound. Conclusively, this innovative CSMN patch offers a rapid and high-quality alternative treatment for infected wounds and emphasizes the significance of microbial homeostasis.

4.
Small ; : e2307485, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623988

RESUMEN

Severe burn wounds usually destroy key cells' functions of the skin resulting in delayed re-epithelization and wound regeneration. Promoting key cells' activities is crucial for burn wound repair. It is well known that keratinocyte growth factor-2 (KGF-2) participates in the proliferation and morphogenesis of epithelial cells while acidic fibroblast growth factor (aFGF) is a key mediator for fibroblast and endothelial cell growth and differentiation. However, thick eschar and the harsh environment of a burn wound often decrease the delivery efficiency of fibroblast growth factor (FGF) to the wound site. Therefore, herein a novel microneedle patch for sequential transdermal delivery of KGF-2 and aFGF is fabricated to enhance burn wound therapy. aFGF is first loaded in the nanoparticle (NPaFGF) and then encapsulated NPaFGF with KGF-2 in the microneedle patch (KGF-2/NPaFGF@MN). The result shows that KGF-2/NPaFGF@MN can successfully get across the eschar and sequentially release KGF-2 and aFGF. Additional data demonstrated that KGF-2/NPaFGF@MN achieved a quicker wound closure rate with reduced necrotic tissues, faster re-epithelialization, enhanced collagen deposition, and increased neo-vascularization. Further evidence suggests that improved wound healing is regulated by significantly elevated expressions of hypoxia-inducible factor-1 alpha (HIF-1ɑ) and heat shock protein 90 (Hsp90) in burn wounds. All these data proved that KGF-2/NPaFGF@MN is an effective treatment for wound healing of burns.

5.
Small ; 20(16): e2307366, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38039446

RESUMEN

Restoring immune tolerance is the ultimate goal for rheumatoid arthritis (RA) treatment. The most reported oral or intravenous injection routes for the immunization of autoantigens cause gastrointestinal side effects, low patient compliance, and unsatisfied immune tolerance induction. Herein, the use of a transdermal microneedle patch is for the first time investigated to codeliver CII peptide autoantigen and rapamycin for reversing immune disorders of RA. The immunized microneedles efficiently recruit antigen-presenting cells particularly Langerhans cells, and induce tolerogenic dendritic cells at the administration skin site. The tolerogenic dendritic cells further homing to lymph nodes to activate systemic Treg cell differentiation, which upregulates the expression of anti-inflammatory mediators while inhibiting the polarization of Th1/2 and Th17 T cell phenotypes and the expression of inflammatory profiles. As a result, the optimized microneedles nearly completely eliminate RA symptoms and inflammatory infiltrations. Furthermore, it is demonstrated that a low dose of rapamycin is crucial for the successful induction of immune tolerance. The results indicate that a rationally designed microneedle patch is a promising strategy for immune balance restoration with increased immune tolerance induction efficiency and patient compliance.


Asunto(s)
Artritis Reumatoide , Células de Langerhans , Humanos , Células Th17 , Artritis Reumatoide/terapia , Tolerancia Inmunológica , Sirolimus/farmacología
6.
Small ; 20(11): e2309454, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38098368

RESUMEN

The optimal treatment for tracheal tumors necessitates sequential tumor elimination and tracheal cartilage reconstruction. This study introduces an innovative inorganic nanosheet, MnO2 /PDA@Cu, comprising manganese dioxide (MnO2 ) loaded with copper ions (Cu) through in situ polymerization using polydopamine (PDA) as an intermediary. Additionally, a specialized methacrylic anhydride modified decellularized cartilage matrix (MDC) hydrogel with chondrogenic effects is developed by modifying a decellularized cartilage matrix with methacrylic anhydride. The MnO2 /PDA@Cu nanosheet is encapsulated within MDC-derived microneedles, creating a photothermal-controllable MnO2 /PDA@Cu-MDC microneedle. Effectiveness evaluation involved deep insertion of the MnO2 /PDA@Cu-MDC microneedle into tracheal orthotopic tumor in a murine model. Under 808 nm near-infrared irradiation, facilitated by PDA, the microneedle exhibited rapid overheating, efficiently eliminating tumors. PDA's photothermal effects triggered controlled MnO2 and Cu release. The MnO2 nanosheet acted as a potent inorganic nanoenzyme, scavenging reactive oxygen species for an antioxidant effect, while Cu facilitated angiogenesis. This intervention enhanced blood supply at the tumor excision site, promoting stem cell enrichment and nutrient provision. The MDC hydrogel played a pivotal role in creating a chondrogenic niche, fostering stem cells to secrete cartilaginous matrix. In conclusion, the MnO2 /PDA@Cu-MDC microneedle is a versatile platform with photothermal control, sequentially combining antitumor, antioxidant, pro-angiogenic, and chondrogenic activities to orchestrate precise tracheal tumor eradication and cartilage regeneration.


Asunto(s)
Nanopartículas , Neoplasias , Neoplasias de la Tráquea , Humanos , Ratones , Animales , Antioxidantes , Compuestos de Manganeso , Óxidos , Neoplasias/patología , Cartílago , Hidrogeles , Anhídridos
7.
Small ; 20(8): e2305374, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37724002

RESUMEN

Hypertrophic scar (HS) is a common fibroproliferative disease caused by abnormal wound healing after deep skin injury. However, the existing approaches have unsatisfactory therapeutic effects, which promote the exploration of newer and more effective strategies. MiRNA-modified functional exosomes delivered by dissolvable microneedle arrays (DMNAs) are expected to provide new hope for HS treatment. In this study, a miRNA, miR-141-3p, which is downregulated in skin scar tissues and in hypertrophic scar fibroblasts (HSFs), is identified. MiR-141-3p mimics inhibit the proliferation, migration, and myofibroblast transdifferentiation of HSFs in vitro by targeting TGF-ß2 to suppress the TGF-ß2/Smad pathway. Subsequently, the engineered exosomes encapsulating miR-141-3p (miR-141-3pOE -Exos) are isolated from adipose-derived mesenchymal stem cells transfected with Lv-miR-141-3p. MiR-141-3pOE -Exos show the same inhibitive effects as miR-141-3p mimics on the pathological behaviors of HSFs in vitro. The DMNAs for sustained release of miR-141-3pOE -Exos are further fabricated in vivo. MiR-141OE -Exos@DMNAs effectively decrease the thickness of HS and improve fibroblast distribution and collagen fiber arrangement, and downregulate the expression of α-SMA, COL-1, FN, TGF-ß2, and p-Smad2/3 in the HS tissue. Overall, a promising, effective, and convenient exosome@DMNA-based miRNA delivery strategy for HS treatment is provided.


Asunto(s)
Cicatriz Hipertrófica , Exosomas , MicroARNs , Humanos , Cicatriz Hipertrófica/terapia , Cicatriz Hipertrófica/genética , Cicatriz Hipertrófica/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Exosomas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fibroblastos/metabolismo , Proliferación Celular/genética
8.
Small ; : e2402024, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38766989

RESUMEN

The rapidly changing climate is exacerbating the environmental stress that negatively impacts crop health and yield. Timely sensing of plant response to stress is beneficial to timely adjust planting conditions, promoting the healthy growth of plants, and improving plant productivity. Hydrogen peroxide (H2O2) is an important molecule of signal transduction in plants. However, the common methods for detecting H2O2  in plants are associated with certain drawbacks, such as long extraction time, cumbersome steps, dependence on large instruments, and difficulty in realizing in-field sensing. Therefore, it is urgent to establish more efficient detection methods to realize the rapid detection of H2O2 content in plants. In this research, poly (methyl vinyl ether-alt-maleic acid) (PMVE/MA) hydrogel microneedle (MN) patch for rapid extraction of leaf sap are prepared, and the extraction mechanism of PEG-crosslinked PMVE/MA hydrogel MN patch is studied. A method of rapid detection of H2O2 content in plants based on MN patch with optical detection technology is constructed. The hydrogel MN patch can be used for timely H2O2 analysis. This application enables new opportunities in plant engineering, and can be extended to the safety and health monitoring of other plants and animals.

9.
Biopolymers ; 115(3): e23573, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38506560

RESUMEN

Microneedles are a transdermal drug delivery system in which the needle punctures the epithelium to deliver the drug directly to deep tissues, thus avoiding the influence of the first-pass effect of the gastrointestinal tract and minimizing the likelihood of pain induction. Hydrogel microneedles are microneedles prepared from hydrogels that have good biocompatibility, controllable mechanical properties, and controllable drug release and can be modified to achieve environmental control of drug release in vivo. The large epithelial tissue in the oral cavity is an ideal site for drug delivery via microneedles. Hydrogel microneedles can overcome mucosal hindrances to delivering drugs to deep tissues; this prevents humidity and a highly dynamic environment in the oral cavity from influencing the efficacy of the drugs and enables them to obtain better therapeutic effects. This article analyzes the materials and advantages of common hydrogel microneedles and reviews the application of hydrogel microneedles in the oral cavity.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hidrogeles , Boca , Agujas , Hidrogeles/química , Humanos , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Animales , Microinyecciones/instrumentación , Microinyecciones/métodos
10.
Biomed Microdevices ; 26(2): 19, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430398

RESUMEN

Microneedles are minimally-invasive devices with the unique capability of bypassing physiological barriers. Hence, they are widely used for different applications from drug/vaccine delivery to diagnosis and cosmetic fields. Recently, natural biopolymers (particularly carbohydrates and proteins) have garnered attention as safe and biocompatible materials with tailorable features for microneedle construction. Several review articles have dealt with carbohydrate-based microneedles. This review aims to highlight the less-noticed role of proteins through a systematic search strategy based on the PRISMA guideline from international databases of PubMed, Science Direct, Scopus, and Google Scholar. Original English articles with the keyword "microneedle(s)" in their titles along with at least one of the keywords "biopolymers, silk, gelatin, collagen, zein, keratin, fish-scale, mussel, and suckerin" were collected and those in which the proteins undertook a structural role were screened. Then, we focused on the structures and applications of protein-based microneedles. Also, the unique features of some protein biopolymers that make them ideal for microneedle construction (e.g., excellent mechanical strength, self-adhesion, and self-assembly), as well as the challenges associated with them were reviewed. Altogether, the proteins identified so far seem not only promising for the fabrication of "better" microneedles in the future but also inspiring for designing biomimetic structural biopolymers with ideal characteristics.


Asunto(s)
Materiales Biocompatibles , Biomimética , Animales , Biopolímeros , Sistemas de Liberación de Medicamentos , Agujas
11.
Biomed Microdevices ; 26(1): 15, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289481

RESUMEN

There is a clinical need for differential diagnosis of the latent versus active stages of tuberculosis (TB) disease by a simple-to-administer test. Alpha-crystallin (Acr) and early secretory antigenic target-6 (ESAT-6) are protein biomarkers associated with the latent and active stages of TB, respectively, and could be used for differential diagnosis. We therefore developed a microneedle patch (MNP) designed for application to the skin to quantify Acr and ESAT-6 in dermal interstitial fluid by enzyme-linked immunosorbent assay (ELISA). We fabricated mechanically strong microneedles made of polystyrene and coated them with capture antibodies against Acr and ESAT-6. We then optimized assay sensitivity to achieve a limit of detection of 750 pg/ml and 3,020 pg/ml for Acr and ESAT-6, respectively. This study demonstrates the feasibility of an MNP-based ELISA for differential diagnosis of latent TB disease.


Asunto(s)
Tuberculosis , Humanos , Ensayo de Inmunoadsorción Enzimática , Tuberculosis/diagnóstico , Anticuerpos , Transporte Biológico , Biomarcadores
12.
Mol Pharm ; 21(6): 2813-2827, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38752564

RESUMEN

Psoriasis, affecting 2-3% of the global population, is a chronic inflammatory skin condition without a definitive cure. Current treatments focus on managing symptoms. Recognizing the need for innovative drug delivery methods to enhance patient adherence, this study explores a new approach using calcipotriol monohydrate (CPM), a primary topical treatment for psoriasis. Despite its effectiveness, CPM's therapeutic potential is often limited by factors like the greasiness of topical applications, poor skin permeability, low skin retention, and lack of controlled delivery. To overcome these challenges, the study introduces CPM in the form of nanosuspensions (NSs), characterized by an average particle size of 211 ± 2 nm. These CPM NSs are then incorporated into a trilayer dissolving microneedle patch (MAP) made from poly(vinylpyrrolidone) and w poly(vinyl alcohol) as needle arrays and prefrom 3D printed polylactic acid backing layer. This MAP features rapidly dissolving tips and exhibits good mechanical properties and insertion capability with delivery efficiency compared to the conventional Daivonex ointment. The effectiveness of this novel MAP was tested on Sprague-Dawley rats with imiquimod-induced psoriasis, demonstrating efficacy comparable to the marketed ointment. This innovative trilayer dissolving MAP represents a promising new local delivery system for calcipotriol, potentially revolutionizing psoriasis treatment by enhancing drug delivery and patient compliance.


Asunto(s)
Administración Cutánea , Calcitriol , Sistemas de Liberación de Medicamentos , Agujas , Psoriasis , Ratas Sprague-Dawley , Psoriasis/tratamiento farmacológico , Animales , Calcitriol/análogos & derivados , Calcitriol/administración & dosificación , Ratas , Sistemas de Liberación de Medicamentos/métodos , Absorción Cutánea/efectos de los fármacos , Piel/metabolismo , Piel/efectos de los fármacos , Piel/patología , Tamaño de la Partícula , Masculino , Nanopartículas/química , Imiquimod/administración & dosificación , Suspensiones , Fármacos Dermatológicos/administración & dosificación , Fármacos Dermatológicos/farmacocinética , Parche Transdérmico
13.
Mol Pharm ; 21(5): 2512-2533, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38602861

RESUMEN

Parkinson's disease (PD) is a debilitating neurodegenerative disease primarily impacting neurons responsible for dopamine production within the brain. Pramipexole (PRA) is a dopamine agonist that is currently available in tablet form. However, individuals with PD commonly encounter difficulties with swallowing and gastrointestinal motility, making oral formulations less preferable. Microneedle (MN) patches represent innovative transdermal drug delivery devices capable of enhancing skin permeability through the creation of microconduits on the surface of the skin. MNs effectively reduce the barrier function of skin and facilitate the permeation of drugs. The work described here focuses on the development of polymeric MN systems designed to enhance the transdermal delivery of PRA. PRA was formulated into both dissolving MNs (DMNs) and directly compressed tablets (DCTs) to be used in conjunction with hydrogel-forming MNs (HFMNs). In vivo investigations using a Sprague-Dawley rat model examined, for the first time, if it was beneficial to prolong the application of DMNs and HFMNs beyond 24 h. Half of the patches in the MN cohorts were left in place for 24 h, whereas the other half remained in place for 5 days. Throughout the entire 5 day study, PRA plasma levels were monitored for all cohorts. This study confirmed the successful delivery of PRA from DMNs (Cmax = 511.00 ± 277.24 ng/mL, Tmax = 4 h) and HFMNs (Cmax = 328.30 ± 98.04 ng/mL, Tmax = 24 h). Notably, both types of MNs achieved sustained PRA plasma levels over a 5 day period. In contrast, following oral administration, PRA remained detectable in plasma for only 48 h, achieving a Cmax of 159.32 ± 113.43 ng/mL at 2 h. The HFMN that remained in place for 5 days demonstrated the most promising performance among all investigated formulations. Although in the early stages of development, the findings reported here offer a hopeful alternative to orally administered PRA. The sustained plasma profile observed here has the potential to reduce the frequency of PRA administration, potentially enhancing patient compliance and ultimately improving their quality of life. This work provides substantial evidence advocating the development of polymeric MN-mediated drug delivery systems to include sustained plasma levels of hydrophilic pharmaceuticals.


Asunto(s)
Administración Cutánea , Sistemas de Liberación de Medicamentos , Agujas , Enfermedad de Parkinson , Pramipexol , Ratas Sprague-Dawley , Pramipexol/administración & dosificación , Pramipexol/farmacocinética , Animales , Ratas , Enfermedad de Parkinson/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Masculino , Absorción Cutánea/efectos de los fármacos , Piel/metabolismo , Piel/efectos de los fármacos , Antiparkinsonianos/administración & dosificación , Antiparkinsonianos/farmacocinética , Agonistas de Dopamina/administración & dosificación , Agonistas de Dopamina/farmacocinética , Hidrogeles/química
14.
Mol Pharm ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088690

RESUMEN

Nanoparticle-loaded dissolving microneedles (DMNs) have attracted increasing attention due to their ability to provide high drug loading, adjustable drug release behavior, and enhanced therapeutic efficiency. However, such delivery systems still face unsatisfied drug delivery efficiency due to insufficient driving force to promote nanoparticle penetration and the lack of in vivo fate studies to guide formulation design. Herein, an aggregation-caused quenching (ACQ) probe (P4) was encapsulated in l-arginine (l-Arg)-based nanomicelles, which was further formulated into nitric oxide (NO)-propelled nanomicelle-integrated DMNs (P4/l-Arg NMs@DMNs) to investigate their biological fate. The P4 probe could emit intense fluorescence signals in intact nanomicelles, while quenching with the dissociation of nanomicelles, providing a "distinguishable" method for tracking the fate of nanomicelles at a different status. l-Arg was demonstrated to self-generate NO under the tumor microenvironment with excessive reactive oxygen species (ROS), providing a pneumatic force to promote the penetration of nanomicelles in both three-dimensional (3D)-cultured tumor cells and melanoma-bearing mice. Compared with passive microneedles (P4 NMs@DMNs) without a NO propellant, the P4/l-Arg NMs@DMNs possessed a good NO production performance and higher nanoparticle penetration capacity. In conclusion, this study offered an ACQ probe-based biological fate tracking approach to demonstrate the potential of NO-propelled nanoparticle-loaded DMNs in penetration enhancement for topical tumor therapy.

15.
Diabetes Obes Metab ; 26(9): 3513-3529, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38984380

RESUMEN

Metformin is a medication that is commonly prescribed to manage type 2 diabetes. It has been used for more than 60 years and is highly effective in lowering blood glucose levels. Recent studies indicate that metformin may have additional medical benefits beyond treating diabetes, revealing its potential therapeutic uses. Oral medication is commonly used to administer metformin because of its convenience and cost-effectiveness. However, there are challenges in optimizing its effectiveness. Gastrointestinal side effects and limitations in bioavailability have led to the underutilization of metformin. Innovative drug-delivery systems such as fast-dissolving tablets, micro/nanoparticle formulations, hydrogel and microneedles have been explored to optimize metformin therapy. These strategies enhance metformin dosage, targeting, bioavailability and stability, and provide personalized treatment options for improved glucose homeostasis, antiobesity and metabolic health benefits. Developing new delivery systems for metformin shows potential for improving therapeutic outcomes, broadening its applications beyond diabetes management and addressing unmet medical needs in various clinical settings. However, it is important to improve drug-delivery systems, addressing issues such as complexity, cost, biocompatibility, stability during storage and transportation, loading capacity, required technologies and biomaterials, targeting precision and regulatory approval. Addressing these limitations is crucial for effective, safe and accessible drug delivery in clinical practice. In this review, recent advances in the development and application of metformin-delivery systems for diabetes and obesity are discussed.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sistemas de Liberación de Medicamentos , Hipoglucemiantes , Metformina , Obesidad , Metformina/uso terapéutico , Metformina/administración & dosificación , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Manejo de la Obesidad/métodos , Disponibilidad Biológica
16.
Pharm Res ; 41(4): 819-831, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443630

RESUMEN

PURPOSE: Hollow-type microneedles (hMNs) are a promising device for the effective administration of drugs into intradermal sites. Complete insertion of the needle into the skin and administration of the drug solution without leakage must be achieved to obtain bioavailability or a constant effect. In the present study, several types of hMN with or without a rounded blunt tip micropillar, which suppresses skin deformation, around a hollow needle, and the effect on successful needle insertion and administration of a drug solution was investigated. Six different types of hMNs with needle lengths of 1000, 1300, and 1500 µm with or without a micropillar were used. METHODS: Needle insertion and the disposition of a drug in rat skin were investigated. In addition, the displacement-force profile during application of hMNs was also investigated using a texture analyzer with an artificial membrane to examine needle factors affecting successful insertion and administration of a drug solution by comparing with in vivo results. RESULTS: According to the results with the drug distribution of iodine, hMN1300 with a micropillar was able to successfully inject drug solution into an intradermal site with a high success rate. In addition, the results of displacement-force profiles with an artificial membrane showed that a micropillar can be effective for depth control of the injected solution as well as the prevention of contact between the hMN pedestal and the deformed membrane. CONCLUSION: In the present study, hMN1300S showed effective solution delivery into an intradermal site. In particular, a micropillar can be effective for depth control of the injected solution as well as preventing contact between the hMN pedestal and the deformed membrane. The obtained results will help in the design and development of hMNs that ensure successful injection of an administered drug.


Asunto(s)
Sistemas de Liberación de Medicamentos , Piel , Ratas , Animales , Microinyecciones , Inyecciones Intradérmicas , Sistemas de Liberación de Medicamentos/métodos , Agujas , Membranas Artificiales , Administración Cutánea
17.
Pharm Res ; 41(2): 355-363, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38133717

RESUMEN

OBJECTIVE: This study aimed to determine the impact of formulation (gel vs cream) and microneedle characteristics (length, number) on permeation of metronidazole through excised microneedle-treated skin. The long-term goal is to apply these results towards a pharmacokinetic study in human subjects with diverse skin types, using in vitro flux data to determine dosing conditions and ultimately establish in vitro-in vivo correlations. METHODS: Metronidazole release from 0.75% gel and cream was quantified with flow-through diffusion cells, using a cellulose membrane. Excised porcine skin was treated with stainless steel microneedles (500 or 800 µm length), to create 50 or 100 micropores. Metronidazole gel or cream was applied to microneedle-treated skin and replaced every 48 h for up to 7 days. Metronidazole permeation was quantified using HPLC. Intact skin (no microneedle treatment) served as controls. RESULTS: Metronidazole release was faster from the gel vs cream. At 7 days there was no difference between gel vs cream in total metronidazole permeated through intact skin. For both formulations, metronidazole permeation was significantly higher (vs intact skin) following microneedle application, regardless of microneedle length or micropore number. Increasing microneedle length and micropore number enhanced MTZ permeation multiple fold for both gel and cream. The greatest enhancement in total permeation for both formulations was achieved with the 800 µm MN, 100 micropore condition. CONCLUSIONS: Formulation and microneedle conditions both impacted metronidazole permeation. These data will be used to estimate in vivo serum concentrations after applying metronidazole to microneedle-treated skin in humans.


Asunto(s)
Metronidazol , Absorción Cutánea , Animales , Porcinos , Humanos , Metronidazol/metabolismo , Piel/metabolismo , Administración Cutánea , Agujas , Sistemas de Liberación de Medicamentos/métodos
18.
Pharm Res ; 41(1): 153-163, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37923948

RESUMEN

PURPOSE: We fabricated and characterized polyvinyl alcohol (PVA)-based dissolving microneedles (MNs) for transdermal drug delivery of apomorphine hydrochloride (APO), which is used in treating the wearing-off phenomenon observed in Parkinson's disease. METHODS: We fabricated MN arrays with 11 × 11 needles of four different lengths (300, 600, 900, and 1200 µm) by micromolding. The APO-loaded dissolving MNs were characterized in terms of their physicochemical and functional properties. We also compared the pharmacokinetic parameters after drug administration using MNs with those after subcutaneous injection by analyzing the blood concentration of APO in rats. RESULTS: PVA-based dissolving MNs longer than 600 µm could effectively puncture the stratum corneum of the rat skin with penetrability of approximately one-third of the needle length. Although APO is known to have chemical stability issues in aqueous solutions, the drug content in APO-loaded MNs was retained at 25°C for 12 weeks. The concentration of APO after the administration of APO-loaded 600-µm MNs that dissolved completely in skin within 60 min was 81%. The absorption of 200-µg APO delivered by MNs showed a Tmax of 20 min, Cmax of 76 ng/mL, and AUC0-120 min of 2,829 ng・min/mL, compared with a Tmax of 5 min, Cmax of 126 ng/mL, and AUC0-120 min of 3,224 ng・min/mL for subcutaneous injection. The bioavailability in terms of AUC0-120 min of APO delivered by MNs was 88%. CONCLUSION: APO-loaded dissolving MNs can deliver APO via skin into the systemic circulation with rapid absorption and high bioavailability.


Asunto(s)
Apomorfina , Enfermedad de Parkinson , Ratas , Animales , Apomorfina/farmacología , Sistemas de Liberación de Medicamentos , Enfermedad de Parkinson/tratamiento farmacológico , Administración Cutánea , Piel
19.
Pharm Res ; 41(6): 1183-1199, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38849712

RESUMEN

AIM: This study aimed to fabricate dexamethasone sodium phosphate loaded microneedle arrays (MNA) and investigate their efficiency in combination with iontophoresis for the treatment of hind paw oedema in rats. METHODS: Drug loaded polyvinyl alcohol, polyvinyl pyrrolidone and D-sorbitol-based MNA11 were fabricated by vacuum micromolding. Physicochemical, morphological, thermal, in-silico, in-vitro insertion ability (on parafilm) and drug release studies were performed. Ex-vivo permeation, in-vivo insertion and anti-inflammatory studies were performed in combination with iontophoresis. RESULTS: MNA11 displayed sharp-tipped projections and acceptable physicochemical features. Differential scanning calorimetry results indicated that drug loaded MNA11 were amorphous solids. Drug interacted with PVP and PVA predominately via hydrogen bonding. Parafilm displayed conspicuously engraved complementary structure of MNA11. Within 60 min, 91.50 ± 3.1% drug released from MNA11. A significantly higher i.e., 95.06 ± 2.5% permeation of drug was observed rapidly (within 60 min) from MNA11-iontophoresis combination than MNA11 i.e., 84.07 ± 3.5% within 240 min. Rat skin treated using MNA11 and MNA11-iontophoresis showed disruptions / microchannels in the epidermis without any damage to underlying anatomical structures. MNA11-iontophoresis combination led to significant reduction (83.02 ± 3.9%) in paw oedema as compared to MNA11 alone (72.55 ± 4.1%). CONCLUSION: MNA11-iontophoresis combination can act as a promising candidate to deliver drugs transcutaneously for treating inflammatory diseases.


Asunto(s)
Administración Cutánea , Antiinflamatorios , Dexametasona , Sistemas de Liberación de Medicamentos , Edema , Iontoforesis , Agujas , Absorción Cutánea , Piel , Animales , Iontoforesis/métodos , Dexametasona/administración & dosificación , Dexametasona/farmacocinética , Dexametasona/análogos & derivados , Ratas , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacocinética , Edema/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Piel/metabolismo , Piel/efectos de los fármacos , Masculino , Liberación de Fármacos , Inflamación/tratamiento farmacológico , Ratas Sprague-Dawley
20.
Pharm Res ; 41(2): 305-319, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38332390

RESUMEN

PURPOSE: A dissolving microneedle array (dMNA) is a vaccine delivery device with several advantages over conventional needles. By incorporating particulate adjuvants in the form of poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) into the dMNA, the immune response against the antigen might be enhanced. This study aimed to prepare PLGA-NP-loaded dMNA and to compare T-cell responses induced by either intradermally injected aqueous-PLGA-NP formulation or PLGA-NP-loaded dMNA in mice. METHODS: PLGA NPs were prepared with microfluidics, and their physicochemical characteristics with regard to encapsulation efficiencies of ovalbumin (OVA) and CpG oligonucleotide (CpG), zeta potentials, polydispersity indexes, and sizes were analysed. PLGA NPs incorporated dMNA was produced with three different dMNA formulations by using the centrifugation method, and the integrity of PLGA NPs in dMNAs was evaluated. The immunogenicity was evaluated in mice by comparing the T-cell responses induced by dMNA and aqueous formulations containing ovalbumin and CpG (OVA/CpG) with and without PLGA NP. RESULTS: Prepared PLGA NPs had a size of around 100 nm. The dMNA formulations affected the particle integrity, and the dMNA with poly(vinyl alcohol) (PVA) showed almost no aggregation of PLGA NPs. The PLGA:PVA weight ratio of 1:9 resulted in 100% of penetration efficiency and the fastest dissolution in ex-vivo human skin (< 30 min). The aqueous formulation with soluble OVA/CpG and the aqueous-PLGA-NP formulation with OVA/CpG induced the highest CD4 + T-cell responses in blood and spleen cells. CONCLUSIONS: PLGA NPs incorporated dMNA was successfully fabricated and the aqueous formulation containing PLGA NPs induce superior CD4+ and CD8+ T-cell responses.


Asunto(s)
Nanopartículas , Vacunación , Ratones , Humanos , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ovalbúmina , Vacunación/métodos , Antígenos , Ácido Láctico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA