RESUMEN
Genotype-phenotype associations for common diseases are often compounded by pleiotropy and metabolic state. Here, we devised a pooled human organoid-panel of steatohepatitis to investigate the impact of metabolic status on genotype-phenotype association. En masse population-based phenotypic analysis under insulin insensitive conditions predicted key non-alcoholic steatohepatitis (NASH)-genetic factors including the glucokinase regulatory protein (GCKR)-rs1260326:C>T. Analysis of NASH clinical cohorts revealed that GCKR-rs1260326-T allele elevates disease severity only under diabetic state but protects from fibrosis under non-diabetic states. Transcriptomic, metabolomic, and pharmacological analyses indicate significant mitochondrial dysfunction incurred by GCKR-rs1260326, which was not reversed with metformin. Uncoupling oxidative mechanisms mitigated mitochondrial dysfunction and permitted adaptation to increased fatty acid supply while protecting against oxidant stress, forming a basis for future therapeutic approaches for diabetic NASH. Thus, "in-a-dish" genotype-phenotype association strategies disentangle the opposing roles of metabolic-associated gene variant functions and offer a rich mechanistic, diagnostic, and therapeutic inference toolbox toward precision hepatology. VIDEO ABSTRACT.
Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/genética , Organoides , Estudios de Asociación Genética , Alelos , HígadoRESUMEN
Mitochondria are essential in most eukaryotes and are involved in numerous biological functions including ATP production, cofactor biosyntheses, apoptosis, lipid synthesis, and steroid metabolism. Work over the past two decades has uncovered the biogenesis of cellular iron-sulfur (Fe/S) proteins as the essential and minimal function of mitochondria. This process is catalyzed by the bacteria-derived iron-sulfur cluster assembly (ISC) machinery and has been dissected into three major steps: de novo synthesis of a [2Fe-2S] cluster on a scaffold protein; Hsp70 chaperone-mediated trafficking of the cluster and insertion into [2Fe-2S] target apoproteins; and catalytic conversion of the [2Fe-2S] into a [4Fe-4S] cluster and subsequent insertion into recipient apoproteins. ISC components of the first two steps are also required for biogenesis of numerous essential cytosolic and nuclear Fe/S proteins, explaining the essentiality of mitochondria. This review summarizes the molecular mechanisms underlying the ISC protein-mediated maturation of mitochondrial Fe/S proteins and the importance for human disease.
Asunto(s)
Ataxia de Friedreich/genética , Proteínas Hierro-Azufre/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Ferredoxinas/química , Ferredoxinas/genética , Ferredoxinas/metabolismo , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patología , Regulación de la Expresión Génica , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Humanos , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , FrataxinaRESUMEN
To uncover the selective forces shaping life-history trait evolution across species, we investigate the genomic basis underlying adaptations to seasonal habitat desiccation in African killifishes, identifying the genetic variants associated with positive and relaxed purifying selection in 45 killifish species and 231 wild individuals distributed throughout sub-Saharan Africa. In annual species, genetic drift led to the expansion of nuclear and mitochondrial genomes and caused the accumulation of deleterious genetic variants in key life-history modulating genes such as mtor, insr, ampk, foxo3, and polg. Relaxation of purifying selection is also significantly associated with mitochondrial function and aging in human populations. We find that relaxation of purifying selection prominently shapes genomes and is a prime candidate force molding the evolution of lifespan and the distribution of genetic variants associated with late-onset diseases in different species. VIDEO ABSTRACT.
Asunto(s)
Longevidad , Selección Genética , Envejecimiento , Animales , Replicación del ADN , Evolución Molecular , Frecuencia de los Genes , Genoma Mitocondrial , Peces Killi/clasificación , Peces Killi/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Filogenia , FilogeografíaRESUMEN
Tumor-infiltrating lymphocyte (TIL) hypofunction contributes to the progression of advanced cancers and is a frequent target of immunotherapy. Emerging evidence indicates that metabolic insufficiency drives T cell hypofunction during tonic stimulation, but the signals that initiate metabolic reprogramming in this context are largely unknown. Here, we found that Meteorin-like (METRNL), a metabolically active cytokine secreted by immune cells in the tumor microenvironment (TME), induced bioenergetic failure of CD8+ T cells. METRNL was secreted by CD8+ T cells during repeated stimulation and acted via both autocrine and paracrine signaling. Mechanistically, METRNL increased E2F-peroxisome proliferator-activated receptor delta (PPARδ) activity, causing mitochondrial depolarization and decreased oxidative phosphorylation, which triggered a compensatory bioenergetic shift to glycolysis. Metrnl ablation or downregulation improved the metabolic fitness of CD8+ T cells and enhanced tumor control in several tumor models, demonstrating the translational potential of targeting the METRNL-E2F-PPARδ pathway to support bioenergetic fitness of CD8+ TILs.
Asunto(s)
Linfocitos T CD8-positivos , Linfocitos Infiltrantes de Tumor , Mitocondrias , Microambiente Tumoral , Linfocitos T CD8-positivos/inmunología , Animales , Mitocondrias/metabolismo , Mitocondrias/inmunología , Ratones , Microambiente Tumoral/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Humanos , Ratones Endogámicos C57BL , Citocinas/metabolismo , Transducción de Señal , Metabolismo Energético , PPAR delta/metabolismo , Línea Celular Tumoral , Neoplasias/inmunología , Glucólisis , Ratones Noqueados , Fosforilación OxidativaRESUMEN
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Asunto(s)
Envejecimiento , Mitocondrias , Humanos , Envejecimiento/metabolismo , Mitocondrias/metabolismo , Autofagia , Apoptosis , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Metabolic rewiring and redox balance play pivotal roles in cancer. Cellular senescence is a barrier for tumorigenesis circumvented in cancer cells by poorly understood mechanisms. We report a multi-enzymatic complex that reprograms NAD metabolism by transferring reducing equivalents from NADH to NADP+. This hydride transfer complex (HTC) is assembled by malate dehydrogenase 1, malic enzyme 1, and cytosolic pyruvate carboxylase. HTC is found in phase-separated bodies in the cytosol of cancer or hypoxic cells and can be assembled in vitro with recombinant proteins. HTC is repressed in senescent cells but induced by p53 inactivation. HTC enzymes are highly expressed in mouse and human prostate cancer models, and their inactivation triggers senescence. Exogenous expression of HTC is sufficient to bypass senescence, rescue cells from complex I inhibitors, and cooperate with oncogenic RAS to transform primary cells. Altogether, we provide evidence for a new multi-enzymatic complex that reprograms metabolism and overcomes cellular senescence.
Asunto(s)
Senescencia Celular/fisiología , NAD/metabolismo , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Línea Celular Tumoral , Senescencia Celular/genética , Citosol , Glucosa/metabolismo , Humanos , Hidrógeno/química , Hidrógeno/metabolismo , Malato Deshidrogenasa/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , NAD/fisiología , Oxidación-Reducción , Piruvato Carboxilasa/metabolismo , Ácido Pirúvico/metabolismoRESUMEN
Loss of mitochondrial electron transport complex (ETC) function in the retinal pigment epithelium (RPE) in vivo results in RPE dedifferentiation and progressive photoreceptor degeneration, and has been implicated in the pathogenesis of age-related macular degeneration. Xenogenic expression of alternative oxidases in mammalian cells and tissues mitigates phenotypes arising from some mitochondrial electron transport defects, but can exacerbate others. We expressed an alternative oxidase from Ciona intestinalis (AOX) in ETC-deficient murine RPE in vivo to assess the retinal consequences of stimulating coenzyme Q oxidation and respiration without ATP generation. RPE-restricted expression of AOX in this context is surprisingly beneficial. This focused intervention mitigates RPE mTORC1 activation, dedifferentiation, hypertrophy, stress marker expression, pseudohypoxia, and aerobic glycolysis. These RPE cell autonomous changes are accompanied by increased glucose delivery to photoreceptors with attendant improvements in photoreceptor structure and function. RPE-restricted AOX expression normalizes accumulated levels of succinate and 2-hydroxyglutarate in ETC-deficient RPE, and counteracts deficiencies in numerous neural retinal metabolites. These features can be attributed to the activation of mitochondrial inner membrane flavoproteins such as succinate dehydrogenase and proline dehydrogenase, and alleviation of inhibition of 2-oxyglutarate-dependent dioxygenases such as prolyl hydroxylases and epigenetic modifiers. Our work underscores the importance to outer retinal health of coenzyme Q oxidation in the RPE and identifies a metabolic network critical for photoreceptor survival in the context of RPE mitochondrial dysfunction.
Asunto(s)
Mitocondrias , Oxidorreductasas , Proteínas de Plantas , Epitelio Pigmentado de la Retina , Animales , Mitocondrias/metabolismo , Ratones , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Ciona intestinalis/metabolismo , Ubiquinona/metabolismo , Ubiquinona/análogos & derivados , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Degeneración Retiniana/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologíaRESUMEN
With current plans for manned missions to Mars and beyond, the need to better understand, prevent, and counteract the harmful effects of long-duration spaceflight on the body is becoming increasingly important. In this study, an automated heart-on-a-chip platform was flown to the International Space Station on a 1-mo mission during which contractile cardiac function was monitored in real-time. Upon return to Earth, engineered human heart tissues (EHTs) were further analyzed with ultrastructural imaging and RNA sequencing to investigate the impact of prolonged microgravity on cardiomyocyte function and health. Spaceflight EHTs exhibited significantly reduced twitch forces, increased incidences of arrhythmias, and increased signs of sarcomere disruption and mitochondrial damage. Transcriptomic analyses showed an up-regulation of genes and pathways associated with metabolic disorders, heart failure, oxidative stress, and inflammation, while genes related to contractility and calcium signaling showed significant down-regulation. Finally, in silico modeling revealed a potential link between oxidative stress and mitochondrial dysfunction that corresponded with RNA sequencing results. This represents an in vitro model to faithfully reproduce the adverse effects of spaceflight on three-dimensional (3D)-engineered heart tissue.
Asunto(s)
Contracción Miocárdica , Miocitos Cardíacos , Vuelo Espacial , Vuelo Espacial/métodos , Humanos , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Dispositivos Laboratorio en un Chip , Ingravidez/efectos adversos , Estrés Oxidativo , Mitocondrias/metabolismo , Mitocondrias Cardíacas/metabolismoRESUMEN
Mitochondrial dysfunction is widely implicated in various human diseases, through mechanisms that go beyond mitochondria's well-established role in energy generation. These dynamic organelles exert vital control over numerous cellular processes, including calcium regulation, phospholipid synthesis, innate immunity, and apoptosis. While mitochondria's importance is acknowledged in all cell types, research has revealed the exceptionally dynamic nature of the mitochondrial network in oocytes and embryos, finely tuned to meet unique needs during gamete and pre-implantation embryo development. Within oocytes, both the quantity and morphology of mitochondria can significantly change during maturation and post-fertilization. These changes are orchestrated by fusion and fission processes (collectively known as mitochondrial dynamics), crucial for energy production, content exchange, and quality control as mitochondria adjust to the shifting energy demands of oocytes and embryos. The roles of proteins that regulate mitochondrial dynamics in reproductive processes have been primarily elucidated through targeted deletion studies in animal models. Notably, impaired mitochondrial dynamics have been linked to female reproductive health, affecting oocyte quality, fertilization, and embryo development. Dysfunctional mitochondria can lead to fertility problems and can have an impact on the success of pregnancy, particularly in older reproductive age women.
Asunto(s)
Dinámicas Mitocondriales , Oocitos , Embarazo , Animales , Femenino , Humanos , Anciano , Mitocondrias/metabolismo , Desarrollo Embrionario , ADN Mitocondrial/metabolismoRESUMEN
Mitochondria, organelles that harbor their own circular genomes, are critical for energy production and homeostasis maintenance in eukaryotic cells. Recent studies discovered hundreds of mitochondria-encoded noncoding RNAs (mt-ncRNAs), including novel subtypes of mitochondria-encoded circular RNAs (mecciRNAs) and mitochondria-encoded double-stranded RNAs (mt-dsRNAs). Here, we discuss the emerging field of mt-ncRNAs by reviewing their expression patterns, biogenesis, metabolism, regulatory roles, and functional mechanisms. Many mt-ncRNAs have regulatory roles in cellular physiology, and some are associated with, or even act as, causal factors in human diseases. We also highlight developments in technologies and methodologies and further insights into future perspectives and challenges in studying these noncoding RNAs, as well as their potential biomedical applications.
Asunto(s)
ARN Largo no Codificante , ARN no Traducido , Humanos , ARN no Traducido/genética , ARN no Traducido/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , ARN Circular/genética , ARN Largo no Codificante/metabolismoRESUMEN
The bioenergetics and molecular determinants of the metabolic response to mitochondrial dysfunction are incompletely understood, in part due to a lack of appropriate isogenic cellular models of primary mitochondrial defects. Here, we capitalize on a recently developed cell model with defined levels of m.8993T>G mutation heteroplasmy, mTUNE, to investigate the metabolic underpinnings of mitochondrial dysfunction. We found that impaired utilization of reduced nicotinamide adenine dinucleotide (NADH) by the mitochondrial respiratory chain leads to cytosolic reductive carboxylation of glutamine as a new mechanism for cytosol-confined NADH recycling supported by malate dehydrogenase 1 (MDH1). We also observed that increased glycolysis in cells with mitochondrial dysfunction is associated with increased cell migration in an MDH1-dependent fashion. Our results describe a novel link between glycolysis and mitochondrial dysfunction mediated by reductive carboxylation of glutamine.
Asunto(s)
Citosol/metabolismo , Glutamina/metabolismo , Malato Deshidrogenasa/metabolismo , Mitocondrias/patología , NAD/metabolismo , Osteosarcoma/patología , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Movimiento Celular , Ciclo del Ácido Cítrico , ADN Mitocondrial/genética , Metabolismo Energético , Femenino , Glucosa/metabolismo , Glucólisis , Humanos , Mitocondrias/metabolismo , Osteosarcoma/genética , Osteosarcoma/metabolismo , Oxidación-Reducción , Células Tumorales CultivadasRESUMEN
Mitochondrial dysfunction plays a critical role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial proteostasis regulated by chaperones and proteases in each compartment of mitochondria is critical for mitochondrial function, and it is suspected that mitochondrial proteostasis deficits may be involved in mitochondrial dysfunction in AD. In this study, we identified LONP1, an ATP-dependent protease in the matrix, as a top Aß42 interacting mitochondrial protein through an unbiased screening and found significantly decreased LONP1 expression and extensive mitochondrial proteostasis deficits in AD experimental models both in vitro and in vivo, as well as in the brain of AD patients. Impaired METTL3-m6A signaling contributed at least in part to Aß42-induced LONP1 reduction. Moreover, Aß42 interaction with LONP1 impaired the assembly and protease activity of LONP1 both in vitro and in vivo. Importantly, LONP1 knockdown caused mitochondrial proteostasis deficits and dysfunction in neurons, while restored expression of LONP1 in neurons expressing intracellular Aß and in the brain of CRND8 APP transgenic mice rescued Aß-induced mitochondrial deficits and cognitive deficits. These results demonstrated a critical role of LONP1 in disturbed mitochondrial proteostasis and mitochondrial dysfunction in AD and revealed a mechanism underlying intracellular Aß42-induced mitochondrial toxicity through its impact on LONP1 and mitochondrial proteostasis.
Asunto(s)
Enfermedad de Alzheimer , Enfermedades Mitocondriales , Ratones , Animales , Humanos , Proteostasis , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Mitocondrias/metabolismo , Ratones Transgénicos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Enfermedades Mitocondriales/metabolismo , Metiltransferasas/metabolismo , Proteasas ATP-Dependientes/metabolismoRESUMEN
Human endogenous retroviruses (HERVs) are associated with the pathogenesis of amyotrophic lateral sclerosis (ALS); a disease characterized by motor neuron degeneration and cell death. The HERV-K subtype HML-2 envelope protein (HERV-K Env) is expressed in the brain, spinal cord, and cerebrospinal fluid of people living with ALS and through CD98 receptor-linked interactions causes neurodegeneration. HERV-K Env-induced increases in oxidative stress are implicated in the pathogenesis of ALS, and ferrous iron (Fe2+) generates reactive oxygen species (ROS). Endolysosome stores of Fe2+ are central to iron trafficking and endolysosome deacidification releases Fe2+ into the cytoplasm. Because HERV-K Env is an arginine-rich protein that is likely endocytosed and arginine is a pH-elevating amino acid, it is important to determine HERV-K Env effects on endolysosome pH and whether HERV-K Env-induced neurotoxicity is downstream of Fe2+ released from endolysosomes. Here, we showed using SH-SY5Y human neuroblastoma cells and primary cultures of human cortical neurons (HCNs, information on age and sex was not available) that HERV-K Env (1) is endocytosed via CD98 receptors, (2) concentration dependently deacidified endolysosomes, (3) decreased endolysosome Fe2+ concentrations, (4) increased cytosolic and mitochondrial Fe2+ and ROS levels, (5) depolarized mitochondrial membrane potential, and (6) induced cell death, effects blocked by an antibody against the CD98 receptor and by the endolysosome iron chelator deferoxamine. Thus, HERV-K Env-induced increases in cytosolic and mitochondrial Fe2+ and ROS as well as cell death appear to be mechanistically caused by HERV-K Env endocytosis, endolysosome deacidification, and endolysosome Fe2+ efflux into the cytoplasm.
Asunto(s)
Esclerosis Amiotrófica Lateral , Retrovirus Endógenos , Neuroblastoma , Síndromes de Neurotoxicidad , Humanos , Esclerosis Amiotrófica Lateral/patología , Hierro , Especies Reactivas de Oxígeno , ArgininaRESUMEN
BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a common heritable heart disease. Although HCM has been reported to be associated with many variants of genes involved in sarcomeric protein biomechanics, pathogenic genes have not been identified in patients with partial HCM. FARS2 (the mitochondrial phenylalanyl-tRNA synthetase), a type of mitochondrial aminoacyl-tRNA synthetase, plays a role in the mitochondrial translation machinery. Several variants of FARS2 have been suggested to cause neurological disorders; however, FARS2-associated diseases involving other organs have not been reported. We identified FARS2 as a potential novel pathogenic gene in cardiomyopathy and investigated its effects on mitochondrial homeostasis and the cardiomyopathy phenotype. METHODS: FARS2 variants in patients with HCM were identified using whole-exome sequencing, Sanger sequencing, molecular docking analyses, and cell model investigation. Fars2 conditional mutant (p.R415L) or knockout mice, fars2-knockdown zebrafish, and Fars2-knockdown neonatal rat ventricular myocytes were engineered to construct FARS2 deficiency models both in vivo and in vitro. The effects of FARS2 and its role in mitochondrial homeostasis were subsequently evaluated using RNA sequencing and mitochondrial functional analyses. Myocardial tissues from patients were used for further verification. RESULTS: We identified 7 unreported FARS2 variants in patients with HCM. Heart-specific Fars2-deficient mice presented cardiac hypertrophy, left ventricular dilation, progressive heart failure accompanied by myocardial and mitochondrial dysfunction, and a short life span. Heterozygous cardiac-specific Fars2R415L mice displayed a tendency to cardiac hypertrophy at age 4 weeks, accompanied by myocardial dysfunction. In addition, fars2-knockdown zebrafish presented pericardial edema and heart failure. FARS2 deficiency impaired mitochondrial homeostasis by directly blocking the aminoacylation of mt-tRNAPhe and inhibiting the synthesis of mitochondrial proteins, ultimately contributing to an imbalanced mitochondrial quality control system by accelerating mitochondrial hyperfragmentation and disrupting mitochondrion-related autophagy. Interfering with the mitochondrial quality control system using adeno-associated virus 9 or specific inhibitors mitigated the cardiac and mitochondrial dysfunction triggered by FARS2 deficiency by restoring mitochondrial homeostasis. CONCLUSIONS: Our findings unveil the previously unrecognized role of FARS2 in heart and mitochondrial homeostasis. This study may provide new insights into the molecular diagnosis and prevention of heritable cardiomyopathy as well as therapeutic options for FARS2-associated cardiomyopathy.
Asunto(s)
Cardiomiopatía Hipertrófica , Insuficiencia Cardíaca , Enfermedades Mitocondriales , Fenilalanina-ARNt Ligasa , Animales , Humanos , Recién Nacido , Ratones , Ratas , Cardiomiopatía Hipertrófica/patología , Insuficiencia Cardíaca/patología , Homeostasis , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/metabolismo , Simulación del Acoplamiento Molecular , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo , Pez Cebra/genética , MutaciónRESUMEN
Podocyte injury plays a critical role in the progression of diabetic kidney disease (DKD), but the underlying cellular and molecular mechanisms remain poorly understanding. MicroRNAs (miRNAs) can disrupt gene expression by inducing translation inhibition and mRNA degradation, and recent evidence has shown that miRNAs may play a key role in many kidney diseases. In this study, we identified miR-4645-3p by global transcriptome expression profiling as one of the major downregulated miRNAs in high glucose-cultured podocytes. Moreover, whether DKD patients or STZ-induced diabetic mice, expression of miR-4645-3p was also significantly decreased in kidney. In the podocytes cultured by normal glucose, inhibition of miR-4645-3p expression promoted mitochondrial damage and podocyte apoptosis. In the podocytes cultured by high glucose (30 mM glucose), overexpression of miR-4645-3p significantly attenuated mitochondrial dysfunction and podocyte apoptosis induced by high glucose. Furthermore, we found that miR-4645-3p exerted protective roles by targeting Cdk5 inhibition. In vitro, miR-4645-3p obviously antagonized podocyte injury by inhibiting overexpression of Cdk5. In vivo of diabetic mice, podocyte injury, proteinuria, and impaired renal function were all effectively ameliorated by treatment with exogenous miR-4645-3p. Collectively, these findings demonstrate that miR-4645-3p can attenuate podocyte injury and mitochondrial dysfunction in DKD by targeting Cdk5. Sustaining the expression of miR-4645-3p in podocytes may be a novel strategy to treat DKD.
Asunto(s)
Quinasa 5 Dependiente de la Ciclina , Diabetes Mellitus Experimental , Nefropatías Diabéticas , MicroARNs , Mitocondrias , Podocitos , Animales , Humanos , Masculino , Ratones , Apoptosis , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/genética , Glucosa , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Mitocondrias/metabolismo , Podocitos/metabolismo , Podocitos/patologíaRESUMEN
Neuroblastoma, a prevalent extracranial solid tumor in children, arises from undifferentiated nerve cells. While tumor vasculature, often characterized by increased permeability, influences metastasis and recurrence, the direct impact of blood-borne molecules on tumor progression remains unclear. In the present study, we focused on the effect of exposure to albumin, one of the most abundant proteins in the serum, on human neuroblastoma cells. Albumin exposure elevated oxidative stress and led to mitochondria dysfunction via the activation of TGFß and PI3K pathways, accompanied by an increase in the metastatic and invasive properties of neuroblastoma cells. Proteins relevant to the induction of autophagy were upregulated in response to prolonged albumin exposure. Additionally, pre-exposure to albumin before treatment resulted in increased resistance to paclitaxel. Two valeriana-type iridoid glycosides, patrisophoroside and patrinalloside, recently isolated from Nardostachys jatamansi significantly mitigated the effect of albumin on oxidative stress, cell invasiveness, and chemoresistance. These findings illuminate the potential role of blood-borne molecules, such as albumin, in the progression and metastasis of neuroblastoma, as well as the possible therapeutic implications of valeriana-type iridoid glycosides in anti-cancer treatment.
Asunto(s)
Resistencia a Antineoplásicos , Glicósidos Iridoides , Neuroblastoma , Paclitaxel , Humanos , Neuroblastoma/patología , Neuroblastoma/metabolismo , Neuroblastoma/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Paclitaxel/farmacología , Glicósidos Iridoides/farmacología , Línea Celular Tumoral , Invasividad Neoplásica , Estrés Oxidativo/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Valeriana/química , Albúmina Sérica/metabolismoRESUMEN
Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder characterized by progressive skeletal muscle denervation and loss of motor neurons that results in muscle atrophy and eventual death due to respiratory failure. Previously, we identified a novel SOD1L84F variation in a familial ALS case. In this study, we examined the functional consequences of SOD1L84F overexpression in the mouse motor neuron cell line (NSC-34). The cells expressing SOD1L84F showed increased oxidative stress and increased cell death. Interestingly, SOD1L84F destabilized the native dimer and formed high molecular weight SDS-resistant protein aggregates. Furthermore, SOD1L84F also decreased the percentage of differentiated cells and significantly reduced neurite length. A plethora of evidence suggested active involvement of skeletal muscle in disease initiation and progression. We observed differential processing of the mutant SOD1 and perturbations of cellular machinery in NSC-34 and muscle cell line C2C12. Unlike neuronal cells, mutant protein failed to accumulate in muscle cells probably due to the activated autophagy, as evidenced by increased LC3-II and reduced p62. Further, SOD1L84F altered mitochondrial dynamics only in NSC-34. In addition, microarray analysis also revealed huge variations in differentially expressed genes between NSC-34 and C2C12. Interestingly, SOD1L84F hampered the endogenous FUS autoregulatory mechanism in NSC-34 by downregulating retention of introns 6 and 7 resulting in a two-fold upregulation of FUS. No such changes were observed in C2C12. Our findings strongly suggest the differential processing and response towards the mutant SOD1 in neuronal and muscle cell lines.
Asunto(s)
Esclerosis Amiotrófica Lateral , Superóxido Dismutasa-1 , Animales , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Células Musculares/metabolismo , Mutación , Superóxido Dismutasa-1/genéticaRESUMEN
Mitochondrial malfunction associated with impaired mitochondrial quality control and self-renewal machinery, known as mitophagy, is an under-appreciated mechanism precipitating synaptic loss and cognitive impairments in Alzheimer's disease (AD). Promoting mitophagy has been shown to improve cognitive function in AD animals. However, the regulatory mechanism was unclear, which formed the aim of this study. Here, we found that a neuron-specific loss of Bcl-2 family member BOK in AD patients and APPswe/PS1dE9 (APP/PS1) mice is closely associated with mitochondrial damage and mitophagy defects. We further revealed that BOK is the key to the Parkin-mediated mitophagy through competitive binding to the MCL1/Parkin complex, resulting in Parkin release and translocation to damaged mitochondria to initiate mitophagy. Furthermore, overexpressing bok in hippocampal neurons of APP/PS1 mice alleviated mitophagy and mitochondrial malfunction, resulting in improved cognitive function. Conversely, the knockdown of bok worsened the aforementioned AD-related changes. Our findings uncover a novel mechanism of BOK signaling through regulating Parkin-mediated mitophagy to mitigate amyloid pathology, mitochondrial and synaptic malfunctions, and cognitive decline in AD, thus representing a promising therapeutic target.
RESUMEN
MECP2 deficiency causes a broad spectrum of neuropsychiatric disorders that can affect both genders. Rett syndrome is the most common and is characterized by an apparently normal growth period followed by a regression phase in which patients lose most of their previously acquired skills. After this dramatic period, various symptoms progressively appear, including severe intellectual disability, epilepsy, apraxia, breathing abnormalities and motor deterioration. MECP2 encodes for an epigenetic transcription factor that is particularly abundant in the brain; consequently, several transcriptional defects characterize the Rett syndrome brain. The well-known deficiency of several neurotrophins and growth factors, together with the positive effects exerted by Trofinetide, a synthetic analogue of insulin-like growth factor 1, in Rett patients and in mouse models of Mecp2 deficiency, prompted us to investigate the therapeutic potential of nerve growth factor. Initial in vitro studies demonstrated a healing effect of rhNGF on neuronal maturation and activity in cultured Mecp2-null neurons. Subsequently, we designed in vivo studies with clear translational potential using intranasally administered recombinant human GMP-grade NGF (rhNGF) already used in the clinic. Efficacy of rhNGF in vivo in Mecp2-null hemizygous male mice and heterozygous female mice was assessed. General well-being was evaluated by a conventional phenotypic score and motor performance through the Pole and Beam Walking tests, while cognitive function and interaction with the environment were measured by the Novel Object Recognition Test and the Marble Burying test, respectively. At the end of the treatment, mouse cortices were dissected and bulk RNA sequencing was performed to identify the molecular pathways involved in the protective effects of rhNGF. rhNGF exerted positive effects on cognitive and motor functions in both male and female mouse models of Rett syndrome. In male hemizygous mice, which suffer from significantly more severe and rapidly advancing symptoms, the drug's ability to slow the disease's progression was more pronounced. The unbiased research for the molecular mechanisms triggering the observed benefits revealed a strong positive effect on gene sets related to oxidative phosphorylation, mitochondrial structure and function. These results were validated by demonstrating the drug's ability to improve mitochondrial structure and respiration in Mecp2-null cerebral cortices. Furthermore, GO analyses indicated that NGF exerted the expected improvement in neuronal maturation. We conclude that intranasal administration of rhNGF is a non-invasive and effective route of administration for the treatment of Rett syndrome and possibly for other neurometabolic disorders with overt mitochondrial dysfunction.
RESUMEN
HHATL, previously implicated in cardiac hypertrophy in the zebrafish model, has emerged as a prioritized HCM risk gene. We identified six rare mutations in HHATL, present in 6.94 % of nonsarcomeric HCM patients (5/72). Moreover, a decrease of HHATL in the heart tissue from HCM patients and cardiac hypertrophy mouse model using transverse aortic constriction was observed. Despite this, the precise pathogenic mechanisms underlying HHATL-associated cardiac hypertrophy remain elusive. In this study, we observed that HHATL downregulation in H9C2 cells resulted in elevated expression of hypertrophic markers and reactive oxygen species (ROS), culminating in cardiac hypertrophy and mitochondrial dysfunction. Notably, the bioactive form of SHH, SHHN, exhibited a significant increase, while the mitochondrial fission protein dynamin-like GTPase (DRP1) decreased upon HHATL depletion. Intervention with the SHH inhibitor RU-SKI 43 or DRP1 overexpression effectively prevented Hhatl-depletion-induced cardiac hypertrophy, mitigating disruptions in mitochondrial morphology and membrane potential through the SHH/DRP1 axis. In summary, our findings suggest that HHATL depletion activates SHH signaling, reducing DRP1 levels and thereby promoting the expression of hypertrophic markers, ROS generation, and mitochondrial dysfunction, ultimately leading to cardiac hypertrophy. This study provides additional compelling evidence supporting the association of HHATL with cardiac hypertrophy.