Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(24): e2304506120, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37279276

RESUMEN

Dynamic molecular devices operating with time- and history-dependent performance raised new challenges for the fundamental study of microscopic non-steady-state charge transport as well as functionalities that are not achievable by steady-state devices. In this study, we reported a generic dynamic mode of molecular devices by addressing the transient redox state of ubiquitous quinone molecules in the junction by proton/water transfer. The diffusion limited slow proton/water transfer-modulated fast electron transport, leading to a non-steady-state transport process, as manifested by the negative differential resistance, dynamic hysteresis, and memory-like behavior. A quantitative paradigm for the study of the non-steady-state charge transport kinetics was further developed by combining the theoretical model and transient state characterization, and the principle of the dynamic device can be revealed by the numerical simulator. On applying pulse stimulation, the dynamic device emulated the neuron synaptic response with frequency-dependent depression and facilitation, implying a great potential for future nonlinear and brain-inspired devices.

2.
Small ; 20(8): e2306334, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37817372

RESUMEN

While a multitude of studies have appeared touting the use of molecules as electronic components, the design of molecular switches is crucial for the next steps in molecular electronics. In this work, single-molecule devices incorporating spiropyrans, made using break junction techniques, are described. Linear spiropyrans with electrode-contacting groups linked by alkynyl spacers to both the indoline and chromenone moieties have previously provided very low conductance values, and removing the alkynyl spacer has resulted in a total loss of conductance. An orthogonal T-shaped approach to single-molecule junctions incorporating spiropyran moieties in which the conducting pathway lies orthogonal to the molecule backbone is described and characterized. This approach has provided singlemolecule conductance features with good correlation to molecular length. Additional higher conducting states are accessible using switching induced by UV light or protonation. Theoretical modeling demonstrates that upon (photo)chemical isomerization to the merocyanine, two cooperating phenomena increase conductance: release of steric hindrance allows the conductance pathway to become more planar (raising the mid-bandgap transmission) and a bound state introduces sharp interference near the Fermi level of the electrodes similarly responding to the change in state. This design step paves the way for future use of spiropyrans in single-molecule devices and electrosteric switches.

3.
Chemistry ; 30(2): e202303191, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37906675

RESUMEN

The construction of molecular photogears that can achieve through-space transmission of the unidirectional double-bond rotary motion of light-driven molecular motors onto a remote single-bond axis is a formidable challenge in the field of artificial molecular machines. Here, we present a proof-of-principle design of such photogears that is based on the possibility of using stereogenic substituents to control both the relative stabilities of two helical forms of the photogear and the double-bond photoisomerization reaction that connects them. The potential of the design was verified by quantum-chemical modeling through which photogearing was found to be a favorable process compared to free-standing single-bond rotation ("slippage"). Overall, our study unveils a surprisingly simple approach to realizing unidirectional photogearing.

4.
Angew Chem Int Ed Engl ; 63(2): e202314962, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38032351

RESUMEN

An empirical model was developed to predict organic solvophobic effects using N-phenylimide molecular balances functionalized with non-polar alkyl groups. Solution studies and X-ray crystallography confirmed intramolecular alkyl-alkyl interactions in their folded conformers. The structural modularity of the balances allowed systematic variation of alkyl group lengths. Control balances were instrumental in isolating weak organic solvophobic effects by eliminating framework solvent-solute effects. A 19 F NMR label enabled analysis across 46 deuterated and non-deuterated solvent systems. Linear correlations were observed between organic solvophobic effects and solvent cohesive energy density (ced) as well as changes in solvent-accessible surface areas (SASA). Using these empirical relationships, a model was constructed to predict organic solvophobic interaction energy per unit area for any organic solvent with known ced values. The predicted interaction energies aligned with recent organic solvophobic measurements and literature values for the hydrophobic effect on non-polar surfaces confirmed the model's accuracy and utility.

5.
Angew Chem Int Ed Engl ; 63(19): e202402413, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38478719

RESUMEN

Existing modelling tools, developed to aid the design of efficient molecular wires and to better understand their charge-transport behaviour and mechanism, have limitations in accuracy and computational cost. Further research is required to develop faster and more precise methods that can yield information on how charge transport properties are impacted by changes in the chemical structure of a molecular wire. In this study, we report a clear semilogarithmic correlation between charge transport efficiency and nuclear magnetic resonance chemical shifts in multiple series of molecular wires, also accounting for the presence of chemical substituents. The NMR data was used to inform a simple tight-binding model that accurately captures the experimental single-molecule conductance values, especially useful in this case as more sophisticated density functional theory calculations fail due to inherent limitations. Our study demonstrates the potential of NMR spectroscopy as a valuable tool for characterising, rationalising, and gaining additional insights on the charge transport properties of single-molecule junctions.

6.
Angew Chem Int Ed Engl ; : e202410304, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39003723

RESUMEN

Open-shell materials bearing multiple spin centres provide a key route to efficient charge transport in single-molecule electronic devices. They have narrow energy gaps, and their molecular orbitals align closely to the Fermi level of the metallic electrodes, thus allowing efficient electronic transport and higher conductance. Maintaining and stabilising multiple open-shell states - especially in contact with metallic electrodes - is however very challenging, generally requiring a continuous chemical or electrochemical potential to avoid self-immolation of the open-shell character. To overcome this issue, we designed, synthesised, and measured the conductance of a series of bis(indeno) fused acenes, where stability is imparted by a close-shell quinoidal conformation in resonance with the diradical electronic configuration. We show here that these compounds have anti-ohmic behaviour, with conductance increasing with increasing molecular length, at an unprecedented rate and across the entire bias window ([[EQUATION]]). Density Functional Theory (DFT) calculations support our findings, showing the rapidly narrowing HOMO-LUMO gap, unique to these diradicaloid structures, is responsible for the observed behaviour. Our results provide a framework for achieving efficient transport in neutral compounds and demonstrate the promise that diradicaloid materials have in single-molecule electronics, owing to their great stability and unique electronic structure.

7.
Angew Chem Int Ed Engl ; 63(22): e202404444, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38530118

RESUMEN

Stepwise dissipative control of two distinct motions, i.e., shuttling and sliding, is demonstrated in a single multicomponent device. When [2]rotaxane 1, which acts as a biped, and deck 2 were treated with AgBF4/PhCH2Br+NEt3 as chemical fuel, the transient catenate [Ag(1)]+ ⋅ [Ag3(2)]3+ was instantly generated showing multimodal motion and autonomous return to 1 and 2. In the dissipative process, catenate [Ag(1)]+ ⋅ [Ag3(2)]3+ cleanly transformed into the follow-up transient device (1) ⋅ [Ag3(2)]3+ exhibiting only sliding motion. Two interference-free dissipative cycles proved the resilience and robustness of the process.

8.
Angew Chem Int Ed Engl ; 62(5): e202215537, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36448963

RESUMEN

Electrochemically switched 2nd order non-linear optical responses have been demonstrated for the first time in polyoxometalates (POMs), with an arylimido-derivative showing a leading combination of high on/off contrast (94 %), high visible transparency, and cyclability. Spectro-electrochemical and TD-DFT studies indicate that the switch-off results from weakened charge transfer (CT) character of the electronic transitions in the reduced state. This represents the first study of an imido-POM reduced state, and demonstrates the potential of POM hybrids as electrochemically activated molecular switches.

9.
Angew Chem Int Ed Engl ; 62(1): e202211387, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36131604

RESUMEN

The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.


Asunto(s)
Paraquat , Viológenos , Paraquat/química
10.
Chemistry ; 28(6): e202103853, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-34939670

RESUMEN

Bistable spin-crossover (SCO) complexes that undergo abrupt and hysteretic (ΔT1/2 ) spin-state switching are desirable for molecule-based switching and memory applications. In this study, we report on structural facets governing hysteretic SCO in a set of iron(II)-2,6-bis(1H-pyrazol-1-yl)pyridine) (bpp) complexes - [Fe(bpp-COOEt)2 ](X)2 ⋅CH3 NO2 (X=ClO4 , 1; X=BF4 , 2). Stable spin-state switching - T1/2 =288 K; ΔT1/2 =62 K - is observed for 1, whereas 2 undergoes above-room-temperature lattice-solvent content-dependent SCO - T1/2 =331 K; ΔT1/2 =43 K. Variable-temperature single-crystal X-ray diffraction studies of the complexes revealed pronounced molecular reorganizations - from the Jahn-Teller-distorted HS state to the less distorted LS state - and conformation switching of the ethyl group of the COOEt substituent upon SCO. Consequently, we propose that the large structural reorganizations rendered SCO hysteretic in 1 and 2. Such insights shedding light on the molecular origin of thermal hysteresis might enable the design of technologically relevant molecule-based switching and memory elements.

11.
Chemistry ; 28(26): e202200462, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35234313

RESUMEN

A radical anion -NO2 .- is formed upon an electrochemically reversible one-electron reduction of the square-planar NiII complex of N-nitrobenzylcyclam. The -NO2 .- group goes to occupy an axial position of the metal ion, thus establishing a significant electronic interaction with the metal center. In particular, the ESR spectrum supports the occurrence of an electron transfer from -NO2 .- to the metal, which therefore presents a significant NiI character. On re-oxidation, the nitrobenzyl side chain detaches and the NiII complex is restored, providing an example of a fully reversible redox driven intramolecular motion.

12.
Angew Chem Int Ed Engl ; 61(23): e202116985, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35289977

RESUMEN

Integrating radical (open-shell) species into non-cryogenic nanodevices is key to unlocking the potential of molecular electronics. While many efforts have been devoted to this issue, in the absence of a chemical/electrochemical potential the open-shell character is generally lost in contact with the metallic electrodes. Herein, single-molecule devices incorporating a 6-oxo-verdazyl persistent radical have been fabricated using break-junction techniques. The open-shell character is retained at room temperature, and electrochemical gating permits in situ reduction to a closed-shell anionic state in a single-molecule transistor configuration. Furthermore, electronically driven rectification arises from bias-dependent alignment of the open-shell resonances. The integration of radical character, transistor-like switching, and rectification in a single molecular component paves the way to further studies of the electronic, magnetic, and thermoelectric properties of open-shell species.

13.
Angew Chem Int Ed Engl ; 61(44): e202208969, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36098999

RESUMEN

We report the bi-polaron transport and magnetic field induced Pauli spin-blockade in solid-state molecular junctions (MJs) evidenced by a positive magnetoresistance (MR). The junction was made of thin layers of redox-active ruthenium polypyridyl-oligomers Ru(tpy)2 sandwiched between conducting amorphous carbon (a-C) electrodes. The redox-active Ru(tpy)2 molecule, which enables small polaron and deep traps in the charge transport of the Ru(tpy)2 MJ as revealed by the temperature-dependent current-voltage response, leads to the formation of the bi-polaron and magnetic field induced Pauli spin blockade, resulting into the MR. At the meantime, the reliable and controllable device performance renders a rigid thickness-dependent MR evolution. The bi-polaron transport revealed in our study underscores the importance of the multi-particle transport by molecular design in MJs and laid the foundation for magnetic-electronic function in molecular-scale devices.

14.
Angew Chem Int Ed Engl ; 61(12): e202115892, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35032345

RESUMEN

The Co-based complex [Co(H2 B(pz)(pypz))2 ] (py=pyridine, pz=pyrazole) deposited on Ag(111) was investigated with scanning tunneling microscopy at ≈5 K. Due to a bis(tridentate) coordination sphere the molecules aggregate mainly into tetramers. Individual complexes in these tetramers undergo reversible transitions between two states with characteristic image contrasts when current is passed through them or one of their neighbors. Two molecules exhibit this bistability while the other two molecules are stable. The transition rates vary linearly with the tunneling current and exhibit an intriguing dependence on the bias voltage and its polarity. We interpret the states as being due to S=1 /2 and 3 /2 spin states of the Co2+ complex. The image contrast and the orders-of-magnitude variations of the switching yields can be tentatively understood from the calculated orbital structures of the two spin states, thus providing first insights into the mechanism of electron-induced excited spin-state trapping (ELIESST).

15.
Chemistry ; 27(2): 712-723, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-32876974

RESUMEN

The interaction at the molecular level of the spin-crossover (SCO) FeII ((3,5-(CH3 )2 Pz)3 BH)2 complex with the Au(111) surface is analyzed by means of rPBE periodic calculations. Our results show that the adsorption on the metallic surface enhances the transition energy, increasing the relative stability of the low spin (LS) state. The interaction indeed is spin-dependent, stronger for the low spin than the high spin (HS) state. The different strength of the Fe ligand field at low and high temperature manifests on the nature, spatial extension and relative energy of the states close to the Fermi level, with a larger metal-ligand hybridization in the LS state. This feature is of relevance for the differential adsorption of the LS and HS molecules, the spin-dependent conductance, and for the differences found in the corresponding STM images, correctly reproduced from the density of states provided by the rPBE calculations. It is expected that this spin dependence will be a general feature of the SCO molecule-substrate interaction, since it is rooted in the different ligand field of Fe site at low and high temperatures, a common hallmark of the FeII SCO complexes. Finally, the states involved in the LIESST phenomenon has been identified through NEVPT2 calculations on a model reaction path. A tentative pathway for the photoinduced LS→HS transition is proposed, that does not involve the intermediate triplet states, and nicely reproduces both the blue laser wavelength required for the activation, and the wavelength of the reverse HS → LS transition.

16.
Angew Chem Int Ed Engl ; 60(9): 4931-4938, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230933

RESUMEN

DNA nanotechnology and advances in the DNA origami technique have enabled facile design and synthesis of complex and functional nanostructures. Molecular devices are, however, prone to rapid functional and structural degradation due to the high proportion of surface atoms at the nanoscale and due to complex working environments. Besides stabilizing mechanisms, approaches for the self-repair of functional molecular devices are desirable. Here we exploit the self-assembly and reconfigurability of DNA origami nanostructures to induce the self-repair of defects of photoinduced and enzymatic damage. We provide examples of repair in DNA nanostructures showing the difference between unspecific self-regeneration and damage specific self-healing mechanisms. Using DNA origami nanorulers studied by atomic force and superresolution DNA PAINT microscopy, quantitative preservation of fluorescence properties is demonstrated with direct potential for improving nanoscale calibration samples.

17.
Angew Chem Int Ed Engl ; 60(3): 1610-1614, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-32996657

RESUMEN

Thermodynamic characterization is crucial for understanding molecular interactions. However, methodologies for measuring heat changes in small open systems are extremely limited. We document a new approach for designing molecular sensors, that function as calorimeters: sensors based on memory. To design a memory-based sensor, we take advantage of the unique kinetic properties of nucleic acid scaffolds. Particularly, we elaborate on the differences in folding and unfolding rates in nucleic acid quadruplexes. DNA-based i-motifs unfold fast in response to small heats but do not fold back when the system is equilibrated with surroundings. We translated this behavior into a molecular memory function that enables the measurement of heat changes in open environments. The new sensors are biocompatible, operate homogeneously, and measure small heats released over long time periods. As a proof-of-concept, we demonstrate how the molecular calorimeters report heat changes generated in water/propanol mixing and in ligand/protein binding.


Asunto(s)
Técnicas Biosensibles/métodos , Calorimetría/métodos , Termodinámica
18.
Small ; 16(22): e2001855, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32363713

RESUMEN

Nanomechanical devices are becoming increasingly popular due to the very diverse field of potential applications, including nanocomputing, robotics, and drug delivery. DNA is one of the most promising building materials to realize complex 3D structures at the nanoscale level. Several mechanical DNA origami structures have already been designed capable of simple operations such as a DNA box with a controllable lid, bipedal walkers, and cargo sorting robots. However, the nanomechanical properties of mechanically interlinked DNA nanostructures that are in general highly deformable have yet to be extensively experimentally evaluated. In this work, a multicomponent DNA origami-based rotor is created and fully characterized by electron microscopy under negative stain and cryo preparations. The nanodevice is further immobilized on a microfluidic chamber and its Brownian and flow-driven rotational behaviors are analyzed in real time by single-molecule fluorescence microscopy. The rotation in previous DNA rotors based either on strand displacement, electric field or Brownian motion. This study is the first to attempt to manipulate the dynamics of an artificial nanodevice with fluidic flow as a natural force.


Asunto(s)
Nanoestructuras , Nanotecnología , ADN , Conformación de Ácido Nucleico , Imagen Individual de Molécula
19.
Small ; 16(39): e2002808, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32851802

RESUMEN

As stated in the classic Kirchhoff's circuit laws, the total conductance of two parallel channels in an electronic circuit is the sum of the individual conductance. However, in molecular circuits, the quantum interference (QI) between the individual channels may lead to apparent invalidity of Kirchhoff's laws. Such an effect can be very significant in single-molecule circuits consisting of partially overlapped multiple transport channels. Herein, an investigation on how the molecular circuit conductance correlates to the individual channels is conducted in the presence of QI. It is found that the conductance of multi-channel circuit consisting of both constructive and destructive QI is significantly smaller than the addition of individual ones due to the interference between channels. In contrast, the circuit consisting of destructive QI channels exhibits an additive transport. These investigations provide a new cognition of transport mechanism and manipulation of transport in multi-channel molecular circuits.

20.
Chembiochem ; 21(7): 886-910, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31803982

RESUMEN

The combination of supramolecular functional systems with biomolecular chemistry has been a fruitful exercise for decades, leading to a greater understanding of biomolecules and to a great variety of applications, for example, in drug delivery and sensing. Within these developments, the phospholipid bilayer membrane, surrounding live cells, with all its functions has also intrigued supramolecular chemists. Herein, recent efforts from the supramolecular chemistry community to mimic natural functions of lipid membranes, such as sensing, molecular recognition, membrane fusion, signal transduction, and gated transport, are reviewed.


Asunto(s)
Portadores de Fármacos/química , Membrana Dobles de Lípidos/química , Transporte Biológico , Complejos de Coordinación/química , Humanos , Fusión de Membrana , Fosfolípidos/química , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA