Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 623
Filtrar
Más filtros

Intervalo de año de publicación
1.
Hum Mol Genet ; 33(15): 1367-1377, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38704739

RESUMEN

Spinal Muscular Atrophy is caused by partial loss of survival of motoneuron (SMN) protein expression. The numerous interaction partners and mechanisms influenced by SMN loss result in a complex disease. Current treatments restore SMN protein levels to a certain extent, but do not cure all symptoms. The prolonged survival of patients creates an increasing need for a better understanding of SMA. Although many SMN-protein interactions, dysregulated pathways, and organ phenotypes are known, the connections among them remain largely unexplored. Monogenic diseases are ideal examples for the exploration of cause-and-effect relationships to create a network describing the disease-context. Machine learning tools can utilize such knowledge to analyze similarities between disease-relevant molecules and molecules not described in the disease so far. We used an artificial intelligence-based algorithm to predict new genes of interest. The transcriptional regulation of 8 out of 13 molecules selected from the predicted set were successfully validated in an SMA mouse model. This bioinformatic approach, using the given experimental knowledge for relevance predictions, enhances efficient targeted research in SMA and potentially in other disease settings.


Asunto(s)
Inteligencia Artificial , Biología Computacional , Modelos Animales de Enfermedad , Atrofia Muscular Espinal , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Animales , Ratones , Humanos , Biología Computacional/métodos , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Aprendizaje Automático , Algoritmos , Regulación de la Expresión Génica/genética
2.
FASEB J ; 38(18): e70055, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39305126

RESUMEN

Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by low levels of the Survival of Motoneuron (SMN) protein. SMN interacts with and regulates the actin-binding protein profilin2a, thereby influencing actin dynamics. Dysfunctional actin dynamics caused by SMN loss disrupts neurite outgrowth, axonal pathfinding, and formation of functional synapses in neurons. Whether the SMN protein directly interacts with and regulates filamentous (F-) and monomeric globular (G-) actin is still elusive. In a quantitative single cell approach, we show that SMN loss leads to dysregulated F-/G-actin fractions. Furthermore, quantitative assessment of cell morphology suggests an F-actin organizational defect. Interestingly, this is mediated by an interaction of SMN with G- and F-actin. In co-immunoprecipitation, in-vitro pulldown and co-localization assays, we elucidated that this interaction is independent of the SMN-profilin2a interaction. Therefore, we suggest two populations being relevant for functional actin dynamics in healthy neurons: SMN-profilin2a-actin and SMN-actin. Additionally, those two populations may influence each other and therefore regulate binding of SMN to actin. In SMA, we showed a dysregulated co-localization pattern of SMN-actin which could only partially rescued by SMN restoration. However, dysregulation of F-/G-actin fractions was reduced by SMN restoration. Taken together, our results suggest a novel molecular function of SMN in binding to actin independent from SMN-profilin2a interaction.


Asunto(s)
Actinas , Atrofia Muscular Espinal , Profilinas , Proteína 1 para la Supervivencia de la Neurona Motora , Actinas/metabolismo , Profilinas/metabolismo , Profilinas/genética , Humanos , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/genética , Animales , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Ratones , Neuronas Motoras/metabolismo , Unión Proteica
3.
Mol Ther ; 32(4): 1096-1109, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38291756

RESUMEN

Spasticity, affecting ∼75% of patients with spinal cord injury (SCI), leads to hyperreflexia, muscle spasms, and cocontractions of antagonist muscles, greatly affecting their quality of life. Spasticity primarily stems from the hyperexcitability of motoneurons below the lesion, driven by an upregulation of the persistent sodium current and a downregulation of chloride extrusion. This imbalance results from the post-SCI activation of calpain1, which cleaves Nav1.6 channels and KCC2 cotransporters. Our study was focused on mitigating spasticity by specifically targeting calpain1 in spinal motoneurons. We successfully transduced lumbar motoneurons in adult rats with SCI using intrathecal administration of adeno-associated virus vector serotype 6, carrying a shRNA sequence against calpain1. This approach significantly reduced calpain1 expression in transduced motoneurons, leading to a noticeable decrease in spasticity symptoms, including hyperreflexia, muscle spasms, and cocontractions in hindlimb muscles, which are particularly evident in the second month post-SCI. In addition, this decrease, which prevented the escalation of spasticity to a severe grade, paralleled the restoration of KCC2 levels in transduced motoneurons, suggesting a reduced proteolytic activity of calpain1. These findings demonstrate that inhibiting calpain1 in motoneurons is a promising strategy for alleviating spasticity in SCI patients.


Asunto(s)
Traumatismos de la Médula Espinal , Simportadores , Animales , Ratas , Neuronas Motoras/metabolismo , Espasticidad Muscular/genética , Espasticidad Muscular/terapia , Calidad de Vida , Reflejo Anormal , Espasmo/metabolismo , Espasmo/patología , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/terapia , Simportadores/genética
4.
J Physiol ; 602(10): 2287-2314, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38619366

RESUMEN

The physiological mechanisms determining the progressive decline in the maximal muscle torque production capacity during isometric contractions to task failure are known to depend on task demands. Task-specificity of the associated adjustments in motor unit discharge rate (MUDR), however, remains unclear. This study examined MUDR adjustments during different submaximal isometric knee extension tasks to failure. Participants performed a sustained and an intermittent task at 20% and 50% of maximal voluntary torque (MVT), respectively (Experiment 1). High-density surface EMG signals were recorded from vastus lateralis (VL) and medialis (VM) and decomposed into individual MU discharge timings, with the identified MUs tracked from recruitment to task failure. MUDR was quantified and normalised to intervals of 10% of contraction time (CT). MUDR of both muscles exhibited distinct modulation patterns in each task. During the 20% MVT sustained task, MUDR decreased until ∼50% CT, after which it gradually returned to baseline. Conversely, during the 50% MVT intermittent task, MUDR remained stable until ∼40-50% CT, after which it started to continually increase until task failure. To explore the effect of contraction intensity on the observed patterns, VL and VM MUDR was quantified during sustained contractions at 30% and 50% MVT (Experiment 2). During the 30% MVT sustained task, MUDR remained stable until ∼80-90% CT in both muscles, after which it continually increased until task failure. During the 50% MVT sustained task the increase in MUDR occurred earlier, after ∼70-80% CT. Our results suggest that adjustments in MUDR during submaximal isometric contractions to failure are contraction modality- and intensity-dependent. KEY POINTS: During prolonged muscle contractions a constant motor output can be maintained by recruitment of additional motor units and adjustments in their discharge rate. Whilst contraction-induced decrements in neuromuscular function are known to depend on task demands, task-specificity of motor unit discharge behaviour adjustments is still unclear. In this study, we tracked and compared discharge activity of several concurrently active motor units in the vastii muscles during different submaximal isometric knee extension tasks to failure, including intermittent vs. sustained contraction modalities performed in the same intensity domain (Experiment 1), and two sustained contractions performed at different intensities (Experiment 2). During each task, motor units modulated their discharge rate in a distinct, biphasic manner, with the modulation pattern depending on contraction intensity and modality. These results provide insight into motoneuronal adjustments during contraction tasks posing different demands on the neuromuscular system.


Asunto(s)
Contracción Isométrica , Humanos , Contracción Isométrica/fisiología , Masculino , Adulto , Femenino , Torque , Adulto Joven , Músculo Esquelético/fisiología , Neuronas Motoras/fisiología , Electromiografía , Músculo Cuádriceps/fisiología , Reclutamiento Neurofisiológico/fisiología
5.
J Physiol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058666

RESUMEN

Acute intermittent hypoxia (AIH) is an emerging technique for enhancing neuroplasticity and motor function in respiratory and limb musculature. Thus far, AIH-induced improvements in strength have been reported for upper and lower limb muscles after chronic incomplete cervical spinal cord injury (iSCI), but the underlying mechanisms have been elusive. We used high-density surface EMG (HDsEMG) to determine if motor unit discharge behaviour is altered after 15 × 60 s exposures to 9% inspired oxygen, interspersed with 21% inspired oxygen (AIH), compared to breathing only 21% air (SHAM). We recorded HDsEMG from the biceps and triceps brachii of seven individuals with iSCI during maximal elbow flexion and extension contractions, and motor unit spike trains were identified using convolutive blind source separation. After AIH, elbow flexion and extension torque increased by 54% and 59% from baseline (P = 0.003), respectively, whereas there was no change after SHAM. Across muscles, motor unit discharge rates increased by ∼4 pulses per second (P = 0.002) during maximal efforts, from before to after AIH. These results suggest that excitability and/or activation of spinal motoneurons is augmented after AIH, providing a mechanism to explain AIH-induced increases in voluntary strength. Pending validation, AIH may be helpful in conjunction with other therapies to enhance rehabilitation outcomes after incomplete spinal cord injury, due to these enhancements in motor unit function and strength. KEY POINTS: Acute intermittent hypoxia (AIH) causes increases in muscular strength and neuroplasticity in people living with chronic incomplete spinal cord injury (SCI), but how it affects motor unit discharge rates is unknown. Motor unit spike times were identified from high-density surface electromyograms during maximal voluntary contractions and tracked from before to after AIH. Motor unit discharge rates were increased following AIH. These findings suggest that AIH can facilitate motoneuron function in people with incomplete SCI.

6.
J Physiol ; 602(9): 2107-2126, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38568869

RESUMEN

We are studying the mechanisms of H-reflex operant conditioning, a simple form of learning. Modelling studies in the literature and our previous data suggested that changes in the axon initial segment (AIS) might contribute. To explore this, we used blinded quantitative histological and immunohistochemical methods to study in adult rats the impact of H-reflex conditioning on the AIS of the spinal motoneuron that produces the reflex. Successful, but not unsuccessful, H-reflex up-conditioning was associated with greater AIS length and distance from soma; greater length correlated with greater H-reflex increase. Modelling studies in the literature suggest that these increases may increase motoneuron excitability, supporting the hypothesis that they may contribute to H-reflex increase. Up-conditioning did not affect AIS ankyrin G (AnkG) immunoreactivity (IR), p-p38 protein kinase IR, or GABAergic terminals. Successful, but not unsuccessful, H-reflex down-conditioning was associated with more GABAergic terminals on the AIS, weaker AnkG-IR, and stronger p-p38-IR. More GABAergic terminals and weaker AnkG-IR correlated with greater H-reflex decrease. These changes might potentially contribute to the positive shift in motoneuron firing threshold underlying H-reflex decrease; they are consistent with modelling suggesting that sodium channel change may be responsible. H-reflex down-conditioning did not affect AIS dimensions. This evidence that AIS plasticity is associated with and might contribute to H-reflex conditioning adds to evidence that motor learning involves both spinal and brain plasticity, and both neuronal and synaptic plasticity. AIS properties of spinal motoneurons are likely to reflect the combined influence of all the motor skills that share these motoneurons. KEY POINTS: Neuronal action potentials normally begin in the axon initial segment (AIS). AIS plasticity affects neuronal excitability in development and disease. Whether it does so in learning is unknown. Operant conditioning of a spinal reflex, a simple learning model, changes the rat spinal motoneuron AIS. Successful, but not unsuccessful, H-reflex up-conditioning is associated with greater AIS length and distance from soma. Successful, but not unsuccessful, down-conditioning is associated with more AIS GABAergic terminals, less ankyrin G, and more p-p38 protein kinase. The associations between AIS plasticity and successful H-reflex conditioning are consistent with those between AIS plasticity and functional changes in development and disease, and with those predicted by modelling studies in the literature. Motor learning changes neurons and synapses in spinal cord and brain. Because spinal motoneurons are the final common pathway for behaviour, their AIS properties probably reflect the combined impact of all the behaviours that use these motoneurons.


Asunto(s)
Segmento Inicial del Axón , Reflejo H , Neuronas Motoras , Ratas Sprague-Dawley , Animales , Neuronas Motoras/fisiología , Ratas , Masculino , Reflejo H/fisiología , Segmento Inicial del Axón/fisiología , Aprendizaje/fisiología , Médula Espinal/fisiología , Médula Espinal/citología , Axones/fisiología , Plasticidad Neuronal/fisiología , Condicionamiento Operante/fisiología , Ancirinas/metabolismo
7.
J Physiol ; 602(5): 913-932, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38345477

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease characterized by progressive motor neuron degeneration and muscle paralysis. Recent evidence suggests the dysfunction of inhibitory signalling in ALS motor neurons. We have shown that embryonic day (E)17.5 spinal motoneurons (MNs) of the SOD1G93A mouse model of ALS exhibit an altered chloride homeostasis. At this prenatal stage, inhibition of spinal motoneurons (MNs) is mediated by depolarizing GABAergic/glycinergic postsynaptic potentials (dGPSPs). Here, using an ex vivo preparation and patch clamp recording from MNs with a chloride equilibrium set below spike threshold, we report that low input resistance (Rin ) E17.5 MNs from the SOD1G93A ALS mouse model do not correctly integrate dGPSPs evoked by electrical stimulations of GABA/glycine inputs at different frequencies. Indeed, firing activity of most wild-type (WT) MNs with low Rin was inhibited by incoming dGPSPs, whereas low Rin SOD1G93A MNs were excited or exhibited a dual response (excited by low frequency dGPSPs and inhibited by high frequency dGPSPs). Simulation highlighted the importance of the GABA/glycine input density and showed that pure excitation could be obtained in SOD-like MNs by moving GABA/glycine input away from the cell body to dendrites. This was in agreement with confocal imaging showing a lack of peri-somatic inhibitory terminals in SOD1G93A MNs compared to WT littermates. Putative fast ALS-vulnerable MNs with low Rin are therefore lacking functional inhibition at the near-term prenatal stage. KEY POINTS: We analysed the integration of GABAergic/glycinergic synaptic events by embryonic spinal motoneurons (MNs) in a mouse model of the amyotrophic lateral sclerosis (ALS) neurodegenerative disease. We found that GABAergic/glycinergic synaptic events do not properly inhibit ALS MNs with low input resistance, most probably corresponding to future vulnerable MNs. We used a neuron model to highlight the importance of the GABA/glycine terminal location and density in the integration of the GABAergic/glycinergic synaptic events. Confocal imaging showed a lack of GABA/glycine terminals on the cell body of ALS MNs. The present study suggests that putative ALS vulnerable MNs with low Rin lack functional inhibition at the near-term stage.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Ratones , Animales , Glicina/farmacología , Superóxido Dismutasa-1/genética , Médula Espinal/fisiología , Cloruros , Ratones Transgénicos , Neuronas Motoras/fisiología , Ácido gamma-Aminobutírico/farmacología , Modelos Animales de Enfermedad , Superóxido Dismutasa/genética
8.
J Neurophysiol ; 131(4): 577-588, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38380829

RESUMEN

Bistability in spinal motoneurons supports tonic spike activity in the absence of excitatory drive. Earlier work in adult preparations suggested that smaller motoneurons innervating slow antigravity muscle fibers are more likely to generate bistability for postural maintenance. However, whether large motoneurons innervating fast-fatigable muscle fibers display bistability is still controversial. To address this, we examined the relationship between soma size and bistability in lumbar (L4-L5) ventrolateral α-motoneurons of choline acetyltransferase (ChAT)-green fluorescent protein (GFP) and Hb9-GFP mice during the first 4 wk of life. We found that as neuron size increases, the prevalence of bistability rises. Smaller α-motoneurons lack bistability, whereas larger fast α-motoneurons [matrix metalloproteinase-9 (MMP-9)+/Hb9+] with a soma area ≥ 400 µm2 exhibit significantly higher bistability. Ionic currents associated with bistability, including the persistent Nav1.6 current, the thermosensitive Trpm5 Ca2+-activated Na+ current, and the slowly inactivating Kv1.2 current, also scale with cell size. Serotonin evokes full bistability in large motoneurons with partial bistable properties but not in small motoneurons. Our study provides important insights into the neural mechanisms underlying bistability and how motoneuron size correlates with bistability in mice.NEW & NOTEWORTHY Bistability is not a common feature of all mouse spinal motoneurons. It is absent in small, slow motoneurons but present in most large, fast motoneurons. This difference results from differential expression of ionic currents that enable bistability, which are highly expressed in large motoneurons but small or absent in small motoneurons. These results support a possible role for fast motoneurons in maintenance of tonic posture in addition to their known roles in fast movements.


Asunto(s)
Neuronas Motoras , Médula Espinal , Ratones , Animales , Médula Espinal/fisiología , Neuronas Motoras/fisiología , Columna Vertebral , Fibras Musculares Esqueléticas
9.
J Neurophysiol ; 131(2): 166-175, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38116611

RESUMEN

Persistent inward currents (PICs) increase the intrinsic excitability of α-motoneurons. The main objective of this study was to compare estimates of α-motoneuronal PICs between inactive, chronic resistance-trained, and chronic endurance-trained young individuals. We also aimed to investigate whether there is a relationship in the estimates of α-motoneuronal PIC magnitude between muscles. Estimates of PIC magnitude were obtained in three groups of young individuals: resistance-trained (n = 12), endurance-trained (n = 12), and inactive (n = 13). We recorded high-density surface electromyography (HDsEMG) signals from tibialis anterior (TA), gastrocnemius medialis (GM), soleus (SOL), vastus medialis (VM), and vastus lateralis (VL). Then, signals were decomposed with convolutive blind source separation to identify motor unit (MU) spike trains. Participants performed triangular isometric contractions to a peak of 20% of their maximum voluntary contraction. A paired-motor-unit analysis was used to calculate ΔF, which is assumed to be proportional to PIC magnitude. Despite the substantial differences in physical training experience between groups, we found no differences in ΔF, regardless of the muscle. Significant correlations of estimates of PIC magnitude were found between muscles of the same group (VL-VM, SOL-GM). Only two correlations (out of 8) between muscles of different groups were found (TA-GM and VL-GM). Overall, our findings suggest that estimates of PIC magnitude from lower-threshold MUs at low contraction intensities in the lower limb muscles are not influenced by physical training experience in healthy young individuals. They also suggest muscle-specific and muscle group-specific regulations of the estimates of PIC magnitude.NEW & NOTEWORTHY Chronic resistance and endurance training can lead to specific adaptations in motor unit activity. The contribution of α-motoneuronal persistent inward currents (PICs) to these adaptations is currently unknown in healthy young individuals. Therefore, we studied whether estimates of α-motoneuronal PIC magnitude are higher in chronically trained endurance- and resistance-trained individuals. We also studied whether there is a relationship between the estimates of α-motoneuronal PIC magnitude of different lower limb muscles.


Asunto(s)
Entrenamiento Aeróbico , Masculino , Humanos , Músculo Esquelético/fisiología , Electromiografía , Músculo Cuádriceps , Contracción Isométrica/fisiología , Extremidad Inferior
10.
J Neurophysiol ; 131(2): 187-197, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117916

RESUMEN

Spinal cord injury (SCI) disrupts neuronal function below the lesion epicenter, causing disuse muscle atrophy. We investigated motor unit (MU) activity and synaptic inputs to motoneurons in the caudal region of the injured spinal cord. Participants with C4-C7 cervical injuries were studied. The extensor digitorum communis (EDC) muscle, which is mainly innervated by C8, was assessed for disuse muscle atrophy. Using advanced electromyography and signal-processing techniques, we examined the concurrent activation of a substantial population of MUs during force-tracking tasks. We found that in participants with SCI (n = 9), both MU discharge rates and the amplitudes of MU action potentials were significantly lower than in controls (n = 9). After SCI, MUs were recruited in a limited force range as the strength of muscle contractions increased, implying a disruption in the orderly MU recruitment pattern. Coherence analysis revealed reduced synaptic inputs to motoneurons in the delta band (0.5-5 Hz) for participants with SCI, suggesting diminished common synaptic inputs to the EDC muscle. In addition, participants with SCI exhibited greater muscle force variability. Using principal component analysis on low-frequency MU discharge rates, we found that the first common component (FCC) captured the most discharge variability in participants with SCI. The coefficients of variation (CV) of the FCC correlated with force signal CVs, suggesting force variability mainly results from common synaptic inputs to the EDC muscle after SCI. These results advance our understanding of the neurophysiology of disuse muscle atrophy in human SCI, paving the way for therapeutic interventions to restore muscle function.NEW & NOTEWORTHY This study analyzed motor unit (MU) function below the lesion epicenter in patients with spinal cord injury (SCI). We found reduced MU discharge rates and action potential amplitudes in participants with SCI compared with controls. The strength of common synaptic inputs to motoneurons was reduced in patients with SCI, with increased force variability primarily due to low-frequency oscillations of common inputs. This study enhances understanding of neurophysiological and behavioral changes in disuse muscle atrophy post-SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Médula Espinal , Humanos , Estimulación Eléctrica , Neuronas Motoras/fisiología , Músculo Esquelético/inervación , Electromiografía/métodos , Contracción Muscular/fisiología , Atrofia Muscular/patología
11.
Neurobiol Dis ; 193: 106454, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408684

RESUMEN

Axonal mitochondria defects are early events in the pathogenesis of motoneuron disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. The RNA-binding protein hnRNP R interacts with different motoneuron disease-related proteins such as SMN and TDP-43 and has important roles in axons of motoneurons, including axonal mRNA transport. However, whether hnRNP R also modulates axonal mitochondria is currently unknown. Here, we show that axonal mitochondria exhibit altered function and motility in hnRNP R-deficient motoneurons. Motoneurons lacking hnRNP R show decreased anterograde and increased retrograde transport of mitochondria in axons. Furthermore, hnRNP R-deficiency leads to mitochondrial hyperpolarization, caused by decreased complex I and reversed complex V activity within the respiratory chain. Taken together, our data indicate a role for hnRNP R in regulating transport and maintaining functionality of axonal mitochondria in motoneurons.


Asunto(s)
Axones , Neuronas Motoras , Potenciales de la Membrana , Neuronas Motoras/metabolismo , Axones/patología , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Mitocondrias/metabolismo
12.
Mol Med ; 30(1): 185, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39455931

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motoneurons (MNs), and despite progress, there is no effective treatment. A large body of evidence shows that astrocytes expressing ALS-linked mutant proteins cause non-cell autonomous toxicity of MNs. Although MNs innervate muscle fibers and ALS is characterized by the early disruption of the neuromuscular junction (NMJ) and axon degeneration, there are controversies about whether muscle contributes to non-cell-autonomous toxicity to MNs. In this study, we generated primary skeletal myotubes from myoblasts derived from ALS mice expressing human mutant SOD1G93A (termed hereafter mutSOD1). Characterization revealed that mutSOD1 skeletal myotubes display intrinsic phenotypic and functional differences compared to control myotubes generated from non-transgenic (NTg) littermates. Next, we analyzed whether ALS myotubes exert non-cell-autonomous toxicity to MNs. We report that conditioned media from mutSOD1 myotubes (mutSOD1-MCM), but not from control myotubes (NTg-MCM), induced robust death of primary MNs in mixed spinal cord cultures and compartmentalized microfluidic chambers. Our study further revealed that applying mutSOD1-MCM to the MN axonal side in microfluidic devices rapidly reduces mitochondrial axonal transport while increasing Ca2 + transients and reactive oxygen species (i.e., H2O2). These results indicate that soluble factor(s) released by mutSOD1 myotubes cause MN axonopathy that leads to lethal pathogenic changes.


Asunto(s)
Esclerosis Amiotrófica Lateral , Transporte Axonal , Ratones Transgénicos , Mitocondrias , Neuronas Motoras , Fibras Musculares Esqueléticas , Superóxido Dismutasa-1 , Animales , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Mitocondrias/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Ratones , Humanos , Muerte Celular , Modelos Animales de Enfermedad , Mutación , Células Cultivadas
13.
Calcif Tissue Int ; 114(1): 9-23, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37603077

RESUMEN

Weakness, one of the key characteristics of sarcopenia, is a significant risk factor for functional limitations and disability in older adults. It has long been suspected that reductions in motor unit firing rates (MUFRs) are one of the mechanistic causes of age-related weakness. However, prior work has not investigated the extent to which MUFR is associated with clinically meaningful weakness in older adults. Forty-three community-dwelling older adults (mean: 75.4 ± 7.4 years; 46.5% female) and 24 young adults (mean: 22.0 ± 1.8 years; 58.3% female) performed torque matching tasks at varying submaximal intensities with their non-dominant leg extensors. Decomposed surface electromyographic recordings were used to quantify MUFRs from the vastus lateralis muscle. Computational modeling was subsequently used to independently predict how slowed MUFRs would negatively impact strength in older adults. Bivariate correlations between MUFRs and indices of lean mass, voluntary activation, and physical function/mobility were also assessed in older adults. Weak older adults (n = 14) exhibited an approximate 1.5 and 3 Hz reduction in MUFR relative to non-weak older adults (n = 29) at 50% and 80% MVC, respectively. Older adults also exhibited an approximate 3 Hz reduction in MUFR relative to young adults at 80% MVC only. Our model predicted that a 3 Hz reduction in MUFR results in a strength decrement of 11-26%. Additionally, significant correlations were found between slower MUFRs and poorer neuromuscular quality, voluntary activation, chair rise time performance, and stair climb power (r's = 0.31 to 0.43). These findings provide evidence that slowed MUFRs are mechanistically linked with clinically meaningful leg extensor weakness in older adults.


Asunto(s)
Fragilidad , Músculo Esquelético , Adulto Joven , Humanos , Femenino , Anciano , Masculino , Músculo Esquelético/fisiología , Pierna , Neuronas Motoras/fisiología , Factores de Riesgo , Fuerza Muscular/fisiología
14.
Exp Physiol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226215

RESUMEN

Unaccustomed eccentric exercise (EE) is protective against muscle damage following a subsequent bout of similar exercise. One hypothesis suggests the existence of an alteration in motor unit (MU) behaviour during the second bout, which might contribute to the adaptive response. Accordingly, the present study investigated MU changes during repeated bouts of EE. During two bouts of exercise where maximal lengthening dorsiflexion (10 repetitions × 10 sets) was performed 3 weeks apart, maximal voluntary isometric torque (MVIC) and MU behaviour (quantified using high-density electromyography; HDsEMG) were measured at baseline, during (after set 5), and post-EE. The HDsEMG signals were decomposed into individual MU discharge timings, and a subset were tracked across each time point. MVIC was reduced similarly in both bouts post-EE (Δ27 vs. 23%, P = 0.144), with a comparable amount of total work performed (∼1,300 J; P = 0.905). In total, 1,754 MUs were identified and the decline in MVIC was accompanied by a stepwise increase in discharge rate (∼13%; P < 0.001). A decrease in relative recruitment was found immediately after EE in Bout 1 versus baseline (∼16%; P < 0.01), along with reductions in derecruitment thresholds immediately after EE in Bout 2. The coefficient of variation of inter-spike intervals was lower in Bout 2 (∼15%; P < 0.001). Our data provide new information regarding a change in MU behaviour during the performance of a repeated bout of EE. Importantly, such changes in MU behaviour might contribute, at least in part, to the repeated bout phenomenon.

15.
Exp Brain Res ; 242(6): 1481-1493, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38702470

RESUMEN

The anterior (DA) and posterior parts of the deltoid (DP) show alternating contraction during shoulder flexion and extension movements. It is expected that an inhibitory spinal reflex between the DA and DP exists. In this study, spinal reflexes between the DA and DP were examined in healthy human subjects using post-stimulus time histogram (PSTH) and electromyogram averaging (EMG-A). Electrical conditioning stimulation was delivered to the axillary nerve branch that innervates the DA (DA nerve) and DP (DP nerve) with the intensity below the motor threshold. In the PSTH study, the stimulation to the DA and DP nerves inhibited (decrease in the firing probability) 31 of 54 DA motor units and 31 of 51 DP motor units. The inhibition was not provoked by cutaneous stimulation. The central synaptic delay of the inhibition between the DA and DP nerves was 1.5 ± 0.5 ms and 1.4 ± 0.4 ms (mean ± SD) longer than those of the homonymous facilitation of the DA and DP, respectively. In the EMG-A study, conditioning stimulation to the DA and DP nerves inhibited the rectified and averaged EMG of the DP and DA, respectively. The inhibition diminished with tonic vibration stimulation to the DA and DP and recovered 20-30 min after vibration removal. These findings suggest that oligo(di or tri)-synaptic inhibition mediated by group Ia afferents between the DA and DP exists in humans.


Asunto(s)
Músculo Deltoides , Estimulación Eléctrica , Electromiografía , Inhibición Neural , Humanos , Masculino , Adulto , Músculo Deltoides/fisiología , Músculo Deltoides/inervación , Femenino , Inhibición Neural/fisiología , Adulto Joven , Vibración , Vías Aferentes/fisiología
16.
J Nanobiotechnology ; 22(1): 503, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174972

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by progressive motoneuron degeneration, and effective clinical treatments are lacking. In this study, we evaluated whether intranasal delivery of mesenchymal stem cell-derived small extracellular vesicles (sEVs) is a strategy for ALS therapy using SOD1G93A mice. In vivo tracing showed that intranasally-delivered sEVs entered the central nervous system and were extensively taken up by spinal neurons and some microglia. SOD1G93A mice that intranasally received sEV administration showed significant improvements in motor performances and survival time. After sEV administration, pathological changes, including spinal motoneuron death and synaptic denervation, axon demyelination, neuromuscular junction degeneration and electrophysiological defects, and mitochondrial vacuolization were remarkably alleviated. sEV administration attenuated the elevation of proinflammatory cytokines and glial responses. Proteomics and transcriptomics analysis revealed upregulation of the complement and coagulation cascade and NF-ĸB signaling pathway in SOD1G93A mouse spinal cords, which was significantly inhibited by sEV administration. The changes were further confirmed by detecting C1q and NF-ĸB expression using Western blots. In conclusion, intranasal administration of sEVs effectively delays the progression of ALS by inhibiting neuroinflammation and overactivation of the complement and coagulation cascades and NF-ĸB signaling pathway and is a potential option for ALS therapy.


Asunto(s)
Esclerosis Amiotrófica Lateral , Vesículas Extracelulares , FN-kappa B , Transducción de Señal , Animales , Masculino , Ratones , Administración Intranasal , Esclerosis Amiotrófica Lateral/metabolismo , Coagulación Sanguínea , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/metabolismo , FN-kappa B/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
17.
Ecotoxicol Environ Saf ; 276: 116327, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626605

RESUMEN

Roxithromycin (ROX), a commonly used macrolide antibiotic, is extensively employed in human medicine and livestock industries. Due to its structural stability and resistance to biological degradation, ROX persists as a resilient environmental contaminant, detectable in aquatic ecosystems and food products. However, our understanding of the potential health risks to humans from continuous ROX exposure remains limited. In this study, we used the zebrafish as a vertebrate model to explore the potential developmental toxicity of early ROX exposure, particularly focusing on its effects on locomotor functionality and CaP motoneuron development. Early exposure to ROX induces marked developmental toxicity in zebrafish embryos, significantly reducing hatching rates (n=100), body lengths (n=100), and increased malformation rates (n=100). The zebrafish embryos treated with a corresponding volume of DMSO (0.1%, v/v) served as vehicle controls (veh). Moreover, ROX exposure adversely affected the locomotive capacity of zebrafish embryos, and observations in transgenic zebrafish Tg(hb9:eGFP) revealed axonal loss in motor neurons, evident through reduced or irregular axonal lengths (n=80). Concurrently, abnormal apoptosis in ROX-exposed zebrafish embryos intensified alongside the upregulation of apoptosis-related genes (bax, bcl2, caspase-3a). Single-cell sequencing further disclosed substantial effects of ROX on genes involved in the differentiation of motor neuron progenitor cells (ngn1, olig2), axon development (cd82a, mbpa, plp1b, sema5a), and neuroimmunity (aplnrb, aplnra) in zebrafish larvae (n=30). Furthermore, the CaP motor neuron defects and behavioral deficits induced by ROX can be rescued by administering ngn1 agonist (n=80). In summary, ROX exposure leads to early-life abnormalities in zebrafish motor neurons and locomotor behavior by hindering the differentiation of motor neuron progenitor cells and inducing abnormal apoptosis.


Asunto(s)
Diferenciación Celular , Neuronas Motoras , Pez Cebra , Animales , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Diferenciación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Antibacterianos/toxicidad , Embrión no Mamífero/efectos de los fármacos , Locomoción/efectos de los fármacos , Células Madre/efectos de los fármacos , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos
18.
Int J Mol Sci ; 25(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38791305

RESUMEN

The muscle contraction during voluntary movement is controlled by activities of alpha- and gamma-motoneurons (αMNs and γMNs, respectively). In spite of the recent advances in research on molecular markers that can distinguish between αMNs and γMNs, electrophysiological membrane properties and firing patterns of γMNs have remained unknown, while those of αMNs have been clarified in detail. Because of the larger size of αMNs compared to γMNs, blindly or even visually recorded MNs were mostly αMNs, as demonstrated with molecular markers recently. Subsequently, the research on αMNs has made great progress in classifying their subtypes based on the molecular markers and electrophysiological membrane properties, whereas only a few studies demonstrated the electrophysiological membrane properties of γMNs. In this review article, we provide an overview of the recent advances in research on the classification of αMNs and γMNs based on molecular markers and electrophysiological membrane properties, and discuss their functional implication and significance in motor control.


Asunto(s)
Neuronas Motoras , Animales , Neuronas Motoras/fisiología , Neuronas Motoras/metabolismo , Ratas , Núcleos del Trigémino/fisiología , Núcleos del Trigémino/metabolismo , Fenómenos Electrofisiológicos
19.
J Neurosci ; 42(7): 1224-1234, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34965976

RESUMEN

Neurons regulate the strength of their synapses in response to a perturbation to stabilize neuronal signaling through a form of homeostatic plasticity known as synaptic scaling. The process of scaling has the potential to alter all of a cell's miniature postsynaptic current (mPSC) amplitudes by a single multiplicative factor (uniform scaling), and in doing so could change action potential-dependent or evoked synaptic strength by that factor. However, recent studies suggest that individual synapses scale with different scaling factors (nonuniform). This could complicate the simple multiplicative transform from mPSC scaling to the evoked response. We have previously identified a slow AMPAergic and GABAergic synaptic scaling in chick embryo motoneurons following 2 d in vivo perturbations inhibiting neuronal activity or GABAAR function, and now show a rapid form of scaling following NMDAR blockade in vitro Slow GABAergic scaling appeared to be of a classical uniform pattern. Alternatively, other forms of rapid and slow scaling demonstrated a uniform and nonuniform component in their mPSC amplitude distributions. Slow and rapid AMPAergic scaling was mediated by insertion of GluA2-lacking AMPA receptors. The nonuniform pattern of scaling may contribute to the observed complexity of the changes in evoked responses. Scaling-induced changes in mPSC amplitudes were not associated with changes in probability of release (Pr). Together, our results demonstrate a new rapid form of scaling in embryonic motoneurons, that slow and rapid scaling is not purely uniform, and that upscaling does not translate to an increase in evoked responses in a simple manner.SIGNIFICANCE STATEMENT Different forms of homeostatic plasticity are thought to play a critical role in maintaining neural function. For example, altering the amplitudes of spontaneous currents through a form of homeostatic plasticity known as synaptic scaling could affect evoked transmission; however, this is rarely tested. Here we demonstrate two forms of scaling and show that in many cases synaptic strength scales differently for distinct synapses within an embryonic motoneuron. These results have functional consequences for evoked synaptic strength and suggest that, like Hebbian plasticity, scaling can change relative synaptic strengths within a cell. Furthermore, our results demonstrate how different forms of homeostatic plasticity influence neuronal communication as the nascent spinal network is first established in the embryonic period.


Asunto(s)
Neuronas Motoras/fisiología , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Transmisión Sináptica/fisiología , Animales , Embrión de Pollo , Homeostasis/fisiología , Potenciales Sinápticos
20.
J Neurosci ; 42(12): 2474-2491, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35149515

RESUMEN

In postmitotic neurons, several tumor suppressor genes (TSGs), including p53, Rb, and PTEN, modulate the axon regeneration success after injury. Particularly, PTEN inhibition is a key driver of successful CNS axon regeneration after optic nerve or spinal cord injury. In contrast, in peripheral neurons, TSG influence in neuronal morphology, physiology, and pathology has not been investigated to the same depth. In this study, we conditionally deleted PTEN from mouse facial motoneurons (Chat-Cre/PtenloxP/loxP ) and analyzed neuronal responses in vivo with or without peripheral facial nerve injury in male and female mice. In uninjured motoneurons, PTEN loss induced somatic, axonal, and nerve hypertrophy, synaptic terminal enlargement and reduction in physiological whisker movement. Despite these morphologic and physiological changes, PTEN deletion positively regulated facial nerve regeneration and recovery of whisker movement after nerve injury. Regenerating PTEN-deficient motoneurons upregulated P-CREB and a signaling pathway involving P-Akt, P-PRAS40, P-mTOR, and P-4EBP1. In aged mice (12 months), PTEN deletion induced hair loss and facial hyperplasia of the epidermis. This suggests a time window in younger mice with PTEN loss stimulating axon growth after injury, however, at the risk of hyperplasia formation at later time points in the old animal. Overall, our data highlight a dual TSG function with PTEN loss impairing physiological neuron function but furthermore underscoring the positive effects of PTEN ablation in axon regeneration also for the PNS.SIGNIFICANCE STATEMENT Tumor suppressor genes (TSGs) restrict cell proliferation and growth. TSG inhibition, including p53 and PTEN, stimulates axon regeneration after CNS injury. In contrast, in PNS axon regeneration, TSGs have not been analyzed in great depth. Herein we show enhanced peripheral axon regeneration after PTEN deletion from facial motoneurons. This invokes a signaling cascade with novel PTEN partners, including CREB and PRAS40. In adult mice, PTEN loss induces hyperplasia of the skin epidermis, suggesting detrimental consequences when reaching adulthood in contrast to a beneficial TSG role for regeneration in young adult mice. Thus, our data highlight the double-edged sword nature of interfering with TSG function.


Asunto(s)
Traumatismos del Nervio Facial , Regeneración Nerviosa , Fosfohidrolasa PTEN/metabolismo , Animales , Axones/fisiología , Traumatismos del Nervio Facial/genética , Traumatismos del Nervio Facial/patología , Femenino , Hiperplasia/patología , Hipertrofia/patología , Masculino , Ratones , Neuronas Motoras/metabolismo , Regeneración Nerviosa/genética , Proteína p53 Supresora de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA