Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Ther ; 32(3): 609-618, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38204164

RESUMEN

Mucopolysaccharidosis type I (MPS I) causes systemic accumulation of glycosaminoglycans due to a genetic deficiency of α-L-iduronidase (IDUA), which results in progressive systemic symptoms affecting multiple organs, including the central nervous system (CNS). Because the blood-brain barrier (BBB) prevents enzymes from reaching the brain, enzyme replacement therapy is effective only against the somatic symptoms. Hematopoietic stem cell transplantation can address the CNS symptoms, but the risk of complications limits its applicability. We have developed a novel genetically modified protein consisting of IDUA fused with humanized anti-human transferrin receptor antibody (lepunafusp alfa; JR-171), which has been shown in nonclinical studies to be distributed to major organs, including the brain, bringing about systemic reductions in heparan sulfate (HS) and dermatan sulfate concentrations. Subsequently, a first-in-human study was conducted to evaluate the safety, pharmacokinetics, and exploratory efficacy of JR-171 in 18 patients with MPS I. No notable safety issues were observed. Plasma drug concentration increased dose dependently and reached its maximum approximately 4 h after the end of drug administration. Decreased HS in the cerebrospinal fluid suggested successful delivery of JR-171 across the BBB, while suppressed urine and serum concentrations of the substrates indicated that its somatic efficacy was comparable to that of laronidase.


Asunto(s)
Mucopolisacaridosis I , Humanos , Mucopolisacaridosis I/terapia , Mucopolisacaridosis I/tratamiento farmacológico , Iduronidasa/efectos adversos , Iduronidasa/genética , Iduronidasa/metabolismo , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Receptores de Transferrina/genética , Heparitina Sulfato/metabolismo
2.
J Proteome Res ; 23(2): 718-727, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38164767

RESUMEN

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease caused by the deficiency of the enzyme α-l-iduronidase (IDUA), typically leading to devastating secondary pathophysiological cascades. Due to the irreversible nature of the disease's progression, early diagnosis and interventional treatment has become particularly crucial. Considering the fact that serum and urine are the most commonly used specimens in clinical practice for detection, we conducted an analysis to identify the differential protein profile in the serum and urine of MPS I patients using the tandem mass tag (TMT) technique. A total of 182 differentially expressed proteins (DEPs) were detected in serum, among which 9 showed significant differences as confirmed by parallel reaction monitoring (PRM) analysis. The proteins APOA1 and LGFBP3 were downregulated in serum, while the expression levels of ALDOB, CD163, CRTAC1, DPP4, LAMP2, SHBG, and SPP2 exhibited an increase. In further exploratory studies of urinary proteomics, 32 identified DEPs were consistent with the discovered findings in serum tests, specifically displaying a high diagnostic area under the curve (AUC) value. Thus, our study demonstrates the value of serum-urine integrated proteomic analysis in evaluating the clinical course of MPS I and other potential metabolic disorders, shedding light on the importance of early detection and intervention in these conditions.


Asunto(s)
Mucopolisacaridosis I , Humanos , Mucopolisacaridosis I/diagnóstico , Mucopolisacaridosis I/genética , Proteómica , Proteínas/metabolismo , Proteínas de Unión al Calcio
3.
BMC Genomics ; 25(1): 948, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39385097

RESUMEN

BACKGROUND: Mucopolysaccharidosis type I is a lysosomal storage disease resulting from a deficiency in alpha-L-iduronidase (IDUA), which causes the accumulation of partially degraded dermatan sulfate and heparan sulfate. This retrospective study, spanning eight years, analyzed data from 45 MPSI patients. The report aimed to explore the potential origin of the p.P533R mutation in the Maghrebin population by constructing a single-nucleotide polymorphism haplotype around the IDUA gene, in order to propose a molecular proof of a founder effect of the MPSI/p.P533R allele. PATIENTS AND METHODS: All of the studied patients were from Libya (2), Mauritania (1) Morocco (21) and Tunisia (21) with first cousins being the most frequent union. The diagnosis of MPSI patients often involves the combination of urinary screening, leukocyte IDUA activity determination, and DNA molecular analysis. In our study, to identify the common p.P533R mutation, we performed both DNA sequencing and tetra-primer ARMS PCR assay. Additionally, Haploview was used to determine the specific haplotype that cosegregates with the p.P533R mutation. Controls were genotyped to ensure that all the SNPs were in Hardy-Weinberg equilibrium. RESULTS: In the present report we confirmed the very strong impact of consanguinity on the incidence of MPSI disease. Furthermore, studied families of mixed ancestry shared common and specific haplotype, which was observed in studied populations, suggesting the presence of a founder effect in the North Africa. CONCLUSION: The p.P533R missense mutation was identified in each patient originated from Libya, Mauritania, Morocco and Tunisia. Furthermore, these MPSI patients exhibited the same IDUA haplotype. The occurrence of a shared AAGGGTG haplotype, among North African populations may be attributed to substantial historical gene exchange between these groups, likely stemming from migration, inter-ethnic marriage, or other forms of interaction throughout history.


Asunto(s)
Efecto Fundador , Haplotipos , Iduronidasa , Mucopolisacaridosis I , Polimorfismo de Nucleótido Simple , Humanos , Mucopolisacaridosis I/genética , África del Norte , Iduronidasa/genética , Masculino , Femenino , Mutación , Preescolar , Niño , Alelos , Lactante
4.
Neuroradiology ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235601

RESUMEN

INTRODUCTION: Gibbus deformity has been documented as a common musculoskeletal abnormality in mucopolysaccharidosis type I (Hurler syndrome, MPS IH), and its recognition often leads to the diagnosis of MPS IH. While the incidence has been described, the progression of gibbus deformities is not well known. Here we describe the natural history of gibbus deformity in a single center patient population using serial spinal MRI scans. METHODS: All spinal MRI scans in MPS IH patients were retrospectively reviewed. The presence, spinal location, and angulation of the gibbus deformities were collected. The angles between the superior endplate of the superior normal vertebral body and the inferior endplate of the inferior normal vertebral body were measured. RESULTS: 24 of 47 patients (51%) were found to have cervico-thoracic deformity on their cervical MRI scans, and 19 of those 24 (79%) patients were found to have progressive cervico-thoracic deformity with average change of angle of 17.1 degrees [range 3.9, 62.8] over 5.3 years. 7 of 8 patients who had thoraco-lumbar MRI were found to have thoraco-lumbar deformity, and 4 of those 7 patients (57%) were found to have progressive thoraco-lumbar deformity with the average increase angle of 16.7 degrees [range 3.3, 47.1] over an average of 4.1 years. CONCLUSION: We found out that baseline spinal measurement cannot reliably predict the progression as multiple patients with normal alignment eventually developed severe deformity, whereases patients with severe deformity did not progress to require surgical intervention.

5.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397051

RESUMEN

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder caused by α-L-iduronidase deficiency. The standard treatment, enzyme replacement therapy with laronidase, has limited effectiveness in treating neurological symptoms due to poor blood-brain barrier penetration. An alternative is substrate reduction therapy using molecules, such as genistein, which crosses this barrier. This study evaluated the effectiveness of a combination of laronidase and genistein in a mouse model of MPS I. Over 12 weeks, MPS I and wild-type mice received laronidase, genistein, or both. Glycosaminoglycan (GAG) storage in visceral organs and the brain, its excretion in urine, and the serum level of the heparin cofactor II-thrombin (HCII-T) complex, along with behavior, were assessed. The combination therapy resulted in reduced GAG storage in the heart and liver, whereas genistein alone reduced the brain GAG storage. Laronidase and combination therapy decreased liver and spleen weights and significantly reduced GAG excretion in the urine. However, this therapy negated some laronidase benefits in the HCII-T levels. Importantly, the combination therapy improved the behavior of female mice with MPS I. These findings offer valuable insights for future research to optimize MPS I treatments.


Asunto(s)
Mucopolisacaridosis I , Femenino , Ratones , Animales , Mucopolisacaridosis I/tratamiento farmacológico , Iduronidasa/uso terapéutico , Genisteína/farmacología , Genisteína/uso terapéutico , Encéfalo , Barrera Hematoencefálica , Glicosaminoglicanos/uso terapéutico , Trombina/uso terapéutico , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático/métodos
6.
Prague Med Rep ; 125(3): 239-255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39171551

RESUMEN

The correct diagnosis is fundamental for the appropriate treatment to be employed in a particular pathology. The best treatment is not the one that solves only local problems, fragmenting the patient, and therefore, it is necessary to integrate the entire systemic condition of the individual before initiating any local treatment. This context inevitably requires dentistry to participate in a multidisciplinary approach, where the role of the dentist is expanded in concepts that encompass ethics, human dignity, and professional valorization. This article describes a clinical case of a patient with mucopolysaccharidosis type I, whose treatment of cystic lesions present in the mandible was exclusively performed through marsupialisation. The objective of this study is to demonstrate, within the complexity of this rare syndrome, the difficulties of diagnosis and the need for evaluation of the patient beyond the limits of the oral cavity, as well as to report two cases of large dentigerous cysts, surgically treated conservatively through marsupialisation, without the need for re-approach for enucleation and without recurrences over a 20-year period.


Asunto(s)
Quiste Dentígero , Mucopolisacaridosis I , Humanos , Quiste Dentígero/cirugía , Quiste Dentígero/diagnóstico , Mucopolisacaridosis I/complicaciones , Mucopolisacaridosis I/diagnóstico , Mucopolisacaridosis I/terapia , Masculino , Enfermedades Mandibulares/cirugía , Enfermedades Mandibulares/diagnóstico , Femenino
7.
J Pediatr ; 263: 113644, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37516270

RESUMEN

OBJECTIVE: To report on the first 3 years of mucopolysaccharidosis type I (MPS I) newborn screening (NBS) in the large and diverse state of California. STUDY DESIGN: The California Genetic Disease Screening Program began universal NBS for MPS I on August 29, 2018. The screening uses a 2-tiered approach: an α-L-iduronidase (IDUA) enzyme activity assay followed by DNA sequencing for variants in the IDUA gene. RESULTS: As of August 29, 2021, 1 295 515 California newborns were screened for MPS I. In tier 1 of screening, 329 (0.025%) had an IDUA enzyme measurement below the cutoff and underwent tier-2 IDUA DNA sequencing. After tier 2, 146 (0.011%) newborns were screen positive, all of whom were referred to a metabolic Special Care Center for follow-up. After long-term follow-up, 7 cases were resolved as severe MPS I (Hurler syndrome) and 2 cases as attenuated MPS I for an MPS I birth prevalence of 1/143 946. DNA sequencing identified 107 unique IDUA variants among a total of 524 variants; 65% were known pseudodeficiency alleles, 25% were variants of uncertain significance, and 10% were pathogenic variants. CONCLUSIONS: As a result of a 2-tiered NBS approach, 7 newborns diagnosed with Hurler syndrome had received early treatment for MPS I. Continuation of California's long-term follow-up program will be crucial for further understanding the complex genotype-phenotype relationships of MPS I.


Asunto(s)
Mucopolisacaridosis I , Humanos , Recién Nacido , Mucopolisacaridosis I/diagnóstico , Mucopolisacaridosis I/genética , Tamizaje Neonatal , Iduronidasa/genética , Pruebas Genéticas , Alelos
8.
Am J Med Genet A ; 191(2): 564-569, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36333985

RESUMEN

Mucopolysaccharidosis type I (MPS I) is an autosomal recessive disorder caused by the deficiency of α-L-iduronidase and characterized by a progressive course with multisystem involvement. Clinically, MPS I is divided into two forms: (1) severe (Hurler syndrome), which presents in infancy and is characterized by rapid progressive neurological involvement; (2) attenuated (Hurler/Scheie and Scheie syndromes), which displays a slower progression and absent to mild nervous system involvement. The specific treatment for attenuated MPS I consists of enzyme-replacement therapy with laronidase (human recombinant α-L-iduronidase, Aldurazyme). We present updated data after 18 years of laronidase treatment in two siblings affected by the attenuated form of MPS I who started therapy at 5 months and 5 years of age, respectively. Clinical and laboratory data of the siblings show that long-term enzyme replacement therapy may improve/stabilize many symptoms already present at the time of the diagnosis and reduce the disease progression. This study confirms that early diagnosis and early initiation of enzyme-replacement therapy are essential to modify positively the natural history of the attenuated form of MPS I.


Asunto(s)
Terapia de Reemplazo Enzimático , Mucopolisacaridosis I , Humanos , Estudios de Seguimiento , Iduronidasa/genética , Iduronidasa/uso terapéutico , Mucopolisacaridosis I/diagnóstico , Mucopolisacaridosis I/tratamiento farmacológico , Mucopolisacaridosis I/genética , Proteínas Recombinantes/uso terapéutico , Hermanos , Lactante , Preescolar
9.
Crit Rev Clin Lab Sci ; 59(4): 257-277, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35037566

RESUMEN

Mucopolysaccharidosis type I (MPS I), a lysosomal storage disease caused by a deficiency of α-L-iduronidase, leads to storage of the glycosaminoglycans, dermatan sulfate and heparan sulfate. Available therapies include enzyme replacement and hematopoietic stem cell transplantation. In the last two decades, newborn screening (NBS) has focused on early identification of the disorder, allowing early intervention and avoiding irreversible manifestations. Techniques developed and optimized for MPS I NBS include tandem mass-spectrometry, digital microfluidics, and glycosaminoglycan quantification. Several pilot studies have been conducted and screening programs have been implemented worldwide. NBS for MPS I has been established in Taiwan, the United States, Brazil, Mexico, and several European countries. All these programs measure α-L-iduronidase enzyme activity in dried blood spots, although there are differences in the analytical strategies employed. Screening algorithms based on published studies are discussed. However, some limitations remain: one is the high rate of false-positive results due to frequent pseudodeficiency alleles, which has been partially solved using post-analytical tools and second-tier tests; another involves the management of infants with late-onset forms or variants of uncertain significance. Nonetheless, the risk-benefit ratio is favorable. Furthermore, long-term follow-up of patients detected by neonatal screening will improve our knowledge of the natural history of the disease and inform better management.


Asunto(s)
Mucopolisacaridosis I , Heparitina Sulfato , Humanos , Iduronidasa/análisis , Lactante , Recién Nacido , Mucopolisacaridosis I/diagnóstico , Tamizaje Neonatal/métodos , Espectrometría de Masas en Tándem/métodos
10.
J Gene Med ; 24(4): e3410, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35032067

RESUMEN

BACKGROUND: Mucopolysaccharidosis type I (MPS I) is an inherited disease caused by deficiency of the enzyme alpha-l-iduronidase (IDUA). MPS I affects several tissues, including the brain, leading to cognitive impairment in the severe form of the disease. Currently available treatments do not reach the brain. Therefore, in this study, we performed nasal administration (NA) of liposomal complexes carrying two plasmids encoding for the CRISPR/Cas9 system and for the IDUA gene targeting the ROSA26 locus, aiming at brain delivery in MPS I mice. METHODS: Liposomes were prepared by microfluidization, and the plasmids were complexed to the formulations by adsorption. Physicochemical characterization of the formulations and complexes, in vitro permeation, and mucoadhesion in porcine nasal mucosa (PNM) were assessed. We performed NA repeatedly for 30 days in young MPS I mice, which were euthanized at 6 months of age after performing behavioral tasks, and biochemical and molecular aspects were evaluated. RESULTS: Monodisperse mucoadhesive complexes around 110 nm, which are able to efficiently permeate the PNM. In animals, the treatment led to a modest increase in IDUA activity in the lung, heart, and brain areas, with reduction of glycosaminoglycan (GAG) levels in serum, urine, tissues, and brain cortex. Furthermore, treated mice showed improvement in behavioral tests, suggesting prevention of the cognitive damage. CONCLUSION: Nonviral gene editing performed through nasal route represents a potential therapeutic alternative for the somatic and neurologic symptoms of MPS I and possibly for other neurological disorders.


Asunto(s)
Mucopolisacaridosis I , Animales , Encéfalo/metabolismo , Sistemas CRISPR-Cas/genética , Edición Génica , Iduronidasa/genética , Iduronidasa/metabolismo , Ratones , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/terapia , Plásmidos
11.
Biochem Biophys Res Commun ; 636(Pt 1): 147-154, 2022 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-36332477

RESUMEN

Mucopolysaccharidosis type I Hurler syndrome (MPS IH) is a severe lysosomal storage disorder caused by alpha-l-iduronidase (IDUA) deficiency. Premature truncation mutations (PTC) are the most common (50%-70%) type of IDUA mutations and correlate with MPS IH. Nonsense suppression therapy is a therapeutic approach that aims to induce stop codon readthrough. The different ability of gentamicin to bind mutant mRNA in readthrough is determined by nucleotide sequence (PTC context: UGA > UAG > UAA) and inserted amino acid including the nucleotide position +4 of the PTC, as well as the mRNA secondary structure. We used COS-7 cells to investigate the functional characteristics of p.Q500X and p.R619X, IDUA variants and the effects of gentamicin in inducing stop codon readthrough of seven IDUA variants including p.Q500X, p.R619X, p.Q70X, p.E299X, p.W312X, p.Q380X, and p.W402X. Moreover, we performed prediction of RNA secondary structure using the online tool RNAfold. We found that cells treated with gentamicin showed significantly enhanced full-length IDUA expression and restored IDUA activity, in a dose-dependent manner, only in cells expressing cDNA with W312X, Q380X, W402X, and R619X. Among the readthrough-responsive variants, we observed UGA PTC in W312X, W402X and R619X; and UAG PTC with C at nucleotide +4 in Q380X. Changes of RNA secondary structure were noted only in mutants with readthrough-responsive variants including W312X, Q380X, W402X, and R619X. Additional preclinical studies of selected PTCs with potential readthrough, using drugs with less oto-nephrotoxicity, in patient's skin fibroblasts and animal model are necessary for the premise of personalized medicine.


Asunto(s)
Iduronidasa , Mucopolisacaridosis I , Chlorocebus aethiops , Animales , Iduronidasa/genética , Codón sin Sentido/genética , Gentamicinas/farmacología , Codón de Terminación/genética , Células COS , Mucopolisacaridosis I/tratamiento farmacológico , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/metabolismo , Mutación , ARN Mensajero/metabolismo , Nucleótidos/uso terapéutico
12.
Mol Genet Metab ; 136(4): 296-305, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35787971

RESUMEN

PURPOSE: Current newborn screening programs for Pompe disease (PD) and mucopolysaccharidosis type I (MPS I) suffer from a high false positive rate and long turnaround time for clinical follow up. This study aimed to develop a novel proteomics-based assay for rapid and accurate second-tier screening of PD and MPS I. A fast turnaround assay would enable the identification of severe cases who need immediate clinical follow up and treatment. METHODS: We developed an immunocapture coupled with mass spectrometry-based proteomics (Immuno-SRM) assay to quantify GAA and IDUA proteins in dried blood spots (DBS) and buccal swabs. Sensitivity, linearity, reproducibility, and protein concentration range in healthy control samples were determined. Clinical performance was evaluated in known PD and MPS I patients as well as pseudodeficiency and carrier cases. RESULTS: Using three 3.2 mm punches (~13.1 µL of blood) of DBS, the assay showed reproducible and sensitive quantification of GAA and IDUA. Both proteins can also be quantified in buccal swabs with high reproducibility and sensitivity. Infantile onset Pompe disease (IOPD) and severe MPS I cases are readily identifiable due to the absence of GAA and IDUA, respectively. In addition, late onset Pompe disease (LOPD) and attenuated MPS I patients showed much reduced levels of the target protein. By contrast, pseudodeficiency and carrier cases exhibited significant higher target protein levels compared to true patients. CONCLUSION: Direct quantification of endogenous GAA and IDUA peptides in DBS by Immuno-SRM can be used for second-tier screening to rapidly identify severe PD and MPS I patients with a turnaround time of <1 week. Such patients could benefit from immediate clinical follow up and possibly earlier treatment.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Mucopolisacaridosis I , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Humanos , Recién Nacido , Mucopolisacaridosis I/diagnóstico , Tamizaje Neonatal , Proteómica , Reproducibilidad de los Resultados
13.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35162981

RESUMEN

Flavonoids are investigated as therapeutics for mucopolysaccharidosis, a metabolic disorder with impaired glycosaminoglycan degradation. Here we determined the effects of genistein and kaempferol, used alone or in combination, on cellular response and gene expression in a mucopolysaccharidosis type I model. We assessed the cell cycle, viability, proliferation, subcellular localization of the translocation factor EB (TFEB), number and distribution of lysosomes, and glycosaminoglycan synthesis after exposure to flavonoids. Global gene expression was analysed using DNA microarray and quantitative PCR. The type and degree of flavonoid interaction were determined based on the combination and dose reduction indexes. The combination of both flavonoids synergistically inhibits glycosaminoglycan synthesis, modulates TFEB localization, lysosomal number, and distribution. Genistein and kaempferol in a 1:1 ratio regulate the expression of 52% of glycosaminoglycan metabolism genes. Flavonoids show synergy, additivity, or slight antagonism in all analysed parameters, and the type of interaction depends on the concentration and component ratios. With the simultaneous use of genistein and kaempferol in a ratio of 4:1, even a 10-fold reduction in the concentration of kaempferol is possible. Flavonoid mixtures, used as the treatment of mucopolysaccharidosis, are effective in reducing glycosaminoglycan production and storage and show a slight cytotoxic effect compared to single-flavonoid usage.


Asunto(s)
Mucopolisacaridosis , Mucopolisacaridosis I , Flavonoides/farmacología , Expresión Génica , Genisteína/farmacología , Glicosaminoglicanos/metabolismo , Humanos , Quempferoles , Análisis de Secuencia por Matrices de Oligonucleótidos
14.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36232472

RESUMEN

Mucopolysaccharidosis type I (MPSI) (OMIM #252800) is an autosomal recessive disorder caused by pathogenic variants in the IDUA gene encoding for the lysosomal alpha-L-iduronidase enzyme. The deficiency of this enzyme causes systemic accumulation of glycosaminoglycans (GAGs). Although disease manifestations are typically not apparent at birth, they can present early in life, are progressive, and include a wide spectrum of phenotypic findings. Among these, the storage of GAGs within the lysosomes disrupts cell function and metabolism in the cartilage, thus impairing normal bone development and ossification. Skeletal manifestations of MPSI are often refractory to treatment and severely affect patients' quality of life. This review discusses the pathological and molecular processes leading to impaired endochondral ossification in MPSI patients and the limitations of current therapeutic approaches. Understanding the underlying mechanisms responsible for the skeletal phenotype in MPSI patients is crucial, as it could lead to the development of new therapeutic strategies targeting the skeletal abnormalities of MPSI in the early stages of the disease.


Asunto(s)
Iduronidasa , Mucopolisacaridosis I , Glicosaminoglicanos/metabolismo , Humanos , Iduronidasa/genética , Mucopolisacaridosis I/genética , Fenotipo , Calidad de Vida
15.
Glycobiology ; 31(10): 1319-1329, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34192316

RESUMEN

Mucopolysaccharidosis type I (MPS-I) is a rare lysosomal storage disorder caused by deficiency of the enzyme alpha-L-iduronidase, which removes iduronic acid in both chondroitin/dermatan sulfate (CS/DS) and heparan sulfate (HS) and thereby contributes to the catabolism of glycosaminoglycans (GAGs). To ameliorate this genetic defect, the patients are currently treated by enzyme replacement and bone marrow transplantation, which have a number of drawbacks. This study was designed to develop an alternative treatment by inhibition of iduronic acid formation. By screening the Prestwick drug library, we identified ebselen as a potent inhibitor of enzymes that produce iduronic acid in CS/DS and HS. Ebselen efficiently inhibited iduronic acid formation during CS/DS synthesis in cultured fibroblasts. Treatment of MPS-I fibroblasts with ebselen not only reduced accumulation of CS/DS but also promoted GAG degradation. In early Xenopus embryos, this drug phenocopied the effect of downregulation of DS-epimerase 1, the main enzyme responsible for iduronic production in CS/DS, suggesting that ebselen inhibits iduronic acid production in vivo. However, ebselen failed to ameliorate the CS/DS and GAG burden in MPS-I mice. Nevertheless, the results propose a potential of iduronic acid substrate reduction therapy for MPS-I patients.


Asunto(s)
Fibroblastos/efectos de los fármacos , Glicosaminoglicanos/antagonistas & inhibidores , Ácido Idurónico/antagonistas & inhibidores , Isoindoles/farmacología , Mucopolisacaridosis I/tratamiento farmacológico , Compuestos de Organoselenio/farmacología , Relación Dosis-Respuesta a Droga , Fibroblastos/metabolismo , Fibroblastos/patología , Glicosaminoglicanos/metabolismo , Células HEK293 , Humanos , Ácido Idurónico/metabolismo , Isoindoles/química , Estructura Molecular , Mucopolisacaridosis I/metabolismo , Mucopolisacaridosis I/patología , Compuestos de Organoselenio/química , Relación Estructura-Actividad
16.
Mol Genet Metab ; 132(2): 94-99, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32713717

RESUMEN

Respiratory outcomes in Mucopolysaccharidosis Type I (MPS I), have mainly focused on upper airway obstruction, with the evolution of the restrictive lung disease being poorly documented. We report the long-term pulmonary function outcomes and examine the potential factors affecting these in 2 cohorts of MPS I patients, those who have undergone Haematopoietic Stem Cell Transplantation (HSCT) and those treated with Enzyme Replacement Therapy (ERT). The results were stratified using the American Thoracic Society (ATS) guidelines. 66 patients, capable of adequately performing testing, were identified by a retrospective case note review, 46 transplanted (45 Hurler, 1 Non-Hurler) and 20 having ERT (17 Non-Hurler and 3 Hurler diagnosed too late for HSCT). 5 patients died; 4 in the ERT group including the 3 Hurler patients. Overall 14% of patients required respiratory support (non-invasive ventilation (NIV) or supplemental oxygen)) at the end of follow up. Median length of follow-up was 12.2 (range = 4.9-32) years post HSCT and 14.34 (range = 3.89-20.4) years on ERT. All patients had restrictive lung disease. Cobb angle and male sex were significantly associated with more severe outcomes in the HSCT cohort, with 49% having severe to very severe disease. In the 17 Non-Hurler ERT treated patients there was no variable predictive of severity of disease with 59% having severe to very severe disease. During the course of follow up 67% of the HSCT cohort had no change or improved pulmonary function as did 52% of the ERT patients. However, direct comparison between therapeutic modalities was not possible. This initial evidence would suggest that a degree of restrictive lung disease is present in all treated paediatrically diagnosed MPS I and is still a significant cause of morbidity, though further stratification incorporating diffusing capacity for carbon monoxide (DLCO) is needed.


Asunto(s)
Obstrucción de las Vías Aéreas/terapia , Enfermedades Pulmonares Obstructivas/terapia , Mucopolisacaridosis I/terapia , Adolescente , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Obstrucción de las Vías Aéreas/complicaciones , Obstrucción de las Vías Aéreas/epidemiología , Obstrucción de las Vías Aéreas/patología , Monóxido de Carbono/metabolismo , Niño , Preescolar , Terapia de Reemplazo Enzimático , Femenino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Lactante , Enfermedades Pulmonares Obstructivas/complicaciones , Enfermedades Pulmonares Obstructivas/epidemiología , Enfermedades Pulmonares Obstructivas/patología , Masculino , Persona de Mediana Edad , Mucopolisacaridosis I/complicaciones , Mucopolisacaridosis I/epidemiología , Mucopolisacaridosis I/patología , Adulto Joven
17.
Am J Med Genet A ; 185(1): 134-140, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098355

RESUMEN

Mucopolysaccharidosis type I (MPS I)/Hurler syndrome newborn screening was added to the recommended uniform screening panel (RUSP) in 2016. As states have added screening for MPS I, programs have reported increased rates of false positives. Reasons for false positive screens include carrier status, true false positive, late-onset/attenuated forms, and in about half of cases, pseudodeficiency alleles. These alleles have DNA variants that can cause falsely decreased enzyme activity on biochemical enzyme studies and have increased frequency in individuals of African American and African descent. We describe the District of Columbia (DC) experience with MPS I screening from December 2017 to February 2019. In the context of a review of the literature on newborn screening and family experiences and this DC-based experience, we offer potential solutions to address preliminary concerns regarding this screening. The impact of overrepresentation of screen positives in a minority group and unintentional creation of health disparities and community wariness regarding medical genetics evaluations must be considered to improve the newborn screen programs nationally and internationally.


Asunto(s)
Mucopolisacaridosis I/diagnóstico , Mucopolisacaridosis I/epidemiología , Tamizaje Neonatal , Negro o Afroamericano/genética , Alelos , Pruebas con Sangre Seca , Etnicidad/genética , Femenino , Humanos , Recién Nacido , Masculino , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/patología
18.
J Inherit Metab Dis ; 44(5): 1088-1098, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34189746

RESUMEN

Mucopolysaccharidoses type I (MPS I) is an inherited metabolic disease characterized by a malfunction of the α-l-iduronidase (IDUA) enzyme leading to the storage of glycosaminoglycans in the lysosomes. This disease has longtime been studied as a therapeutic target for those studying gene therapy and many studies have been done using various vectors to deliver the IDUA gene for corrective treatment. Many vectors have difficulties with efficacy and insertional mutagenesis concerns including adeno-associated viral (AAV) vectors. Studies of AAV vectors treating MPS I have seemed promising, but recent deaths in gene therapy clinical trials for other inherited diseases using AAV vectors have left questions about their safety. Additionally, the recent modifications to adenoviral vectors leading them to target the vascular endothelium minimizing the risk of hepatotoxicity could lead to them being a viable option for MPS I gene therapy when coupled with gene editing technologies like CRISPR/Cas9.


Asunto(s)
Edición Génica/métodos , Terapia Genética/métodos , Iduronidasa/genética , Mucopolisacaridosis I/terapia , Animales , Sistemas CRISPR-Cas , Dependovirus/genética , Modelos Animales de Enfermedad , Expresión Génica , Vectores Genéticos/genética , Glicosaminoglicanos/orina , Humanos , Iduronidasa/análisis , Iduronidasa/metabolismo , Mucopolisacaridosis I/patología
19.
J Inherit Metab Dis ; 44(6): 1289-1310, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34480380

RESUMEN

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder characterized by α-L-iduronidase deficiency. Patients present with a broad spectrum of disease severity ranging from the most severe phenotype (Hurler) with devastating neurocognitive decline, bone disease and early death to intermediate (Hurler-Scheie) and more attenuated (Scheie) phenotypes, with a normal life expectancy. The most severely affected patients are preferably treated with hematopoietic stem cell transplantation, which halts the neurocognitive decline. Patients with more attenuated phenotypes are treated with enzyme replacement therapy. There are several challenges to be met in the treatment of MPS I patients. First, to optimize outcome, early recognition of the disease and clinical phenotype is needed to guide decisions on therapeutic strategies. Second, there is thus far no effective treatment available for MPS I bone disease. The pathophysiological mechanisms behind bone disease are largely unknown, limiting the development of effective therapeutic strategies. This article is a state of the art that comprehensively discusses three of the most urgent open issues in MPS I: early diagnosis of MPS I patients, pathophysiology of MPS I bone disease, and emerging therapeutic strategies for MPS I bone disease.


Asunto(s)
Mucopolisacaridosis I/diagnóstico , Mucopolisacaridosis I/terapia , Enfermedades Óseas/enzimología , Manejo de la Enfermedad , Diagnóstico Precoz , Terapia de Reemplazo Enzimático , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Humanos , Recién Nacido , Péptidos y Proteínas de Señalización Intercelular , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/fisiopatología , Tamizaje Neonatal , Fenotipo , Índice de Severidad de la Enfermedad
20.
J Inherit Metab Dis ; 44(3): 740-750, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33145772

RESUMEN

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder caused by mutations in the IDUA gene, that codifies the alpha-L-iduronidase enzyme, which deficiency leads to storage of glycosaminoglycans, with multiple clinical manifestations. One of the leading causes of death in MPS I patients are cardiac complications such as cardiac valve thickening, conduction abnormalities, myocardial dysfunction, and cardiac hypertrophy. The mechanism leading to cardiac dysfunction in MPS I is not entirely understood. In a previous study, we have demonstrated that losartan and propranolol improved the cardiac function in MPS I mice. Thus, we aimed to investigate whether the pathways influenced by these drugs may modulate the cardiac remodeling process in MPS I mice. According to our previous observation, losartan and propranolol restore the heart function, without altering valve thickness. MPS I mice presented reduced activation of AKT and ERK1/2, increased activity of cathepsins, but no alteration in metalloproteinase activity was observed. Animals treated with losartan showed a reduction in cathepsin activity and restored ERK1/2 activation. While both losartan and propranolol improved heart function, no mechanistic evidence was found for propranolol so far. Our results suggest that losartan or propranolol could be used to ameliorate the cardiac disease in MPS I and could be considered as adjuvant treatment candidates for therapy optimization.


Asunto(s)
Cardiopatías/patología , Losartán/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mucopolisacaridosis I/tratamiento farmacológico , Remodelación Ventricular/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Cardiopatías/tratamiento farmacológico , Cardiopatías/genética , Iduronidasa/genética , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/patología , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA