Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Electrophoresis ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456383

RESUMEN

When hospitalized, infants, particularly preterm, are often subjected to multiple painful needle procedures to collect sufficient blood for metabolic screening or diagnostic purposes using standard clinical tests. For example, at least 100 µL of whole blood is required to perform one creatinine plasma measurement with enzymatic colorimetric assays. As capillary electrophoresis-mass spectrometry (CE-MS) utilizing a sheathless porous tip interface only requires limited amounts of sample for in-depth metabolic profiling studies, the aim of this work was to assess the utility of this method for the determination of creatinine in low amounts of plasma using residual blood samples from adults and infants. By using a starting amount of 5 µL of plasma and an injection volume of only 6.7 nL, a detection limit (S/N = 3) of 30 nM could be obtained for creatinine, and intra- and interday precisions (for peak area ratios) were below 3.2%. To shorten the electrophoretic separation time, a multi-segment injection (MSI) strategy was employed to analyze up to seven samples in one electrophoretic run. The findings obtained by CE-MS for creatinine in pretreated plasma were compared with the values acquired by an enzymatic colorimetric assay typically used in clinical laboratories for this purpose. The comparison revealed that CE-MS could be used in a reliable way for the determination of creatinine in residual plasma samples from infants and adults. Nevertheless, to underscore the clinical efficacy of this method, a subsequent investigation employing an expanded pool of plasma samples is imperative. This will not only enhance the method's diagnostic utility but also contribute to minimizing both the amount and frequency of blood collection required for diagnostic purposes.

2.
Metabolites ; 10(1)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861366

RESUMEN

Cardiovascular diseases (CVDs) represent a major concern in today's society, with more than 17.5 million deaths reported annually worldwide. Recently, five metabolites related to the gut metabolism of phospholipids were identified as promising predictive biomarker candidates for CVD. Validation of those biomarker candidates is crucial for applications to the clinic, showing the need for high-throughput analysis of large numbers of samples. These five compounds, trimethylamine N-oxide (TMAO), choline, betaine, l-carnitine, and deoxy-l-carnitine (4-trimethylammoniobutanoic acid), are highly polar compounds and show poor retention on conventional reversed phase chromatography, which can lead to strong matrix effects when using mass spectrometry detection, especially when high-throughput analysis approaches are used with limited separation of analytes from interferences. In order to reduce the potential matrix effects, we propose a novel fast parallel electromembrane extraction (Pa-EME) method for the analysis of these metabolites in plasma samples. The evaluation of Pa-EME parameters was performed using multi segment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS). Recoveries up to 100% were achieved, with variability as low as 2%. Overall, this study highlights the necessity of protein precipitation prior to EME for the extraction of highly polar compounds. The developed Pa-EME method was evaluated in terms of concentration range and response function, as well as matrix effects using fast-LC-MS/MS. Finally, the developed workflow was compared to conventional sample pre-treatment, i.e., protein precipitation using methanol, and fast-LC-MS/MS. Data show very strong correlations between both workflows, highlighting the great potential of Pa-EME for high-throughput biological applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA