Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 377(2138): 20180267, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30967062

RESUMEN

Many myodocopid ostracods are unusual in that they have well-developed compound eyes yet must view their environment through a shell. The cypridinid Macrocypridina castanea is relatively large among ostracods (about 5-10 mm) and is a pelagic predator. This species possess highly pigmented shells with a transparent region lying just above the eye. Here we examine the ultrastructure and transparency of this window using electron microscopy, serial-block face scanning electron microscopy and X-ray diffraction analysis and optical modelling. An internal, laminar stack was identified within the window region of the shell that formed a more regular half-wave reflector than in non-window regions, and where the distance between molecules in the chitin-protein fibrils decreases as compared to the non-window area. This results in excellent transmission properties-at around 99% transmission-for wavelengths between 350 and 630 nm due to its half-wave reflector organization. Therefore, blue light, common in the mid and deep sea, where this species inhabits, would be near-optimally transmitted as a consequence of the sub-micrometre structuring of the shell, thus optimizing the ostracod's vision. Further, pore canals were identified in the shell that may secrete substances to prevent microbial growth, and subsequently maintain transparency, on the shell surface. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology'.


Asunto(s)
Crustáceos/anatomía & histología , Ojo , Fenómenos Ópticos , Exoesqueleto/anatomía & histología , Animales , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA