Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408970

RESUMEN

Stimulus-sensitive, nanomedicine-based photosensitizer delivery has an opportunity to target tumor tissues since oxidative stress and the expression of molecular proteins, such as CD44 receptors, are elevated in the tumor microenvironment. The aim of this study is to investigate the CD44 receptor- and reactive oxygen species (ROS)-sensitive delivery of nanophotosensitizers of chlorin e6 (Ce6)-conjugated hyaluronic acid (HA) against HeLa human cervical cancer cells. For the synthesis of nanophotosensitizers, thioketal diamine was conjugated with the carboxyl group in HA and then the amine end group of HA-thioketal amine conjugates was conjugated again with Ce6 (Abbreviated as HAthCe6). The HAthCe6 nanophotosensitizers were of small diameter, with sizes less than 200. Their morphology was round-shaped in the observations using a transmission electron microscope (TEM). The HAthCe6 nanophotosensitizers responded to oxidative stress-induced changes in size distribution when H2O2 was added to the nanophotosensitizer aqueous solution, i.e., their monomodal distribution pattern at 0 mM H2O2 was changed to dual- and/or multi-modal distribution patterns at higher concentrations of H2O2. Furthermore, the oxidative stress induced by the H2O2 addition contributed to the disintegration of HAthCe6 nanophotosensitizers in morphology, and this phenomenon accelerated the release rate of Ce6 from nanophotosensitizers. In a cell culture study using HeLa cells, nanophotosensitizers increased Ce6 uptake ratio, ROS generation and PDT efficacy compared to free Ce6. Since HA specifically bonds with the CD44 receptor of cancer cells, the pretreatment of free HA against HeLa cells decreased the Ce6 uptake ratio, ROS generation and PDT efficacy of HAthCe6 nanophotosensitizers. These results indicated that intracellular delivery of HAthCe6 nanophotosensitizers can be controlled by the CD44 receptor-mediated pathway. Furthermore, these phenomena induced CD44 receptor-controllable ROS generation and PDT efficacy by HAthCe6 nanophotosensitizers. During in vivo tumor imaging using HeLa cells, nanophotosensitizer administration showed that the fluorescence intensity of tumor tissues was relatively higher than that of other organs. When free HA was pretreated, the fluorescence intensity of tumor tissue was relatively lower than those of other organs, indicating that HAthCe6 nanophotosensitizers have CD44 receptor sensitivity and that they can be delivered by receptor-specific manner. We suggest that HAthCe6 nanophotosensitizers are promising candidates for PDT in cervical cancer.


Asunto(s)
Clorofilidas , Nanopartículas , Fotoquimioterapia , Porfirinas , Neoplasias del Cuello Uterino , Aminas , Línea Celular Tumoral , Femenino , Células HeLa , Humanos , Receptores de Hialuranos , Ácido Hialurónico/química , Peróxido de Hidrógeno/química , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Porfirinas/química , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo
2.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36430279

RESUMEN

The aim of this study is to synthesize phenethyl-conjugated chitosan oligosaccharide (COS) (abbreviated as ChitoPEITC) conjugates and then fabricate chlorin E6 (Ce6)-incorporated nanophotosensitizers for photodynamic therapy (PDT) of HCT-116 colon carcinoma cells. PEITC was conjugated with the amine group of COS. Ce6-incorporated nanophotosensitizers using ChitoPEITC (ChitoPEITC nanophotosensitizers) were fabricated by dialysis method. 1H nuclear magnetic resonance (NMR) spectra showed that specific peaks of COS and PEITC were observed at ChitoPEITC conjugates. Transmission electron microscope (TEM) confirmed that ChitoPEITC nanophotosensitizers have spherical shapes with small hydrodynamic diameters less than 200 nm. The higher PEITC contents in the ChitoPEITC copolymer resulted in a slower release rate of Ce6 from nanophotosensitizers. Furthermore, the higher Ce6 contents resulted in a slower release rate of Ce6. In cell culture study, ChitoPEITC nanophotosensitizers showed low toxicity against normal CCD986Sk human skin fibroblast cells and HCT-116 human colon carcinoma cells in the absence of light irradiation. ChitoPEITC nanophotosensitizers showed a significantly higher Ce6 uptake ratio than that of free Ce6. Under light irradiation, cellular reactive oxygen species (ROS) production of nanophotosensitizers was significantly higher than that of free Ce6. Especially, PEITC and/or ChitoPEITC themselves contributed to the production of cellular ROS regardless of light irradiation. ChitoPEITC nanophotosensitizers showed significantly higher PDT efficacy against HCT-116 cells than that of free Ce6. These results indicate that ChitoPEITC nanophotosensitizers have superior potential in Ce6 uptake, ROS production and PDT efficacy. In the HCT-116 cell-bearing mice tumor-xenograft model, ChitoPEITC nanophotosensitizers efficiently inhibited growth of tumor volume rather than free Ce6. In the animal imaging study, ChitoPEITC nanophotosensitizers were concentrated in the tumor tissue, i.e., fluorescence intensity in the tumor tissue was stronger than that of other tissues. We suggest that ChitoPEITC nanophotosensitizers are a promising candidate for the treatment of human colon cancer cells.


Asunto(s)
Carcinoma , Quitosano , Neoplasias del Colon , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno , Neoplasias del Colon/tratamiento farmacológico , Oligosacáridos
3.
Int J Mol Sci ; 23(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35328538

RESUMEN

Folic acid-conjugated nanophotosensitizers composed of folic acid (FA), poly(ethylene glycol) (PEG) and chlorin e6 (Ce6) tetramer were synthesized using diselenide linkages for reactive oxygen species (ROS)- and folate receptor-specific delivery of photosensitizers. Ce6 was conjugated with 3-[3-(2-carboxyethoxy)-2,2-bis(2-carboxyethoxymethyl)propoxy]propanoic acid (tetra acid, or TA) to make Ce6 tetramer via selenocystamine linkages (TA-sese-Ce6 conjugates). In the carboxylic acid end group of the TA-sese-Ce6 conjugates, FA-PEG was attached again using selenocystamine linkages to make FA-PEG/TA-sese-Ce6 conjugates (abbreviated as FAPEGtaCe6 conjugates). Nanophotosensitizers were fabricated by a dialysis procedure. In the morphological observations, they showed spherical shapes with small diameters of less than 200 nm. Stability of the aqueous FAPEGtaCe6 nanophotosensitizer solution was maintained (i.e., their particle sizes were not significantly changed until 7 days later). When H2O2 was added to the nanophotosensitizer solution, the particle size distribution was changed from a monomodal pattern to a multimodal pattern. In addition, the fluorescence intensity and Ce6 release rate from the nanophotosensitizers were also increased by the addition of H2O2. These results indicated that the nanophotosensitizers had ROS-sensitive properties. In an in vitro cell culture study, an FAPEGtaCe6 nanophotosensitizer treatment against cancer cells increased the Ce6 uptake ratio, ROS generation and light-irradiated cytotoxicity (phototoxicity) compared with Ce6 alone against various cancer cells. When the folic acid was pretreated to block the folate receptors of the Y79 cells and KB cells (folate receptor-overexpressing cells), the intracellular Ce6 uptake, ROS generation and thereby phototoxicity were decreased, while the MCF-7 cells did not significantly respond to blocking of the folate receptors. These results indicated that they could be delivered by a folate receptor-mediated pathway. Furthermore, an in vivo pulmonary metastasis model using Y79 cells showed folate receptor-specific delivery of FAPEGtaCe6 nanophotosensitizers. When folic acid was pre-administered, the fluorescence intensity of the lungs was significantly decreased, indicating that the FAPEGtaCe6 nanophotosensitizers had folate receptor specificity in vitro and in vivo. We suggest that FAPEGtaCe6 nanophotosensitizers are promising candidates for a targeted photodynamic therapy (PDT) approach against cancer cells.


Asunto(s)
Clorofilidas , Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Línea Celular Tumoral , Ácido Fólico/uso terapéutico , Humanos , Peróxido de Hidrógeno/uso terapéutico , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Polietilenglicoles/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo
4.
Coord Chem Rev ; 379: 65-81, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30739946

RESUMEN

Phototherapy involves the irradiation of tissues with light, and is commonly implemented in the forms of photodynamic therapy (PDT) and photothermal therapy (PTT). Photosensitizers (PSs) are often needed to improve the efficacy and selectivity of phototherapy via enhanced singlet oxygen generation in PDT and photothermal responses in PTT. In both cases, efficient and selective delivery of PSs to the diseased tissues is of paramount importance. Nanoscale metal-organic frameworks (nMOFs), a new class of hybrid materials built from metal connecting points and bridging ligands, have been examined as nanocarriers for drug delivery due to their compositional and structural tunability, highly porous structures, and good biocompatibility. This review summarizes recent advances on using nMOFs as nanoparticle PSs for applications in PDT and PTT.

5.
Small ; 15(32): e1804927, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30785670

RESUMEN

As traditional phototherapy agents, boron dipyrromethene (BODIPY) photosensitizers have attracted increasing attention due to their high molar extinction coefficients, high phototherapy efficacy, and excellent photostability. After being formed into nanostructures, BODIPY-containing nano-photosensitizers show enhanced water solubility and biocompatibility as well as efficient tumor accumulation compared to BODIPY molecules. Hence, BODIPY nano-photosensitizers demonstrate a promising potential for fighting cancer. This review contains three sections, classifying photodynamic therapy (PDT), photothermal therapy (PTT), and the combination of PDT and PTT based on BODIPY nano-photosensitizers. It summarizes various BODIPY nano-photosensitizers, which are prepared via different approaches including molecular precipitation, supramolecular interactions, and polymer encapsulation. In each section, the design strategies and working principles of these BODIPY nano-photosensitizers are highlighted. In addition, the detailed in vitro and in vivo applications of these recently developed nano-photosensitizers are discussed together with future challenges in this field, highlighting the potential of these promising nanoagents for new tumor phototherapies.


Asunto(s)
Antineoplásicos/farmacología , Boro/farmacología , Neoplasias/terapia , Fármacos Fotosensibilizantes/farmacología , Fototerapia , Porfobilinógeno/análogos & derivados , Animales , Antineoplásicos/química , Humanos , Fármacos Fotosensibilizantes/química , Porfobilinógeno/química , Porfobilinógeno/farmacología
6.
Front Bioeng Biotechnol ; 10: 972837, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091444

RESUMEN

Phototherapy and multimodal synergistic phototherapy (including synergistic photothermal and photodynamic therapy as well as combined phototherapy and other therapies) are promising to achieve accurate diagnosis and efficient treatment for tumor, providing a novel opportunity to overcome cancer. Notably, various nanomaterials have made significant contributions to phototherapy through both improving therapeutic efficiency and reducing side effects. The most key factor affecting the performance of phototherapeutic nanomaterials is their microstructure which in principle determines their physicochemical properties and the resulting phototherapeutic efficiency. Vacancy defects ubiquitously existing in phototherapeutic nanomaterials have a great influence on their microstructure, and constructing and regulating vacancy defect in phototherapeutic nanomaterials is an essential and effective strategy for modulating their microstructure and improving their phototherapeutic efficacy. Thus, this inspires growing research interest in vacancy engineering strategies and vacancy-engineered nanomaterials for phototherapy. In this review, we summarize the understanding, construction, and application of vacancy defects in phototherapeutic nanomaterials. Starting from the perspective of defect chemistry and engineering, we also review the types, structural features, and properties of vacancy defects in phototherapeutic nanomaterials. Finally, we focus on the representative vacancy defective nanomaterials recently developed through vacancy engineering for phototherapy, and discuss the significant influence and role of vacancy defects on phototherapy and multimodal synergistic phototherapy. Therefore, we sincerely hope that this review can provide a profound understanding and inspiration for the design of advanced phototherapeutic nanomaterials, and significantly promote the development of the efficient therapies against tumor.

7.
Materials (Basel) ; 15(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36295132

RESUMEN

Chlorin E6 (Ce6)-incorporated nanophotosensitizers were fabricated for application in photodynamic therapy (PDT) of oral cancer cells. For this purpose, chitosan oligosaccharide (COS) was conjugated with hydrophobic and reactive oxygen species (ROS)-sensitive moieties, such as phenyl boronic acid pinacol ester (PBAP) via a thioketal linker (COSthPBAP). ThdCOOH was conjugated with PBAP to produce ThdCOOH-PBAP conjugates and then attached to amine groups of COS to produce a COSthPBAP copolymer. Ce6-incorporated nanophotosensitizers using the COSthPBAP copolymer were fabricated through the nanoprecipitation and dialysis methods. The Ce6-incorporated COSthPBAP nanophotosensitizers had a small diameter of less than 200 nm with a mono-modal distribution pattern. However, it became a multimodal and/or irregular distribution pattern when H2O2 was added. In a morphological observation using TEM, the nanophotosensitizers were disintegrated by the addition of H2O2, indicating that the COSthPBAP nanophotosensitizers had ROS sensitivity. In addition, the Ce6 release rate from the COSthPBAP nanophotosensitizers accelerated in the presence of H2O2. The SO generation was also higher in the nanophotosensitizers than in the free Ce6. Furthermore, the COSthPBAP nanophotosensitizers showed a higher intracellular Ce6 uptake ratio and ROS generation in all types of oral cancer cells. They efficiently inhibited the viability of oral cancer cells under light irradiation, but they did not significantly affect the viability of either normal cells or cancer cells in the absence of light irradiation. The COSthPBAP nanophotosensitizers showed a tumor-specific delivery capacity and fluorescence imaging of KB tumors in an in vivo animal tumor imaging study. We suggest that COSthPBAP nanophotosensitizers are promising candidates for the imaging and treatment of oral cancers.

8.
Int J Biol Macromol ; 218: 384-393, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35902009

RESUMEN

The M2-like phenotype of tumor-associated macrophages (TAMs) present in tumors promotes tumor growth and metastasis. Therefore, targeting M2-like TAMs is a potential strategy for cancer therapy. Herein, we fabricated a dextran sulfate-based nano-photosensitizer (dextran sulfate-conjugated chlorin e6, DS-Ce6) to specifically target M2-like TAMs for enhanced photodynamic therapy (PDT). DS-Ce6 was preferentially taken up by interleukin-4-derived M2 macrophages, which overexpressed scavenger receptor-A and selectively targeted macrophages in co-cultured 4T1 tumors/macrophages. The nano-photosensitizer also effectively induced the apoptosis of tumor cells in both monolayer co-culture and three-dimensional co-culture spheroids of tumors/macrophages under laser irradiation. Moreover, the nano-photosensitizer specifically targeted F4/80 and CD206 double-positive M2-like TAMs within tumor tissues. Therefore, the specifically targeted delivery of DS-Ce6 to M2-like TAMs prominently induced tumor apoptosis, leading to excellent phototherapeutic effects in 4T1 tumor-bearing mice after PDT, suggesting the potential of DS-Ce6 for specific targeting of M2-like TAMs and enhanced PDT.


Asunto(s)
Neoplasias , Fotoquimioterapia , Porfirinas , Animales , Línea Celular Tumoral , Sulfato de Dextran , Ratones , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/farmacología , Macrófagos Asociados a Tumores
9.
Adv Sci (Weinh) ; 8(21): e2102587, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34561971

RESUMEN

Inorganic nanomaterials with intrinsic singlet oxygen (1 O2 ) generation capacity, are emerged yet dynamically developing materials as nano-photosensitizers (NPSs) for photodynamic therapy (PDT). Compared to previously reported nanomaterials that have been used as either carriers to load organic PSs or energy donors to excite the attached organic PSs through a Foster resonance energy transfer process, these NPSs possess intrinsic 1 O2 generation capacity with extremely high 1 O2 quantum yield (e.g., 1.56, 1.3, 1.26, and 1.09) than any classical organic PS reported to date, and thus are facilitating to make a revolution in PDT. In this review, the recent advances in the development of various inorganic nanomaterials as NPSs, including metal-based (gold, silver, and tungsten), metal oxide-based (titanium dioxide, tungsten oxide, and bismuth oxyhalide), metal sulfide-based (copper and molybdenum sulfide), carbon-based (graphene, fullerene, and graphitic carbon nitride), phosphorus-based, and others (hybrids and MXenes-based NPSs) are summarized, with an emphasis on the design principle and 1 O2 generation mechanism, and the photodynamic therapeutic performance against different types of cancers. Finally, the current challenges and an outlook of future research are also discussed. This review may provide a comprehensive account capable of explaining recent progress as well as future research of this emerging paradigm.


Asunto(s)
Nanoestructuras/química , Fotoquimioterapia/métodos , Oxígeno Singlete/metabolismo , Animales , Grafito/química , Humanos , Metales/química , Nanoestructuras/uso terapéutico , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Teoría Cuántica , Oxígeno Singlete/química
10.
Materials (Basel) ; 13(12)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580439

RESUMEN

In this study, FA-PEG3500-ss-Ce6tri copolymer was synthesized to deliver photosensitizers via redox-sensitive and folate receptor-specific manner. Folic acid (FA) was attached to amine end of poly (ethylene glycol) (PEG3500) (FA-PEG3500 conjugates) and cystamine-conjugated chlorin e6 (Ce6) (Ce6-cystamine conjugates). FA-PEG3500 was further conjugated with Ce6-cystamine to produce FA-PEG3500-ss-Ce6 conjugates. To the remaining amine end group of Ce6-cystamine conjugates, Ce6 was attached to produce FA-PEG3500-ss-Ce6tri. Nanophotosensitizers of FA-PEG3500-ss-Ce6tri copolymer were smaller than 200 nm. Their shapes were disintegrated by treatment with GSH and then Ce6 released by GSH-dependent manner. Compared to Ce6 alone, FA-PEG3500-ss-Ce6tri copolymer nanophotosensitizers recorded higher Ce6 uptake ratio, reactive oxygen species (ROS) production and cellular cytotoxicity against KB and YD-38 cells. The in vitro and in vivo study approved that delivery of nanophotosensitizers is achieved by folate receptor-sensitive manner. These results indicated that FA-PEG3500-ss-Ce6tri copolymer nanophotosensitizers are superior candidate for treatment of oral cancer.

11.
J Drug Target ; 22(3): 220-231, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24286254

RESUMEN

BACKGROUND: Photodynamic therapy (PDT) is a minimally invasive treatment modality for selective destruction of tumours. Critical anatomical structures, like blood vessels in close proximity to the tumour, could be harmed during PDT. PURPOSE: This study aims to discriminate the photoinduced response of normal and cancerous tissues to photodamage induced by liposomal formulations of meta-tetra(hydroxyphenyl)chlorin (mTHPC). METHODS: Normal vascular and cancerous tissues were represented, respectively, by free and xenografted in vivo model of chick chorioallantoïc membrane (CAM). Eggs received an intravenous administration of plain (Foslip®) or stabilised formulations (Fospeg®). Drug release and liposome destruction were, respectively, determined by photoinduced quenching and nanoparticle tracking analysis. PDT was performed at different drug-light intervals (DLI) with further assessment of photothrombic activity, tumoritropism and photoinduced necrosis. RESULTS: Compared to Foslip®, Fospeg® demonstrated significantly higher stability, slower drug release, better tumoricidal effect and lower damage to the normal vasculature at already 1 h DLI. DISCUSSION: This work suggests that nanoparticle-based PDT selectivity could be optimised by analyzing the photoinduced damage of healthy and tumour tissues. CONCLUSION: In fine, Fospeg® appeared to be the ideal candidate in clinical context due to its potential to destroy tumours and reduce vascular damage to normal tissues at short DLI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA