Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.898
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(5): 923-939.e14, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36868214

RESUMEN

We conduct high coverage (>30×) whole-genome sequencing of 180 individuals from 12 indigenous African populations. We identify millions of unreported variants, many predicted to be functionally important. We observe that the ancestors of southern African San and central African rainforest hunter-gatherers (RHG) diverged from other populations >200 kya and maintained a large effective population size. We observe evidence for ancient population structure in Africa and for multiple introgression events from "ghost" populations with highly diverged genetic lineages. Although currently geographically isolated, we observe evidence for gene flow between eastern and southern Khoesan-speaking hunter-gatherer populations lasting until ∼12 kya. We identify signatures of local adaptation for traits related to skin color, immune response, height, and metabolic processes. We identify a positively selected variant in the lightly pigmented San that influences pigmentation in vitro by regulating the enhancer activity and gene expression of PDPK1.


Asunto(s)
Aclimatación , Pigmentación de la Piel , Humanos , Secuenciación Completa del Genoma , Densidad de Población , África , Proteínas Quinasas Dependientes de 3-Fosfoinosítido
2.
Cell ; 185(17): 3138-3152.e20, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35926506

RESUMEN

Oakleaf butterflies in the genus Kallima have a polymorphic wing phenotype, enabling these insects to masquerade as dead leaves. This iconic example of protective resemblance provides an interesting evolutionary paradigm that can be employed to study biodiversity. We integrated multi-omic data analyses and functional validation to infer the evolutionary history of Kallima species and investigate the genetic basis of their variable leaf wing patterns. We find that Kallima butterflies diversified in the eastern Himalayas and dispersed to East and Southeast Asia. Moreover, we find that leaf wing polymorphism is controlled by the wing patterning gene cortex, which has been maintained in Kallima by long-term balancing selection. Our results provide macroevolutionary and microevolutionary insights into a model species originating from a mountain ecosystem.


Asunto(s)
Mariposas Diurnas , Animales , Biodiversidad , Evolución Biológica , Mariposas Diurnas/genética , Ecosistema , Fenotipo , Alas de Animales
3.
Cell ; 181(2): 362-381.e28, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32220312

RESUMEN

During human evolution, the knee adapted to the biomechanical demands of bipedalism by altering chondrocyte developmental programs. This adaptive process was likely not without deleterious consequences to health. Today, osteoarthritis occurs in 250 million people, with risk variants enriched in non-coding sequences near chondrocyte genes, loci that likely became optimized during knee evolution. We explore this relationship by epigenetically profiling joint chondrocytes, revealing ancient selection and recent constraint and drift on knee regulatory elements, which also overlap osteoarthritis variants that contribute to disease heritability by tending to modify constrained functional sequence. We propose a model whereby genetic violations to regulatory constraint, tolerated during knee development, lead to adult pathology. In support, we discover a causal enhancer variant (rs6060369) present in billions of people at a risk locus (GDF5-UQCC1), showing how it impacts mouse knee-shape and osteoarthritis. Overall, our methods link an evolutionarily novel aspect of human anatomy to its pathogenesis.


Asunto(s)
Condrocitos/fisiología , Articulación de la Rodilla/fisiología , Osteoartritis/genética , Animales , Evolución Biológica , Condrocitos/metabolismo , Evolución Molecular , Predisposición Genética a la Enfermedad/genética , Factor 5 de Diferenciación de Crecimiento/genética , Factor 5 de Diferenciación de Crecimiento/metabolismo , Células HEK293 , Humanos , Rodilla/fisiología , Ratones , Células 3T3 NIH , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Riesgo
4.
Cell ; 179(3): 736-749.e15, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626772

RESUMEN

Underrepresentation of Asian genomes has hindered population and medical genetics research on Asians, leading to population disparities in precision medicine. By whole-genome sequencing of 4,810 Singapore Chinese, Malays, and Indians, we found 98.3 million SNPs and small insertions or deletions, over half of which are novel. Population structure analysis demonstrated great representation of Asian genetic diversity by three ethnicities in Singapore and revealed a Malay-related novel ancestry component. Furthermore, demographic inference suggested that Malays split from Chinese ∼24,800 years ago and experienced significant admixture with East Asians ∼1,700 years ago, coinciding with the Austronesian expansion. Additionally, we identified 20 candidate loci for natural selection, 14 of which harbored robust associations with complex traits and diseases. Finally, we show that our data can substantially improve genotype imputation in diverse Asian and Oceanian populations. These results highlight the value of our data as a resource to empower human genetics discovery across broad geographic regions.


Asunto(s)
Genética de Población , Genoma Humano/genética , Selección Genética , Secuenciación Completa del Genoma , Pueblo Asiatico/genética , Femenino , Genotipo , Humanos , Malasia/epidemiología , Masculino , Polimorfismo de Nucleótido Simple/genética , Singapur/epidemiología
5.
Cell ; 173(3): 569-580.e15, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677510

RESUMEN

Understanding the physiology and genetics of human hypoxia tolerance has important medical implications, but this phenomenon has thus far only been investigated in high-altitude human populations. Another system, yet to be explored, is humans who engage in breath-hold diving. The indigenous Bajau people ("Sea Nomads") of Southeast Asia live a subsistence lifestyle based on breath-hold diving and are renowned for their extraordinary breath-holding abilities. However, it is unknown whether this has a genetic basis. Using a comparative genomic study, we show that natural selection on genetic variants in the PDE10A gene have increased spleen size in the Bajau, providing them with a larger reservoir of oxygenated red blood cells. We also find evidence of strong selection specific to the Bajau on BDKRB2, a gene affecting the human diving reflex. Thus, the Bajau, and possibly other diving populations, provide a new opportunity to study human adaptation to hypoxia tolerance. VIDEO ABSTRACT.


Asunto(s)
Adaptación Fisiológica , Contencion de la Respiración , Buceo , Tamaño de los Órganos , Hidrolasas Diéster Fosfóricas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Pueblo Asiatico , Eritrocitos/citología , Etnicidad , Femenino , Variación Genética , Genómica , Humanos , Hipoxia , Indonesia/etnología , Pulmón , Masculino , Persona de Mediana Edad , Oxígeno/fisiología , Fenotipo , Polimorfismo de Nucleótido Simple , Selección Genética , Bazo/fisiología , Población Blanca , Adulto Joven
6.
Cell ; 174(6): 1424-1435.e15, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30078708

RESUMEN

FOXP2, initially identified for its role in human speech, contains two nonsynonymous substitutions derived in the human lineage. Evidence for a recent selective sweep in Homo sapiens, however, is at odds with the presence of these substitutions in archaic hominins. Here, we comprehensively reanalyze FOXP2 in hundreds of globally distributed genomes to test for recent selection. We do not find evidence of recent positive or balancing selection at FOXP2. Instead, the original signal appears to have been due to sample composition. Our tests do identify an intronic region that is enriched for highly conserved sites that are polymorphic among humans, compatible with a loss of function in humans. This region is lowly expressed in relevant tissue types that were tested via RNA-seq in human prefrontal cortex and RT-PCR in immortalized human brain cells. Our results represent a substantial revision to the adaptive history of FOXP2, a gene regarded as vital to human evolution.


Asunto(s)
Factores de Transcripción Forkhead/genética , Encéfalo/citología , Encéfalo/metabolismo , Línea Celular , Bases de Datos Genéticas , Exones , Femenino , Genoma Humano , Haplotipos , Humanos , Intrones , Masculino , Cadenas de Markov , Polimorfismo de Nucleótido Simple , Corteza Prefrontal/metabolismo
7.
Cell ; 171(1): 59-71.e21, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28938123

RESUMEN

We assembled genome-wide data from 16 prehistoric Africans. We show that the anciently divergent lineage that comprises the primary ancestry of the southern African San had a wider distribution in the past, contributing approximately two-thirds of the ancestry of Malawi hunter-gatherers ∼8,100-2,500 years ago and approximately one-third of the ancestry of Tanzanian hunter-gatherers ∼1,400 years ago. We document how the spread of farmers from western Africa involved complete replacement of local hunter-gatherers in some regions, and we track the spread of herders by showing that the population of a ∼3,100-year-old pastoralist from Tanzania contributed ancestry to people from northeastern to southern Africa, including a ∼1,200-year-old southern African pastoralist. The deepest diversifications of African lineages were complex, involving either repeated gene flow among geographically disparate groups or a lineage more deeply diverging than that of the San contributing more to some western African populations than to others. We finally leverage ancient genomes to document episodes of natural selection in southern African populations. PAPERCLIP.


Asunto(s)
Población Negra/genética , Genoma Humano , África , Huesos/química , ADN Antiguo/análisis , Femenino , Fósiles , Genética Médica , Genética de Población , Estudio de Asociación del Genoma Completo , Humanos , Estilo de Vida , Masculino
8.
Cell ; 167(3): 643-656.e17, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768888

RESUMEN

Humans differ in the outcome that follows exposure to life-threatening pathogens, yet the extent of population differences in immune responses and their genetic and evolutionary determinants remain undefined. Here, we characterized, using RNA sequencing, the transcriptional response of primary monocytes from Africans and Europeans to bacterial and viral stimuli-ligands activating Toll-like receptor pathways (TLR1/2, TLR4, and TLR7/8) and influenza virus-and mapped expression quantitative trait loci (eQTLs). We identify numerous cis-eQTLs that contribute to the marked differences in immune responses detected within and between populations and a strong trans-eQTL hotspot at TLR1 that decreases expression of pro-inflammatory genes in Europeans only. We find that immune-responsive regulatory variants are enriched in population-specific signals of natural selection and show that admixture with Neandertals introduced regulatory variants into European genomes, affecting preferentially responses to viral challenges. Together, our study uncovers evolutionarily important determinants of differences in host immune responsiveness between human populations.


Asunto(s)
Adaptación Fisiológica/genética , Adaptación Fisiológica/inmunología , Inmunidad Adaptativa , Hombre de Neandertal/genética , Hombre de Neandertal/inmunología , Inmunidad Adaptativa/genética , Alelos , Animales , Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología , Secuencia de Bases , Evolución Biológica , Población Negra/genética , Regulación de la Expresión Génica , Variación Genética , Humanos , Sistema Inmunológico , Sitios de Carácter Cuantitativo , ARN/genética , Selección Genética , Análisis de Secuencia de ARN , Receptores Toll-Like/genética , Transcripción Genética , Virosis/genética , Virosis/inmunología , Población Blanca/genética
9.
Cell ; 167(3): 657-669.e21, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768889

RESUMEN

Individuals from different populations vary considerably in their susceptibility to immune-related diseases. To understand how genetic variation and natural selection contribute to these differences, we tested for the effects of African versus European ancestry on the transcriptional response of primary macrophages to live bacterial pathogens. A total of 9.3% of macrophage-expressed genes show ancestry-associated differences in the gene regulatory response to infection, and African ancestry specifically predicts a stronger inflammatory response and reduced intracellular bacterial growth. A large proportion of these differences are under genetic control: for 804 genes, more than 75% of ancestry effects on the immune response can be explained by a single cis- or trans-acting expression quantitative trait locus (eQTL). Finally, we show that genetic effects on the immune response are strongly enriched for recent, population-specific signatures of adaptation. Together, our results demonstrate how historical selective events continue to shape human phenotypic diversity today, including for traits that are key to controlling infection.

10.
Annu Rev Genet ; 56: 41-62, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35697043

RESUMEN

Since the identification of sickle cell trait as a heritable form of resistance to malaria, candidate gene studies, linkage analysis paired with sequencing, and genome-wide association (GWA) studies have revealed many examples of genetic resistance and susceptibility to infectious diseases. GWA studies enabled the identification of many common variants associated with small shifts in susceptibility to infectious diseases. This is exemplified by multiple loci associated with leprosy, malaria, HIV, tuberculosis, and coronavirus disease 2019 (COVID-19), which illuminate genetic architecture and implicate pathways underlying pathophysiology. Despite these successes, most of the heritability of infectious diseases remains to be explained. As the field advances, current limitations may be overcome by applying methodological innovations such as cellular GWA studies and phenome-wide association (PheWA) studies as well as by improving methodological rigor with more precise case definitions, deeper phenotyping, increased cohort diversity, and functional validation of candidate loci in the laboratory or human challenge studies.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , Estudio de Asociación del Genoma Completo , COVID-19/genética , Enfermedades Transmisibles/genética , Genética Humana
11.
Immunol Rev ; 323(1): 227-240, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38577999

RESUMEN

Humans exhibit considerable variability in their immune responses to the same immune challenges. Such variation is widespread and affects individual and population-level susceptibility to infectious diseases and immune disorders. Although the factors influencing immune response diversity are partially understood, what mechanisms lead to the wide range of immune traits in healthy individuals remain largely unexplained. Here, we discuss the role that natural selection has played in driving phenotypic differences in immune responses across populations and present-day susceptibility to immune-related disorders. Further, we touch on future directions in the field of immunogenomics, highlighting the value of expanding this work to human populations globally, the utility of modeling the immune response as a dynamic process, and the importance of considering the potential polygenic nature of natural selection. Identifying loci acted upon by evolution may further pinpoint variants critically involved in disease etiology, and designing studies to capture these effects will enrich our understanding of the genetic contributions to immunity and immune dysregulation.


Asunto(s)
Selección Genética , Humanos , Animales , Predisposición Genética a la Enfermedad , Inmunidad/genética , Variación Genética , Genética de Población , Fenotipo , Susceptibilidad a Enfermedades/inmunología
12.
EMBO J ; 42(17): e112740, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37427458

RESUMEN

Lifespan varies significantly among mammals, with more than 100-fold difference between the shortest and longest living species. This natural difference may uncover the evolutionary forces and molecular features that define longevity. To understand the relationship between gene expression variation and longevity, we conducted a comparative transcriptomics analysis of liver, kidney, and brain tissues of 103 mammalian species. We found that few genes exhibit common expression patterns with longevity in the three organs analyzed. However, pathways related to translation fidelity, such as nonsense-mediated decay and eukaryotic translation elongation, correlated with longevity across mammals. Analyses of selection pressure found that selection intensity related to the direction of longevity-correlated genes is inconsistent across organs. Furthermore, expression of methionine restriction-related genes correlated with longevity and was under strong selection in long-lived mammals, suggesting that a common strategy is utilized by natural selection and artificial intervention to control lifespan. Our results indicate that lifespan regulation via gene expression is driven through polygenic and indirect natural selection.


Asunto(s)
Longevidad , Mamíferos , Animales , Mamíferos/clasificación , Mamíferos/genética , Mamíferos/crecimiento & desarrollo , Mamíferos/metabolismo , Longevidad/genética , Perfilación de la Expresión Génica , Expresión Génica , Hígado/metabolismo , Encéfalo/metabolismo , Riñón/metabolismo , Humanos , Masculino , Femenino
13.
Proc Natl Acad Sci U S A ; 121(17): e2318380121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38635629

RESUMEN

The gene content in a metagenomic pool defines the function potential of a microbial community. Natural selection, operating on the level of genomes or genes, shapes the evolution of community functions by enriching some genes while depriving the others. Despite the importance of microbiomes in the environment and health, a general metric to evaluate the community-wide fitness of microbial genes remains lacking. In this work, we adapt the classic neutral model of species and use it to predict how the abundances of different genes will be shaped by selection, regardless of at which level the selection acts. We establish a simple metric that quantitatively infers the average survival capability of each gene in a microbiome. We then experimentally validate the predictions using synthetic communities of barcoded Escherichia coli strains undergoing neutral assembly and competition. We further show that this approach can be applied to publicly available metagenomic datasets to gain insights into the environment-function interplay of natural microbiomes.


Asunto(s)
Microbiota , Microbiota/genética , Metagenoma/genética , Selección Genética , Genes Microbianos
14.
Proc Natl Acad Sci U S A ; 121(37): e2410324121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39231210

RESUMEN

A central goal in evolutionary biology is to understand how different evolutionary processes cause trait change in wild populations. However, quantifying evolutionary change in the wild requires linking trait change to shifts in allele frequencies at causal loci. Nevertheless, datasets that allow for such tests are extremely rare and existing theoretical approaches poorly account for the evolutionary dynamics that likely occur in ecological settings. Using a decade-long integrative phenome-to-genome time-series dataset on wild threespine stickleback (Gasterosteus aculeatus), we identified how different modes of selection (directional, episodic, and balancing) drive microevolutionary change in correlated traits over time. Most strikingly, we show that feeding traits changed by as much 25% across 10 generations which was driven by changes in the genetic architecture (i.e., in both genomic breeding values and allele frequencies at genetic loci for feeding traits). Importantly, allele frequencies at genetic loci related to feeding traits changed at a rate greater than expected under drift, suggesting that the observed change was a result of directional selection. Allele frequency dynamics of loci related to swimming traits appeared to be under fluctuating selection evident in periodic population crashes in this system. Our results show that microevolutionary change in a wild population is characterized by different modes of selection acting simultaneously on different traits, which likely has important consequences for the evolution of correlated traits. Our study provides one of the most thorough descriptions to date of how microevolutionary processes result in trait change in a natural population.


Asunto(s)
Evolución Biológica , Frecuencia de los Genes , Selección Genética , Smegmamorpha , Animales , Smegmamorpha/genética , Smegmamorpha/fisiología , Fenotipo
15.
Trends Genet ; 39(2): 109-124, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36604282

RESUMEN

In addition to the canonical right-handed double helix, other DNA structures, termed 'non-B DNA', can form in the genomes across the tree of life. Non-B DNA regulates multiple cellular processes, including replication and transcription, yet its presence is associated with elevated mutagenicity and genome instability. These discordant cellular roles fuel the enormous potential of non-B DNA to drive genomic and phenotypic evolution. Here we discuss recent studies establishing non-B DNA structures as novel functional elements subject to natural selection, affecting evolution of transposable elements (TEs), and specifying centromeres. By highlighting the contributions of non-B DNA to repeated evolution and adaptation to changing environments, we conclude that evolutionary analyses should include a perspective of not only DNA sequence, but also its structure.


Asunto(s)
Elementos Transponibles de ADN , Genómica , Humanos , Elementos Transponibles de ADN/genética , Secuencia de Bases , Inestabilidad Genómica/genética , Evolución Molecular
16.
Proc Natl Acad Sci U S A ; 120(1): e2207544120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574663

RESUMEN

A growing body of work has addressed human adaptations to diverse environments using genomic data, but few studies have connected putatively selected alleles to phenotypes, much less among underrepresented populations such as Amerindians. Studies of natural selection and genotype-phenotype relationships in underrepresented populations hold potential to uncover previously undescribed loci underlying evolutionarily and biomedically relevant traits. Here, we worked with the Tsimane and the Moseten, two Amerindian populations inhabiting the Bolivian lowlands. We focused most intensively on the Tsimane, because long-term anthropological work with this group has shown that they have a high burden of both macro and microparasites, as well as minimal cardiometabolic disease or dementia. We therefore generated genome-wide genotype data for Tsimane individuals to study natural selection, and paired this with blood mRNA-seq as well as cardiometabolic and immune biomarker data generated from a larger sample that included both populations. In the Tsimane, we identified 21 regions that are candidates for selective sweeps, as well as 5 immune traits that show evidence for polygenic selection (e.g., C-reactive protein levels and the response to coronaviruses). Genes overlapping candidate regions were strongly enriched for known involvement in immune-related traits, such as abundance of lymphocytes and eosinophils. Importantly, we were also able to draw on extensive phenotype information for the Tsimane and Moseten and link five regions (containing PSD4, MUC21 and MUC22, TOX2, ANXA6, and ABCA1) with biomarkers of immune and metabolic function. Together, our work highlights the utility of pairing evolutionary analyses with anthropological and biomedical data to gain insight into the genetic basis of health-related traits.


Asunto(s)
Genética de Población , Estado de Salud , Humanos , Biomarcadores , Bolivia , Genómica , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Selección Genética , Genoma Humano
17.
Proc Natl Acad Sci U S A ; 120(42): e2222071120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812702

RESUMEN

Species' phenotypic characteristics often remain unchanged over long stretches of geological time. Stabilizing selection-in which fitness is highest for intermediate phenotypes and lowest for the extremes-has been widely invoked as responsible for this pattern. At the community level, such stabilizing selection acting individually on co-occurring species is expected to produce a rugged fitness landscape on which different species occupy distinct fitness peaks. However, even with an explosion of microevolutionary field studies over the past four decades, evidence for persistent stabilizing selection driving long-term stasis is lacking. Nonetheless, biologists continue to invoke stabilizing selection as a major factor explaining macroevolutionary patterns. Here, by directly measuring natural selection in the wild, we identified a complex community-wide fitness surface in which four Anolis lizard species each occupy a distinct fitness peak close to their mean phenotype. The presence of local fitness optima within species, and fitness valleys between species, presents a barrier to adaptive evolutionary change and acts to maintain species differences through time. However, instead of continuously operating stabilizing selection, we found that species were maintained on these peaks by the combination of many independent periods among which selection fluctuated in form, strength, direction, or existence and in which stabilizing selection rarely occurred. Our results suggest that lack of substantial phenotypic evolutionary change through time may be the result of selection, but not persistent stabilizing selection as classically envisioned.


Asunto(s)
Evolución Biológica , Selección Genética , Fenotipo , Ambiente , Biota
18.
Semin Cell Dev Biol ; 145: 60-67, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35474149

RESUMEN

Gene regulatory networks (GRNs) are the core engine of organismal development. If we would like to understand the origin and diversification of phenotypes, it is necessary to consider the structure of GRNs in order to reconstruct the links between genetic mutations and phenotypic change. Much of the progress in evolutionary developmental biology, however, has occurred without a nuanced consideration of the evolution of functional relationships between genes, especially in the context of their broader network interactions. Characterizing and comparing GRNs across traits and species in a more detailed way will allow us to determine how network position influences what genes drive adaptive evolution. In this perspective paper, we consider the architecture of developmental GRNs and how positive selection strength may vary across a GRN. We then propose several testable models for these patterns of selection and experimental approaches to test these models.


Asunto(s)
Redes Reguladoras de Genes , Redes Reguladoras de Genes/genética , Mutación
19.
Plant J ; 119(1): 56-64, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38581375

RESUMEN

Food security is threatened by climate change, with heat and drought being the main stresses affecting crop physiology and ecosystem services, such as plant-pollinator interactions. We hypothesize that tracking and ranking pollinators' preferences for flowers under environmental pressure could be used as a marker of plant quality for agricultural breeding to increase crop stress tolerance. Despite increasing relevance of flowers as the most stress sensitive organs, phenotyping platforms aim at identifying traits of resilience by assessing the plant physiological status through remote sensing-assisted vegetative indexes, but find strong bottlenecks in quantifying flower traits and in accurate genotype-to-phenotype prediction. However, as the transport of photoassimilates from leaves (sources) to flowers (sinks) is reduced in low-resilient plants, flowers are better indicators than leaves of plant well-being. Indeed, the chemical composition and amount of pollen and nectar that flowers produce, which ultimately serve as food resources for pollinators, change in response to environmental cues. Therefore, pollinators' preferences could be used as a measure of functional source-to-sink relationships for breeding decisions. To achieve this challenging goal, we propose to develop a pollinator-assisted phenotyping and selection platform for automated quantification of Genotype × Environment × Pollinator interactions through an insect geo-positioning system. Pollinator-assisted selection can be validated by metabolic, transcriptomic, and ionomic traits, and mapping of candidate genes, linking floral and leaf traits, pollinator preferences, plant resilience, and crop productivity. This radical new approach can change the current paradigm of plant phenotyping and find new paths for crop redomestication and breeding assisted by ecological decisions.


Asunto(s)
Productos Agrícolas , Flores , Fenotipo , Fitomejoramiento , Polinización , Estrés Fisiológico , Polinización/fisiología , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Fitomejoramiento/métodos , Flores/fisiología , Flores/genética , Animales , Genotipo
20.
Trends Genet ; 38(11): 1112-1122, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35641344

RESUMEN

One gene does not equal one RNA or protein. The genomic revolution has revealed numerous different RNA and protein molecules that can be produced from one gene, such as circular RNAs generated by back-splicing, proteins with residues mismatching the genomic encoding because of RNA editing, and proteins extended in the C terminus via stop codon readthrough in translation. Are these diverse products results of exquisite gene regulations or imprecise biological processes? While there are cases where the gene product diversity appears beneficial, genome-scale patterns suggest that much of this diversity arises from nonadaptive, molecular errors. This finding has important implications for studying the functions of diverse gene products and for understanding the fundamental properties and evolution of cellular life.


Asunto(s)
Regulación de la Expresión Génica , ARN Circular , Codón de Terminación/genética , Genoma , Biosíntesis de Proteínas/genética , Edición de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA