Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.269
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 57(6): 1413-1427.e9, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38823390

RESUMEN

Influenza B viruses (IBVs) comprise a substantial portion of the circulating seasonal human influenza viruses. Here, we describe the isolation of human monoclonal antibodies (mAbs) that recognized the IBV neuraminidase (NA) glycoprotein from an individual following seasonal vaccination. Competition-binding experiments suggested the antibodies recognized two major antigenic sites. One group, which included mAb FluB-393, broadly inhibited IBV NA sialidase activity, protected prophylactically in vivo, and bound to the lateral corner of NA. The second group contained an active site mAb, FluB-400, that broadly inhibited IBV NA sialidase activity and virus replication in vitro in primary human respiratory epithelial cell cultures and protected against IBV in vivo when administered systemically or intranasally. Overall, the findings described here shape our mechanistic understanding of the human immune response to the IBV NA glycoprotein through the demonstration of two mAb delivery routes for protection against IBV and the identification of potential IBV therapeutic candidates.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Virus de la Influenza B , Gripe Humana , Neuraminidasa , Neuraminidasa/inmunología , Humanos , Virus de la Influenza B/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Vacunas contra la Influenza/inmunología , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Proteínas Virales/inmunología , Replicación Viral/efectos de los fármacos
2.
Immunity ; 57(3): 574-586.e7, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38430907

RESUMEN

Continuously evolving influenza viruses cause seasonal epidemics and pose global pandemic threats. Although viral neuraminidase (NA) is an effective drug and vaccine target, our understanding of the NA antigenic landscape still remains incomplete. Here, we describe NA-specific human antibodies that target the underside of the NA globular head domain, inhibit viral propagation of a wide range of human H3N2, swine-origin variant H3N2, and H2N2 viruses, and confer both pre- and post-exposure protection against lethal H3N2 infection in mice. Cryo-EM structures of two such antibodies in complex with NA reveal non-overlapping epitopes covering the underside of the NA head. These sites are highly conserved among N2 NAs yet inaccessible unless the NA head tilts or dissociates. Our findings help guide the development of effective countermeasures against ever-changing influenza viruses by identifying hidden conserved sites of vulnerability on the NA underside.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Animales , Ratones , Porcinos , Proteínas Virales/genética , Neuraminidasa , Subtipo H3N2 del Virus de la Influenza A , Anticuerpos Monoclonales , Anticuerpos Antivirales
3.
Cell ; 173(2): 417-429.e10, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625056

RESUMEN

Antibodies to the hemagglutinin (HA) and neuraminidase (NA) glycoproteins are the major mediators of protection against influenza virus infection. Here, we report that current influenza vaccines poorly display key NA epitopes and rarely induce NA-reactive B cells. Conversely, influenza virus infection induces NA-reactive B cells at a frequency that approaches (H1N1) or exceeds (H3N2) that of HA-reactive B cells. NA-reactive antibodies display broad binding activity spanning the entire history of influenza A virus circulation in humans, including the original pandemic strains of both H1N1 and H3N2 subtypes. The antibodies robustly inhibit the enzymatic activity of NA, including oseltamivir-resistant variants, and provide robust prophylactic protection, including against avian H5N1 viruses, in vivo. When used therapeutically, NA-reactive antibodies protected mice from lethal influenza virus challenge even 48 hr post infection. These findings strongly suggest that influenza vaccines should be optimized to improve targeting of NA for durable and broad protection against divergent influenza strains.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Gripe Humana/patología , Neuraminidasa/inmunología , Proteínas Virales/inmunología , Animales , Aves , Reacciones Cruzadas , Epítopos/inmunología , Femenino , Células HEK293 , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H3N2 del Virus de la Influenza A/enzimología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/inmunología , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/prevención & control
4.
Immunity ; 56(8): 1927-1938.e8, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37506693

RESUMEN

Neuraminidase (NA) is one of the two influenza virus surface glycoproteins, and antibodies that target it are an independent correlate of protection. However, our current understanding of NA antigenicity is incomplete. Here, we describe human monoclonal antibodies (mAbs) from a patient with a pandemic H1N1 virus infection in 2009. Two mAbs exhibited broad reactivity and inhibited NA enzyme activity of seasonal H1N1 viruses circulating before and after 2009, as well as viruses with avian or swine N1s. The mAbs provided robust protection from lethal challenge with human H1N1 and avian H5N1 viruses in mice, and both target an epitope on the lateral face of NA. In summary, we identified two broadly protective NA antibodies that share a novel epitope, inhibited NA activity, and provide protection against virus challenge in mice. Our work reaffirms that NA should be included as a target in future broadly protective or universal influenza virus vaccines.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Neuraminidasa , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antivirales/aislamiento & purificación , Anticuerpos Antivirales/metabolismo , Neuraminidasa/química , Neuraminidasa/metabolismo , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Microscopía por Crioelectrón , Epítopos , Ratones Endogámicos BALB C , Animales , Ratones , Gripe Humana/tratamiento farmacológico , Modelos Animales de Enfermedad
5.
Immunity ; 56(11): 2621-2634.e6, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37967533

RESUMEN

There is growing appreciation for neuraminidase (NA) as an influenza vaccine target; however, its antigenicity remains poorly characterized. In this study, we isolated three broadly reactive N2 antibodies from the plasmablasts of a single vaccinee, including one that cross-reacts with NAs from seasonal H3N2 strains spanning five decades. Although these three antibodies have diverse germline usages, they recognize similar epitopes that are distant from the NA active site and instead involve the highly conserved underside of NA head domain. We also showed that all three antibodies confer prophylactic and therapeutic protection in vivo, due to both Fc effector functions and NA inhibition through steric hindrance. Additionally, the contribution of Fc effector functions to protection in vivo inversely correlates with viral growth inhibition activity in vitro. Overall, our findings advance the understanding of NA antibody response and provide important insights into the development of a broadly protective influenza vaccine.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Gripe Humana/prevención & control , Neuraminidasa , Infecciones por Orthomyxoviridae/prevención & control , Subtipo H3N2 del Virus de la Influenza A , Epítopos , Anticuerpos Antivirales , Anticuerpos Monoclonales , Vacunación , Glicoproteínas Hemaglutininas del Virus de la Influenza
6.
Immunity ; 53(4): 852-863.e7, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32976769

RESUMEN

Influenza B virus (IBV) infections can cause severe disease in children and the elderly. Commonly used antivirals have lower clinical effectiveness against IBV compared to influenza A viruses (IAV). Neuraminidase (NA), the second major surface protein on the influenza virus, is emerging as a target of broadly protective antibodies that recognize the NA active site of IAVs. However, similarly broadly protective antibodies against IBV NA have not been identified. Here, we isolated and characterized human monoclonal antibodies (mAbs) that target IBV NA from an IBV-infected patient. Two mAbs displayed broad and potent capacity to inhibit IBV NA enzymatic activity, neutralize the virus in vitro, and protect against lethal IBV infection in mice in prophylactic and therapeutic settings. These mAbs inserted long CDR-H3 loops into the NA active site, engaging residues highly conserved among IBV NAs. These mAbs provide a blueprint for the development of improved vaccines and therapeutics against IBVs.


Asunto(s)
Anticuerpos Antivirales/inmunología , Dominio Catalítico/inmunología , Virus de la Influenza B/inmunología , Neuraminidasa/inmunología , Proteínas Virales/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Línea Celular , Perros , Femenino , Células HEK293 , Humanos , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Leucocitos Mononucleares/inmunología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Infecciones por Orthomyxoviridae/inmunología
7.
Trends Immunol ; 45(1): 11-19, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103991

RESUMEN

Current seasonal influenza vaccines, which mainly target hemagglutinin (HA), require annual updates due to the continuous antigenic drift of the influenza virus. Developing an influenza vaccine with increased breadth of protection will have significant public health benefits. The recent discovery of broadly protective antibodies to neuraminidase (NA) has provided important insights into developing a universal influenza vaccine, either by improving seasonal influenza vaccines or designing novel immunogens. However, further in-depth molecular characterizations of NA antibody responses are warranted to fully leverage broadly protective NA antibodies for influenza vaccine designs. Overall, we posit that focusing on NA for influenza vaccine development is synergistic with existing efforts targeting HA, and may represent a cost-effective approach to generating a broadly protective influenza vaccine.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Infecciones por Orthomyxoviridae/prevención & control , Neuraminidasa , Anticuerpos Antivirales , Gripe Humana/prevención & control
8.
Mol Cell Proteomics ; 23(9): 100827, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39128790

RESUMEN

This work presents a detailed determination of site-specific N-glycan distributions of the recombinant influenza glycoproteins hemagglutinin (HA) and neuraminidase. Variation in glycosylation among recombinant glycoproteins is not predictable and can depend on details of the biomanufacturing process as well as details of protein structure. In this study, recombinant influenza proteins were analyzed from eight strains of four different suppliers. These include five HA and three neuraminidase proteins, each produced from a HEK293 cell line. Digestion was conducted using a series of complex multienzymatic methods designed to isolate glycopeptides containing single N-glycosylated sites. Site-specific glycosylation profiles of intact glycopeptides were produced using a recently developed method and comparisons were made using spectral similarity scores. Variation in glycan abundances and distribution was most pronounced between different strains of virus (similarity score = 383 out of 999), whereas digestion replicates and injection replicates showed relatively little variation (similarity score = 957). Notably, glycan distributions for homologous regions of influenza glycoprotein variants showed low variability. Due to the multiple possible sources of variation and inherent analytical difficulties in site-specific glycan determinations, variations were individually examined for multiple factors, including differences in supplier, production batch, protease digestion, and replicate measurement. After comparing all glycosylation distributions, four distinguishable classes could be identified for the majority of sites. Finally, attempts to identify glycosylation distributions on adjacent potential N-glycosylated sites of one HA variant were made. Only the second site (NnST) was found to be occupied using two rarely used proteases in proteomics, subtilisin and esperase, both of which did selectively cleave these adjacent sites.


Asunto(s)
Neuraminidasa , Polisacáridos , Proteínas Recombinantes , Glicosilación , Humanos , Células HEK293 , Proteínas Recombinantes/metabolismo , Polisacáridos/metabolismo , Neuraminidasa/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas/metabolismo , Glicopéptidos/metabolismo
9.
J Biol Chem ; 300(6): 107316, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663826

RESUMEN

Neuraminidases (NEUs) also called sialidases are glycosidases which catalyze the removal of terminal sialic acid residues from glycoproteins, glycolipids, and oligosaccharides. Mammalian NEU-1 participates in regulation of cell surface receptors such as insulin receptor (IR), epithelial growth factor receptor, low-density lipoprotein receptor, and toll-like receptor 4. At the plasma membrane, NEU-1 can be associated with the elastin-binding protein and the carboxypeptidase protective protein/cathepsin A to constitute the elastin receptor complex. In this complex, NEU-1 is essential for elastogenesis, signal transduction through this receptor and for biological effects of the elastin-derived peptides on atherosclerosis, thrombosis, insulin resistance, nonalcoholic steatohepatitis, and cancers. This is why research teams are developing inhibitors targeting this sialidase. Previously, we developed interfering peptides to inhibit the dimerization and the activation of NEU-1. In this study, we investigated the effects of these peptides on IR activation in vitro and in vivo. Using cellular overexpression and endogenous expression models of NEU-1 and IR (COS-7 and HepG2 cells, respectively), we have shown that interfering peptides inhibit NEU-1 dimerization and sialidase activity which results in a reduction of IR phosphorylation. These results demonstrated that NEU-1 positively regulates IR phosphorylation and activation in our conditions. In vivo, biodistribution study showed that interfering peptides are well distributed in mice. Treatment of C57Bl/6 mice during 8 weeks with interfering peptides induces a hyperglycemic effect in our experimental conditions. Altogether, we report here that inhibition of NEU-1 sialidase activity by interfering peptides decreases IR activity in vitro and glucose homeostasis in vivo.


Asunto(s)
Neuraminidasa , Receptor de Insulina , Neuraminidasa/metabolismo , Neuraminidasa/antagonistas & inhibidores , Animales , Receptor de Insulina/metabolismo , Humanos , Ratones , Células Hep G2 , Chlorocebus aethiops , Homeostasis/efectos de los fármacos , Péptidos/farmacología , Péptidos/química , Masculino , Glucosa/metabolismo , Ratones Endogámicos C57BL , Receptores de Superficie Celular
10.
J Virol ; 98(10): e0116624, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39324791

RESUMEN

Seasonal influenza vaccines provide mostly strain-specific protection due to the elicitation of antibody responses focused on evolutionarily plastic antigenic sites in the hemagglutinin head domain. To direct the humoral response toward more conserved epitopes, we generated an influenza virus particle where the full-length hemagglutinin protein was replaced with a membrane-anchored, "headless" variant while retaining the normal complement of other viral structural proteins such as the neuraminidase as well as viral RNAs. We found that a single administration of a headless virus particle-based vaccine elicited high titers of antibodies that recognized more conserved epitopes on the major viral glycoproteins. Furthermore, the vaccine could elicit these responses even in the presence of pre-existing, hemagglutinin (HA) head-focused influenza immunity. Importantly, these antibody responses mediated protective, but non-neutralizing functions such as neuraminidase inhibition and antibody-dependent cellular cytotoxicity. Additionally, we show the vaccine can provide protection from homologous and heterologous challenges in mouse models of severe influenza without any measurable HA head-directed antibody responses. Thus, headless hemagglutinin containing viral particles may represent a tool to drive the types of antibody responses predicted to increase influenza vaccine breadth and durability.IMPORTANCECurrent seasonal influenza vaccines provide incomplete protection from disease. This is partially the result of the antibody response being directed toward parts of the virus that are tolerant of mutations. Redirecting the immune response to more conserved regions of the virus has been a central strategy of next-generation vaccine designs and approaches. Here, we develop and test a vaccine based on a modified influenza virus particle that expresses a partially deleted hemagglutinin protein along with the other viral structural proteins. We demonstrate this vaccine elicits antibodies that recognize the more conserved viral epitopes of the hemagglutinin stalk and neuraminidase protein to facilitate protection against influenza viruses despite a lack of classical viral neutralization activity.


Asunto(s)
Anticuerpos Antivirales , Epítopos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Animales , Vacunas contra la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Anticuerpos Antivirales/inmunología , Ratones , Epítopos/inmunología , Humanos , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Femenino , Neuraminidasa/inmunología , Neuraminidasa/genética , Virión/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Ratones Endogámicos BALB C , Perros , Anticuerpos Neutralizantes/inmunología , Células de Riñón Canino Madin Darby , Subtipo H1N1 del Virus de la Influenza A/inmunología
11.
J Virol ; 98(10): e0118624, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39360825

RESUMEN

Neuraminidase (NA)-specific antibodies have been associated with protection against influenza and thus NA is considered a promising target for next-generation vaccines against influenza A (IAV) and B viruses (IBV). NA inhibition (NI) by antibodies is typically assessed using an enzyme-linked lectin assay (ELLA). However, ELLA can be confounded by anti-hemagglutinin (anti-HA) antibodies that block NA by steric hindrance (termed HA interference). Although strategies have been employed to overcome HA interference for IAV, similar approaches have not been assessed for IBV. We found that HA interference is common in ELLA using IBV, rendering the technique unreliable. Anti-HA antibodies were not completely depleted from sera by HA-expressing cell lines, and this approach was of limited utility. In contrast, we find that treatment of virions with Triton X-100, but not Tween-20 or ether, efficiently separates the HA and NA components and overcomes interference caused by anti-HA antibodies. We also characterize a panel of recombinant IBV NA proteins that further validated the results from Triton X-100-treated virus-based ELLA. Using these reagents and assays, we demonstrate discordant antigenic evolution between IBV NA and HA over the last 80 years. This optimized ELLA protocol will facilitate further in-depth serological surveys of IBV immunity as well as antigenic characterization of the IBV NA on a larger scale.IMPORTANCEInfluenza B viruses (IBVs) contribute to annual epidemics and may cause severe disease, especially in children. Consequently, several approaches are being explored to improve vaccine efficacy, including the addition of neuraminidase (NA). Antigen selection and assessment of serological responses will require a reliable serological assay to specifically quantify NA inhibition (NI). Although such assays have been assessed for influenza A viruses (IAVs), this has not been done of influenza B viruses. Our study identifies a readily applicable strategy to measure the inhibitory activity of neuraminidase-specific antibodies against influenza B virus without interference from anti-hemagglutinin (anti-HA) antibodies. This will aid broader serological assessment of influenza B virus-specific antibodies and antigenic characterization of the influenza B virus neuraminidase.


Asunto(s)
Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Virus de la Influenza B , Neuraminidasa , Octoxinol , Neuraminidasa/inmunología , Neuraminidasa/genética , Virus de la Influenza B/inmunología , Virus de la Influenza B/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Anticuerpos Antivirales/inmunología , Humanos , Antígenos Virales/inmunología , Antígenos Virales/genética , Animales , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Gripe Humana/prevención & control , Proteínas Virales/inmunología , Proteínas Virales/genética , Células de Riñón Canino Madin Darby
12.
FASEB J ; 38(15): e23856, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39092913

RESUMEN

Merozoites utilize sialic acids on the red blood cell (RBC) cell surface to rapidly adhere to and invade the RBCs. Newcastle disease virus (NDV) displays a strong affinity toward membrane-bound sialic acids. Incubation of NDV with the malaria parasites dose-dependently reduces its cellular viability. The antiplasmodial activity of NDV is specific, as incubation with Japanese encephalitis virus, duck enteritis virus, infectious bronchitis virus, and influenza virus did not affect the parasite propagation. Interestingly, NDV is reducing more than 80% invasion when RBCs are pretreated with the virus. Removal of the RBC surface proteins or the NDV coat proteins results in disruption of the virus binding to RBC. It suggests the involvement of specific protein: ligand interaction in virus binding. We established that the virus engages with the parasitized RBCs (PRBCs) through its hemagglutinin neuraminidase (HN) protein by recognizing sialic acid-containing glycoproteins on the cell surface. Blocking of the HN protein with free sialic acid or anti-HN antibodies abolished the virus binding as well as its ability to reduce parasite growth. Interestingly, the purified HN from the virus alone could inhibit the parasite's growth in a dose-dependent manner. NDV binds strongly to knobless murine parasite strain Plasmodium yoelii and restricted the parasite growth in mice. Furthermore, the virus was found to preferentially target the PRBCs compared to normal erythrocytes. Immunolocalization studies reveal that NDV is localized on the plasma membrane as well as weakly inside the PRBC. NDV causes neither any infection nor aggregation of the human RBCs. Our findings suggest that NDV is a potential candidate for developing targeted drug delivery platforms for the Plasmodium-infected RBCs.


Asunto(s)
Eritrocitos , Ácido N-Acetilneuramínico , Virus de la Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle/fisiología , Virus de la Enfermedad de Newcastle/metabolismo , Eritrocitos/parasitología , Eritrocitos/metabolismo , Animales , Ácido N-Acetilneuramínico/metabolismo , Humanos , Plasmodium yoelii/metabolismo , Ratones , Proteína HN/metabolismo , Malaria/parasitología , Malaria/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(42): e2210724119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36191180

RESUMEN

Influenza virus neuraminidase (NA) is an important target for antiviral development because it plays a crucial role in releasing newly assembled viruses. Two unique influenza-like virus genomes were recently reported in the Wuhan Asiatic toad and Wuhan spiny eel. Their NA genes appear to be highly divergent from all known influenza NAs, raising key questions as to whether the Asiatic toad influenza-like virus NA (tNA) and spiny eel NA (eNA) have canonical NA activities and structures and whether they show sensitivity to NA inhibitors (NAIs). Here, we found that both tNA and eNA have neuraminidase activities. A detailed structural analysis revealed that tNA and eNA present similar overall structures to currently known NAs, with a conserved calcium binding site. Inhibition assays indicated that tNA is resistant to NAIs, while eNA is still sensitive to NAIs. E119 is conserved in canonical NAs. The P119E substitution in tNA can restore sensitivity to NAIs, and, in contrast, the E119P substitution in eNA decreased its sensitivity to NAIs. The structures of NA-inhibitor complexes further provide a detailed insight into NA-inhibitor interactions at the atomic level. Moreover, tNA and eNA have unique N-glycosylation sites compared with canonical NAs. Collectively, the structural features, NA activities, and sensitivities to NAIs suggest that fish- and amphibian-derived influenza-like viruses may circulate in these vertebrates. More attention should be paid to these influenza-like viruses because their NA molecules may play roles in the emergence of NAI resistance.


Asunto(s)
Gripe Humana , Orthomyxoviridae , Animales , Antivirales/farmacología , Calcio , Farmacorresistencia Viral/genética , Anguilas/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Neuraminidasa/química , Neuraminidasa/genética , Orthomyxoviridae/metabolismo
14.
Emerg Infect Dis ; 30(1): 168-171, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38147510

RESUMEN

We detected high titers of cross-reactive neuraminidase inhibition antibodies to influenza A(H5N1) virus clade 2.3.4.4b in 96.8% (61/63) of serum samples from healthy adults in Hong Kong in 2020. In contrast, antibodies at low titers were detected in 42% (21/50) of serum samples collected in 2009. Influenza A(H1N1)pdm09 and A(H5N1) titers were correlated.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Gripe Humana , Adulto , Animales , Humanos , Neuraminidasa , Anticuerpos Antivirales
15.
Emerg Infect Dis ; 30(7): 1410-1415, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38916572

RESUMEN

Since May 2023, a novel combination of neuraminidase mutations, I223V + S247N, has been detected in influenza A(H1N1)pdm09 viruses collected in countries spanning 5 continents, mostly in Europe (67/101). The viruses belong to 2 phylogenetically distinct groups and display ≈13-fold reduced inhibition by oseltamivir while retaining normal susceptibility to other antiviral drugs.


Asunto(s)
Antivirales , Farmacorresistencia Viral , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Neuraminidasa , Oseltamivir , Filogenia , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Gripe Humana/virología , Gripe Humana/tratamiento farmacológico , Gripe Humana/epidemiología , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/genética , Farmacorresistencia Viral/genética , Mutación
16.
Curr Issues Mol Biol ; 46(8): 8031-8052, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39194692

RESUMEN

Neuraminidases catalyze the desialylation of cell-surface glycoconjugates and play crucial roles in the development and function of tissues and organs. In both physiological and pathophysiological contexts, neuraminidases mediate diverse biological activities via the catalytic hydrolysis of terminal neuraminic, or sialic acid residues in glycolipid and glycoprotein substrates. The selective modulation of neuraminidase activity constitutes a promising strategy for treating a broad spectrum of human pathologies, including sialidosis and galactosialidosis, neurodegenerative disorders, cancer, cardiovascular diseases, diabetes, and pulmonary disorders. Structurally distinct as a large family of mammalian proteins, neuraminidases (NEU1 through NEU4) possess dissimilar yet overlapping profiles of tissue expression, cellular/subcellular localization, and substrate specificity. NEU1 is well characterized for its lysosomal catabolic functions, with ubiquitous and abundant expression across such tissues as the kidney, pancreas, skeletal muscle, liver, lungs, placenta, and brain. NEU1 also exhibits a broad substrate range on the cell surface, where it plays hitherto underappreciated roles in modulating the structure and function of cellular receptors, providing a basis for it to be a potential drug target in various human diseases. This review seeks to summarize the recent progress in the research on NEU1-associated diseases and highlight the mechanistic implications of NEU1 in disease pathogenesis. An improved understanding of NEU1-associated diseases should help accelerate translational initiatives to develop novel or better therapeutics.

17.
J Gen Virol ; 105(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39207120

RESUMEN

The extensive protein production in virus-infected cells can disrupt protein homeostasis and activate various proteolytic pathways. These pathways utilize post-translational modifications (PTMs) to drive the ubiquitin-mediated proteasomal degradation of surplus proteins. Protein arginylation is the least explored PTM facilitated by arginyltransferase 1 (ATE1) enzyme. Several studies have provided evidence supporting its importance in multiple physiological processes, including ageing, stress, nerve regeneration, actin formation and embryo development. However, its function in viral pathogenesis is still unexplored. The present work utilizes Newcastle disease virus (NDV) as a model to establish the role of the ATE1 enzyme and its activity in pathogenesis. Our data indicate a rise in levels of N-arginylated cellular proteins in the infected cells. Here, we also explore the haemagglutinin-neuraminidase (HN) protein of NDV as a presumable target for arginylation. The data indicate that the administration of Arg amplifies the arginylation process, resulting in reduced stability of the HN protein. ATE1 enzyme activity inhibition and gene expression knockdown studies were also conducted to analyse modulation in HN protein levels, which further substantiated the findings. Moreover, we also observed Arg addition and probable ubiquitin modification to the HN protein, indicating engagement of the proteasomal degradation machinery. Lastly, we concluded that the enhanced levels of the ATE1 enzyme could transfer the Arg residue to the N-terminus of the HN protein, ultimately driving its proteasomal degradation.


Asunto(s)
Aminoaciltransferasas , Virus de la Enfermedad de Newcastle , Complejo de la Endopetidasa Proteasomal , Procesamiento Proteico-Postraduccional , Proteolisis , Animales , Embrión de Pollo , Cricetinae , Humanos , Aminoaciltransferasas/metabolismo , Aminoaciltransferasas/genética , Arginina/metabolismo , Línea Celular , Proteína HN/metabolismo , Proteína HN/genética , Interacciones Huésped-Patógeno , Enfermedad de Newcastle/virología , Enfermedad de Newcastle/metabolismo , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/metabolismo , Virus de la Enfermedad de Newcastle/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo
18.
J Comput Chem ; 45(5): 247-263, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37787086

RESUMEN

At the beginning of the last century, multiple pandemics caused by influenza (flu) viruses severely impacted public health. Despite the development of vaccinations and antiviral medications to prevent and control impending flu outbreaks, unforeseen novel strains and continuously evolving old strains continue to represent a serious threat to human life. Therefore, the recently identified H10N7, for which not much data is available for rational structure-based drug design, needs to be further explored. Here, we investigated the structural dynamics of neuraminidase N7 upon binding of inhibitors, and the drug resistance mechanisms against the oseltamivir (OTV) and laninamivir (LNV) antivirals due to the crucial R292K mutation on the N7 using the computational microscope, molecular dynamics (MD) simulations. In this study, each system underwent long 2 × 1 µs MD simulations to answer the conformational changes and drug resistance mechanisms. These long time-scale dynamics simulations and free energy landscapes demonstrated that the mutant systems showed a high degree of conformational variation compared to their wildtype (WT) counterparts, and the LNV-bound mutant exhibited an extended 150-loop conformation. Further, the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculation and MM/GBSA free energy decomposition were used to characterize the binding of OTV and LNV with WT, and R292K mutated N7, revealing the R292K mutation as drug-resistant, facilitated by a decline in binding interaction and a reduction in the dehydration penalty. Due to the broader binding pocket cavity of the smaller K292 mutant residue relative to the wildtype, the drug carboxylate to K292 hydrogen bonding was lost, and the area surrounding the K292 residue was more accessible to water molecules. This implies that drug resistance could be reduced by strengthening the hydrogen bond contacts between N7 inhibitors and altered N7, creating inhibitors that can form a hydrogen bond to the mutant K292, or preserving the closed cavity conformations.


Asunto(s)
Subtipo H10N7 del Virus de la Influenza A , Gripe Humana , Humanos , Gripe Humana/tratamiento farmacológico , Antivirales/farmacología , Neuraminidasa/química , Farmacorresistencia Viral/genética , Oseltamivir/farmacología , Oseltamivir/química , Oseltamivir/metabolismo , Mutación , Simulación de Dinámica Molecular , Inhibidores Enzimáticos/farmacología
19.
J Virol ; 97(10): e0105723, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37800945

RESUMEN

IMPORTANCE: Vaccines that can slow respiratory virus transmission in the population are urgently needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus. Here, we describe how a recombinant neuraminidase-based influenza virus vaccine reduces transmission in vaccinated guinea pigs in an exposure intensity-based manner.


Asunto(s)
Vacunas contra la Influenza , Neuraminidasa , Infecciones por Orthomyxoviridae , Animales , Cobayas , Anticuerpos Antivirales , Virus de la Influenza B , Vacunas contra la Influenza/inmunología , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Proteínas Recombinantes , Vacunación
20.
J Virol ; 97(10): e0060223, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37754760

RESUMEN

IMPORTANCE: Influenza A viruses (IAVs) contain hemagglutinin (HA) proteins involved in sialoglycan receptor binding and neuraminidase (NA) proteins that cleave sialic acids. While the importance of the NA protein in virion egress is well established, its role in virus entry remains to be fully elucidated. NA activity is needed for the release of virions from mucus decoy receptors, but conflicting results have been reported on the importance of NA activity in virus entry in the absence of decoy receptors. We now show that inhibition of NA activity affects virus entry depending on the receptor-binding properties of HA and the receptor repertoire present on cells. Inhibition of entry by the presence of mucus correlated with the importance of NA activity for virus entry, with the strongest inhibition being observed when mucus and OsC were combined. These results shed light on the importance in virus entry of the NA protein, an important antiviral drug target.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza , Virus de la Influenza A , Neuraminidasa , Receptores Virales , Proteínas Virales , Internalización del Virus , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/enzimología , Virus de la Influenza A/metabolismo , Gripe Humana/enzimología , Gripe Humana/metabolismo , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Unión Proteica , Receptores Virales/metabolismo , Especificidad por Sustrato , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo , Línea Celular , Moco
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA