Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 16(9): 22555-83, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26393577

RESUMEN

Stable suspensions of NiO and Mn3O4 nanoparticles (NPs) with a mean (±s.d.) diameter of 16.7±8.2 and 18.4±5.4 nm, respectively, purposefully prepared by laser ablation of 99.99% pure nickel or manganese in de-ionized water, were repeatedly injected intraperitoneally (IP) to rats at a dose of 2.5 mg/kg 3 times a week up to 18 injections, either alone or in combination. A group of rats was injected with this combination with the background oral administration of a "bio-protective complex" (BPC) comprising pectin, vitamins A, C, E, glutamate, glycine, N-acetylcysteine, selenium, iodide and omega-3 PUFA, this composition having been chosen based on mechanistic considerations and previous experience. After the termination of injections, many functional and biochemical indices and histopathological features (with morphometric assessment) of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The Ni and Mn content of these organs was measured with the help of the atomic emission and electron paramagnetic resonance spectroscopies. We obtained blood leukocytes for performing the RAPD (Random Amplified Polymorphic DNA) test. Although both metallic NPs proved adversely bio-active in many respects considered in this study, Mn3O4-NPs were somewhat more noxious than NiO-NPs as concerns most of the non-specific toxicity manifestations and they induced more marked damage to neurons in the striatum and the hippocampus, which may be considered an experimental correlate of the manganese-induced Parkinsonism. The comparative solubility of the Mn3O4-NPs and NiO-NPs in a biological medium is discussed as one of the factors underlying the difference in their toxicokinetics and toxicities. The BPC has attenuated both the organ-systemic toxicity and the genotoxicity of Mn3O4-NPs in combination with NiO-NPs.


Asunto(s)
Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Compuestos de Manganeso/efectos adversos , Nanopartículas/efectos adversos , Níquel/efectos adversos , Óxidos/efectos adversos , Sustancias Protectoras/farmacología , Bazo/efectos de los fármacos , Acetilcisteína/farmacología , Animales , Ácidos Grasos Omega-3/farmacología , Glicina/farmacología , Yoduros/farmacología , Riñón/patología , Hígado/patología , Compuestos de Manganeso/administración & dosificación , Nanopartículas/administración & dosificación , Níquel/administración & dosificación , Óxidos/administración & dosificación , Pectinas/farmacología , Ratas , Selenio/farmacología , Bazo/patología , Vitaminas/farmacología
2.
ACS Appl Mater Interfaces ; 15(21): 26093-26103, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37204834

RESUMEN

Direct electrification of oxygen-associated reactions contributes to large-scale electrical storage and the launch of the green hydrogen economy. The design of the involved catalysts can mitigate the electrical energy losses and improve the control of the reaction products. We evaluate the effect of the interface composition of electrocatalysts on the efficiency and productivity of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), both mechanistically and at device levels. The ORR and OER were benchmarked on mesoporous nickel(II) oxide and nickel cobaltite (NiO and NiCo2O4, respectively) obtained by a facile template-free hydrothermal synthesis. Physicochemical characterization showed that both NiO and NiCo2O4 are mesoporous and have a cubic crystal structure with abundant surface hydroxyl species. NiCo2O4 showed higher electrocatalytic activity in OER and selectivity to water as the terminal product of ORR. On the contrary, ORR over NiO yielded hydroxyl radicals as products of a Fenton-like reaction of H2O2. The product selectivity in ORR was used to construct two electrolyzers for electrified purification of oxygen and generation of hydroxyl radicals.

3.
Beilstein J Nanotechnol ; 9: 242-249, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29441269

RESUMEN

The properties of metal oxides, such as charge-transport mechanisms or optoelectronic characteristics, can be modified by functionalization with organic molecules. This kind of organic/inorganic surface is nowadays highly regarded, in particular, for the design of hybrid devices such as dye-sensitized solar cells. However, a key parameter for optimized interfaces is not only the choice of the compounds but also the properties of adsorption. Here, we investigated the deposition of an organic dye precursor molecule on a NiO(001) single crystal surface by means of non-contact atomic force microscopy at room temperature. Depending on the coverage, single molecules, groups of adsorbates with random or recognizable shapes, or islands of closely packed molecules were identified. Single molecules and self assemblies are resolved with submolecular resolution showing that they are lying flat on the surface in a trans-conformation. Within the limits of our Kelvin probe microscopy setup a charge transfer from NiO to the molecular layer of 0.3 electrons per molecules was observed only in the areas where the molecules are closed packed.

4.
J Colloid Interface Sci ; 504: 688-696, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28622562

RESUMEN

Monodispersed hierarchical flower-like nickel(II) oxide (NiO) microspheres were fabricated by a facile solvothermal reaction with the assistance of ethanolamine and a subsequent calcination process. The as-synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption isotherms, zeta potential measurement and Fourier transform infrared spectroscopy. Flower-like nickel(II) hydroxide microspheres with uniform diameters of approximate 6.3µm were obtained after the solvothermal reaction. After heat treatment at 350°C, the crystal phase transformed to NiO, but the hierarchical porous structure was maintained. The as-prepared microspheres exhibited outstanding performance for the adsorption of Congo red (CR), an anionic organic dye, from aqueous solution at circumneutral pH. The pseudo-second-order model can make a good description of the adsorption kinetics, while Langmuir model could well express the adsorption isotherms, with calculated maximum CR adsorption capacity of 534.8 and 384.6mgg-1, respectively, for NiO and Ni(OH)2. The adsorption mechanism of CR onto the as-synthesized samples can be mainly attributed to electrostatic interaction between the positively charged sample surface and the anionic CR molecules. The as-prepared NiO microspheres are a promising adsorbent for CR removal in water treatment.

5.
Food Chem Toxicol ; 86: 351-64, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26607108

RESUMEN

Stable suspensions of NiO and/or Mn3O4 nanoparticles with a mean diameter of 16.7 ± 8.2 nm and 18.4 ± 5.4 nm, respectively, prepared by laser ablation of 99.99% pure metals in de-ionized water were repeatedly injected IP to rats at a dose of 0.50 mg or 0.25 mg 3 times a week up to 18 injections, either separately or in different combinations. Many functional indices as well as histological features of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The accumulation of Ni and Mn in these organs was measured with the help of AES and EPR methods. Both metallic nanoparticles proved adversely bio-active, but those of Mn3O4 were found to be more noxious in most of the non-specific toxicity manifestations. Moreover, they induced a more marked damaging effect in the neurons of the caudate nucleus and hippocampus which may be considered an experimental correlate of manganese-induced parkinsonism. Mathematical analysis based on the Response Surface Methodology (RSM) revealed a diversity of combined toxicity types depending not only on particular effects these types are assessed for but on their level as well. The prognostic power of the RSM model proved satisfactory.


Asunto(s)
Compuestos de Manganeso/química , Nanopartículas del Metal/toxicidad , Níquel/química , Óxidos/química , Animales , Esquema de Medicación , Quimioterapia Combinada , Compuestos de Manganeso/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Modelos Biológicos , Níquel/administración & dosificación , Níquel/toxicidad , Óxidos/administración & dosificación , Óxidos/toxicidad , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA