Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Struct Biol ; 209(2): 107435, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31862305

RESUMEN

Polypeptides containing ß-amino acids are attractive tools for the design of novel proteins having unique properties of medical or industrial interest. Incorporation of ß-amino acids in vivo requires the development of efficient aminoacyl-tRNA synthetases specific of these non-canonical amino acids. Here, we have performed a detailed structural and biochemical study of the recognition and use of ß3-Met by Escherichia coli methionyl-tRNA synthetase (MetRS). We show that MetRS binds ß3-Met with a 24-fold lower affinity but catalyzes the esterification of the non-canonical amino acid onto tRNA with a rate lowered by three orders of magnitude. Accurate measurements of the catalytic parameters required careful consideration of the presence of contaminating α-Met in ß3-Met commercial samples. The 1.45 Å crystal structure of the MetRS: ß3-Met complex shows that ß3-Met binds the enzyme essentially like α-Met, but the carboxylate moiety is mobile and not adequately positioned to react with ATP for aminoacyl adenylate formation. This study provides structural and biochemical bases for engineering MetRS with improved ß3-Met aminoacylation capabilities.


Asunto(s)
Aminoácidos/genética , Escherichia coli/genética , Metionina-ARNt Ligasa/genética , Metionina/metabolismo , Aminoácidos/química , Sitios de Unión/genética , Escherichia coli/química , Metionina/química , Metionina-ARNt Ligasa/química , Conformación Proteica , Especificidad por Sustrato
2.
J Pept Sci ; 23(9): 716-726, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28608410

RESUMEN

A series of model compounds containing 3-amino-1H-pyrazole-5-carboxylic acid residue with N-terminal amide/urethane and C-terminal amide/hydrazide/ester groups were investigated by using NMR, Fourier transform infrared, and single-crystal X-ray diffraction methods, additionally supported by theoretical calculations. The studies demonstrate that the most preferred is the extended conformation with torsion angles ϕ and ψ close to ±180°. The studied 1H-pyrazole with N-terminal amide/urethane and C-terminal amide/hydrazide groups solely adopts this energetically favored conformation confirming rigidity of that structural motif. However, when the C-terminal ester group is present, the second conformation with torsion angles ϕ and ψ close to ±180° and 0°, respectively, is accessible. The conformational equilibrium is observed in NMR and Fourier transform infrared studies in solution in polar environment as well as in the crystal structures of other related compounds. The observed conformational preferences are clearly related to the presence of intramolecular interactions formed within the studied residue. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Aminoácidos/química , Pirazoles/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética
3.
J Biomol NMR ; 63(1): 21-37, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26123317

RESUMEN

An algorithm, CYLIB, is presented for converting molecular topology descriptions from the PDB Chemical Component Dictionary into CYANA residue library entries. The CYANA structure calculation algorithm uses torsion angle molecular dynamics for the efficient computation of three-dimensional structures from NMR-derived restraints. For this, the molecules have to be represented in torsion angle space with rotations around covalent single bonds as the only degrees of freedom. The molecule must be given a tree structure of torsion angles connecting rigid units composed of one or several atoms with fixed relative positions. Setting up CYANA residue library entries therefore involves, besides straightforward format conversion, the non-trivial step of defining a suitable tree structure of torsion angles, and to re-order the atoms in a way that is compatible with this tree structure. This can be done manually for small numbers of ligands but the process is time-consuming and error-prone. An automated method is necessary in order to handle the large number of different potential ligand molecules to be studied in drug design projects. Here, we present an algorithm for this purpose, and show that CYANA structure calculations can be performed with almost all small molecule ligands and non-standard amino acid residues in the PDB Chemical Component Dictionary.


Asunto(s)
Aminoácidos/química , Bases de Datos de Compuestos Químicos , Bases de Datos de Proteínas , Resonancia Magnética Nuclear Biomolecular , Bibliotecas de Moléculas Pequeñas/química , Proteínas ADAM/antagonistas & inhibidores , Proteína ADAM17 , Inhibidores Enzimáticos/farmacología , Ligandos , Lisina/análogos & derivados , Lisina/química , Oligopéptidos/farmacología
4.
ACS Catal ; 12(17): 10700-10710, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36420479

RESUMEN

Multi-enzyme biocatalytic cascades are emerging as practical routes for the synthesis of complex bioactive molecules. However, the relative sparsity of water-stable carbon electrophiles limits the synthetic complexity of molecules made from such cascades. Here, we develop a chemoenzymatic platform that leverages styrene oxide isomerase (SOI) to covert readily accessible aryl epoxides into α-aryl aldehydes through a Meinwald rearrangement. These unstable aldehyde intermediates are then intercepted with a C-C bond forming enzyme, ObiH, that catalyzes a transaldolase reaction with l-threonine to yield synthetically challenging ß-hydroxy-α-amino acids. Co-expression of both enzymes in E. coli yields a whole cell biocatalyst capable of synthesizing a variety of stereopure non-standard amino acids (nsAA) and can be produced on gram-scale. We used isotopically labelled substrates to probe the mechanism of SOI, which we show catalyzes a concerted isomerization featuring a stereospecific 1,2-hydride shift. The viability of in situ generated α-aryl aldehydes was further established by intercepting them with a recently engineered decarboxylative aldolase to yield γ-hydroxy nsAAs. Together, these data establish a versatile method of producing α-aryl aldehydes in simple, whole cell conditions and show that these intermediates are useful synthons in C‒C bond forming cascades.

5.
Bio Protoc ; 12(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36213107

RESUMEN

The incorporation of non-standard amino acids (nsAAs) within proteins and peptides through genetic code expansion introduces novel chemical functionalities such as photo-crosslinking and bioconjugation. Given the utility of Bacillus subtilis in fundamental and applied science, we extended existing nsAA incorporation technology from Escherichia coli into B. subtilis , demonstrating incorporation of 20 unique nsAAs. The nsAAs we succeeded in incorporating within proteins conferred properties that included fluorescence, photo-crosslinking, and metal chelation. Here, we describe the reagents, equipment, and protocols to test for nsAA incorporation at a small scale (96-well plate and culture tube scales). We report specific media requirements for certain nsAAs, including two variants for different media conditions. Our protocol provides a consistent and reproducible method for incorporation of a chemically diverse set of nsAAs into a model Gram-positive organism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA