Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Eukaryot Microbiol ; 70(2): e12957, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36447377

RESUMEN

Holocarpic oomycetes have been neglected over several decades, until interest in these organisms has recently resurged. One of the most widespread genera of holocarpic oomycetes is Pontisma, parasitic to red seaweeds throughout all oceans. Recently, the genus Sirolpidium (parasitic to green algae) was found to be congeneric with Pontisma. This hinted at a high pathogenic versatility and prompted the screening of other macroalgae on the coastline of Iceland. During this survey a parasite of the brown algae Pylaiella littoralis was found, which formed anisolpidium-like thalli, but produced biflagellate zoospores. Phylogenetic investigations revealed that the parasite was placed in the genus Pontisma. In reconstructions based on partial nrSSU sequences, it grouped with some sequences of parasitoids of the diatom genus Licmophora, but the more variable mitochondrial cox2 sequences were divergent. Based on phylogenetic evidence and the unique parasitism of brown algae, the parasitoid is described as Pontisma blauvikense in this study. Pontisma blauvikense is the fourth oomycete species parasitic to Pylaiella, which is also parasitised by Euychasma dicksonii and two Anisolpidium species. For a better understanding of the ecology and evolution of holocarpic oomycetes, further research is necessary to investigate the host spectrum of Pontisma in general and Pontisma blauvikense in particular.


Asunto(s)
Diatomeas , Oomicetos , Phaeophyceae , Filogenia , Phaeophyceae/parasitología
2.
Mycobiology ; 52(2): 117-123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690034

RESUMEN

There is increasing evidence that holocarpic oomycetes, i.e., those converting their entire vegetative thallus into zoospores upon maturation, are a phylogenetically diverse group in both freshwater and marine ecosystems. Most of the known holocarpic oomycete species diverge before the main split of Peronosporomycetes and Saprolegniomycetes and are, thus, termed as early-diverging oomycetes. In environmental sequencing studies, it was revealed that of the early-diverging genera especially Sirolpidium, Miracula, and Diatomophthora are widespread. As in these studies especially the Arctic Ocean seemed to harbor many undiscovered species, sampling was conducted at the Blávík research station on Fáskrúðsfjörður in the East Fjords of Iceland, where there is both an influence from the Arctic Ocean and the North Atlantic. During the screening for infected diatoms, a parasitoid was found in the marine diatom genus Melosira, which is one of the most abundant genera in arctic ecosystems. Molecular phylogenetics and morphological characterization revealed that the parasitoid belonged to the genus Miracula and corresponded to one of the lineages previously found in single-cell sequencing. Thus, the current study both contributes to the knowledge of the genus Miracula and the increasing diversity of the genus suggests that the many linages found in environmental sequencing which can still not be associated with known species might represent actual species to be discovered in future studies.

3.
MycoKeys ; 103: 129-165, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584717

RESUMEN

A new genus, Rostrupomyces is established to accommodate Xerocomussisongkhramensis based on multiple protein-coding genes (atp6, cox3, tef1, and rpb2) analyses of a wide taxon sampling of Boletaceae. In our phylogeny, the new genus was sister to Rubinosporus in subfamily Xerocomoideae, phylogenetically distant from Xerocomus, which was highly supported as sister to Phylloporus in the same subfamily Xerocomoideae. Rostrupomyces is different from other genera in Boletaceae by the following combination of characters: rugulose to subrugulose pileus surface, white pores when young becoming pale yellow in age, subscabrous stipe surface scattered with granulose squamules, white basal mycelium, unchanging color in any parts, yellowish brown spore print, and broadly ellipsoid to ellipsoid, smooth basidiospores. In addition, Hemileccinuminferius, also from subfamily Xerocomoideae, is newly described. Detailed descriptions and illustrations of the new genus and new species are presented.

4.
Biodivers Data J ; 11: e86868, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325231

RESUMEN

Background: Papiliomyces (Hypocreales, Sordariomycetes) was introduced to accommodate two species: Papiliomycesliangshanensis and Papiliomycesshibinensis. Later, Papiliomycesliangshanensis was renamed Ophiocordycepsliangshanensis. However, the Papiliomycesliangshanensis molecular data (Nepalese) used to establish the Papiliomyces genus was different from Ophiocordycepsliangshanensis (China) strains. New information: This paper describes a new species, Papiliomyceslongiclavatus, found in Yangchang District, Guiyang City, Guizhou Province, China. It is proposed, based on morphology and multilocus phylogeny (ITS, SSU, LSU, TEF1, RPB1 and RPB2). The new species is phylogenetically most closely related to Papiliomycesliangshanensis (Nepalese collections). However, Papiliomycesliangshanensis (Nepalese collections) requires morphological details and additional detection. The new species differs from other Papiliomyces species in having robust stroma with completely immersed perithecia, multi-septate ascospores, cylindrical secondary ascospores, two types of phialides and two types of conidia:longer α-conidia and longer ß-conidia.

5.
J Fungi (Basel) ; 9(6)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37367561

RESUMEN

Leaf litter is an essential functional aspect of forest ecosystems, acting as a source of organic matter, a protective layer in forest soils, and a nurturing habitat for micro- and macro-organisms. Through their successional occurrence, litter-inhabiting microfungi play a key role in litter decomposition and nutrient recycling. Despite their importance in terrestrial ecosystems and their abundance and diversity, information on the taxonomy, diversity, and host preference of these decomposer taxa is scarce. This study aims to clarify the taxonomy and phylogeny of four saprobic fungal taxa inhabiting Dipterocarpus alatus leaf litter. Leaf litter samples were collected from Doi Inthanon National Park in Chiang Mai, northern Thailand. Fungal isolates were characterized based on morphology and molecular phylogeny of the nuclear ribosomal DNA (ITS, LSU) and protein-coding genes (tub2, tef1-α, rpb2). One novel saprobic species, Ciliochorella dipterocarpi, and two new host records, Pestalotiopsis dracontomelon and Robillarda australiana, are introduced. The newly described taxa are compared with similar species, and comprehensive descriptions, micrographs, and phylogenetic trees are provided.

6.
MycoKeys ; 95: 131-162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251992

RESUMEN

During a mycological survey of the Democratic Republic of the Congo, a fungal specimen that morphologically resembled the American species Hypoxylonpapillatum was encountered. A polyphasic approach including morphological and chemotaxonomic together with a multigene phylogenetic study (ITS, LSU, tub2, and rpb2) of Hypoxylon spp. and representatives of related genera revealed that this strain represents a new species of the Hypoxylaceae. However, the multi-locus phylogenetic inference indicated that the new fungus clustered with H.papillatum in a separate clade from the other species of Hypoxylon. Studies by ultrahigh performance liquid chromatography coupled to diode array detection and ion mobility tandem mass spectrometry (UHPLC-DAD-IM-MS/MS) were carried out on the stromatal extracts. In particular, the MS/MS spectra of the major stromatal metabolites of these species indicated the production of hitherto unreported azaphilone pigments with a similar core scaffold to the cohaerin-type metabolites, which are exclusively found in the Hypoxylaceae. Based on these results, the new genus Parahypoxylon is introduced herein. Aside from P.papillatum, the genus also includes P.ruwenzoriensesp. nov., which clustered together with the type species within a basal clade of the Hypoxylaceae together with its sister genus Durotheca.

7.
Biodivers Data J ; 10: e80034, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761562

RESUMEN

Background: Ganoderma is a white-rot fungus with a cosmopolitan distribution and includes several economically important species. This genus has been extensively researched due to its beneficial medicinal properties and chemical constituents with potential nutritional and therapeutic values. Traditionally, species of Ganoderma were identified solely based on morphology; however, recent molecular studies revealed that many morphology-based species are conspecific. Furthermore, some type species are in poor condition, which hinders us from re-examining their taxonomic characteristics and obtaining their molecular data. Therefore, new species and fresh collections with multigene sequences are needed to fill the loopholes and to understand the biological classification system of Ganoderma. New information: In a survey of Ganoderma in Guizhou Province, southwest China, we found a new species growing on soil and, herein, it was identified by both morphology and phylogenetic evidence. Hence, we propose a new species, Ganodermaovisporum sp. nov. This species is characterised by an annual, stipitate, laccate basidiome, with a red-brown to brownish-black pileus surface and pale white pores, duplex context, clavate pileipellis terminal cells, trimitic hyphal system, ellipsoid basidiospores with dark brown eusporium bearing coarse echinulae and an obtuse turgid appendix. Phylogenetic analyses confirmed that the novel species sisters to G.sandunense with high bootstrap support. Furthermore, the RPB2 sequence of G.sandunense is supplied for the first time. Notably, we re-examined the type specimen of G.sandunense and provide a more precise description of the duplex context, pileipellis terminal cells and basidia. All species collected are described and illustrated with coloured photographs. Moreover, we present an updated phylogeny for Ganoderma, based on nLSU, ITS, RPB2 and TEF1-α DNA sequence data and species relationships and classification are discussed.

8.
Mycology ; 13(2): 153-161, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711327

RESUMEN

Holocarpic oomycetes infecting freshwater diatoms are obligate endobiotic parasites reported from a wide range of habitats. So far, the taxonomy of and phylogeny of most species remains unresolved, since most have not been reported throughout the past decades and sequence data are available for only the four species, Aphanomycopsis bacillariacearum, Diatomophthora gillii, Ectrogella bacillariacearum, and the recently-discovered species Miracula moenusica. In the current study, a new freshwater diatom parasite resembling Ectrogella bacillariacearum in the sense of Scherffel was discovered from pennate diatoms (Ulnaria acus, Ulnaria ulna) collected from the small stream Einbúalækur on Víkurskarð, North Iceland and investigated for its life cycle and phylogenetic placement. In contrast to the original description, Scherffel reports an achlya-like spore discharge for Ectrogella bacillariacearum. The phylogenetic reconstruction and morphological characterisation in this study revealed that Scherffel's E. bacillariacearum is largely unrelated to the epitype of the species and is a member of the early-diverging genus Miracula. Consequently, the new species is described as M. einbuarlaekurica in the present study. This adds a second freshwater member to the genus, demonstrating the high ecological adaptability of the genus, which thrives in both freshwater and marine ecosystems.

9.
MycoKeys ; 90: 85-118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36760420

RESUMEN

During the course of a study on the biodiversity of endophytes from Cameroon, a fungal strain was isolated. A multigene phylogenetic inference using five DNA loci revealed that this strain represents an undescribed species of Diaporthe, which is introduced here as D.breyniae. Investigation into the chemistry of this fungus led to the isolation of two previously undescribed secondary metabolites for which the trivial names fusaristatins G (7) and H (8) are proposed, together with eleven known compounds. The structures of all of the metabolites were established by using one-dimensional (1D) and two-dimensional (2D) Nuclear Magnetic Resonance (NMR) spectroscopic data in combination with High-Resolution ElectroSpray Ionization Mass Spectrometry (HR-ESIMS) data. The absolute configuration of phomopchalasin N (4), which was reported for the first time concurrently to the present publication, was determined by analysis of its Rotating frame Overhauser Effect SpectroscopY (ROESY) spectrum and by comparison of its Electronic Circular Dichroism (ECD) spectrum with that of related compounds. A selection of the isolated secondary metabolites were tested for antimicrobial and cytotoxic activities, and compounds 4 and 7 showed weak antifungal and antibacterial activity. On the other hand, compound 4 showed moderate cytotoxic activity against all tested cancer cell lines with IC50 values in the range of 5.8-45.9 µM. The latter was found to be less toxic than the other isolated cytochalasins (1-3) and gave hints in regards to the structure-activity relationship (SAR) of the studied cytochalasins. Fusaristatin H (8) also exhibited weak cytotoxicity against KB3.1 cell lines with an IC50 value of 30.3 µM. Graphical abstract.

10.
MycoKeys ; 93: 81-105, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761911

RESUMEN

In a survey of xylarialean fungi in northern Iran, some specimens attributable to the genus Nemania were collected, cultured and sequenced. Morphological evidence and phylogenetic analyses of a combined ITS, LSU, RPB2 and TUB2 gene dataset confirmed the presence of Nemaniadiffusa and N.serpens in Iran for the first time. Furthermore, the new species N.hyrcana, which shows similarities to N.subaenea and its putative synonym N.plumbea, but significantly differs from the latter in its DNA sequences, was encountered. All species are illustrated, described and discussed. In the phylogenetic analyses, for the first time, the overlooked ex-type ITS sequences of the neotype of the generic type, N.serpens and that of the holotype of N.prava, were added to a multi-gene matrix of Nemania. This revealed that the two accessions of N.serpens (HAST 235 and CBS 679.86), for which multigene data are available in GenBank, are misidentified, while the Iranian accession of N.serpens has an almost identical ITS sequence to the neotype, confirming its morphological species identification. The two previously accepted species of Euepixylon, E.udum and E.sphaeriostomum, are embedded within Nemania and are revealed as close relatives of N.serpens, supporting the inclusion of Euepixylon in Nemania.

11.
Pathogens ; 11(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36014960

RESUMEN

High temperatures and the seasonality in tropical ecosystems favours plant pathogens, which result in many fungal diseases. Among these, diseases caused by Botryosphaeriaceae species are prominent as dieback, canker and leaf spots. In this research, we isolated one leaf-spot-causing Botryosphaeriaceae species from Ficus altissima leaves, which were collected in Guangzhou, Guangdong Province, China. Isolation and identification of the pathogen were based on morphological and molecular aspects. Based on multigene phylogenetic analysis of combined internal transcribed spacer (ITS), translation elongation factor 1-α gene (tef1) and beta-tubulin gene (tub2), the fungus associated with leaf spots on F. altissima is described as Lasiodiplodia fici, a novel species. Pathogenicity assays were conducted by inoculating the fungus onto detached shoots and plants under controlled environmental conditions. The results revealed that the L. fici isolates can infect the plant tissues under stress conditions by developing disease symptoms on detached shoots within three days. However, when it was inoculated onto the leaves of the host and grown in natural conditions, the progression of the disease was slow. The putative pathogen was re-isolated, and Koch's assumptions were satisfied. This is the first report of Lasiodiplodia species causing disease on Ficus altissima. Results from the present study will provide additional knowledge on fungal pathogens associated with forest and ornamental plant species.

12.
J Fungi (Basel) ; 8(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36354927

RESUMEN

A new species, Trichocladium solani, was isolated from potato (Solanum tuberosum L.) tubers from Russia. The species has no observed teleomorph and is characterized morphologically by non-specific Acremonium-like conidia on single phialides and chains of swollen chlamydospores. Phylogenetic analysis placed the new species in a monophyletic clade inside the Trichocladium lineage with a high level of support from a multi-locus analysis of three gene regions: ITS, tub2, and rpb2. ITS is found to be insufficient for species delimitation and is not recommended for identification purposes in screening studies. T. solani is pathogenic to potato tubers and causes lesions that look similar to symptoms of Fusarium dry rot infection but with yellowish or greenish tint in the necrotized area. The disease has been named "yellow rot of potato tubers".

13.
Biodivers Data J ; 10: e89360, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761612

RESUMEN

Background: Smaragdinisetamusae is introduced as a leaf-based novel saprobic species from Musa. Multi-gene phylogenetic analyses of internal transcribed spacer (ITS), RNA polymerase II second largest subunit (rpb2) and ß-tubulin (tub2) data support the taxonomic placement of the new collection in Smaragdiniseta (Hypocreales, Stachybotryaceae). The novel species is characterised by cup-shaped sporodochia covered by numerous peripheral setae and simple hyaline, guttulate conidia produced by the ultimate branches (phialides) of conidiophores. New information: This is the first report of Smaragdiniseta from Thailand and on Musaceae. In addition, we report Albifimbriaverrucaria for the first time from Thailand, based on morpho-molecular evidence.

14.
Biodivers Data J ; 9: e67705, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34594152

RESUMEN

BACKGROUND: Mendogia belongs to Dothideomycetes and its members are epiphytic on living bamboo culms or palms and distributed in tropical regions. Currently, the genus comprises seven species. Another collection resembling Mendogia was collected from the leaves of Fagales sp. in Thailand. Morphological characteristics and multilocus phylogenetic analyses, using ITS, LSU and SSU sequences, showed that the fungus is new to science, described herein as Mendogiadiffusa. Mendogiadiffusa is characterised by apothecial ascostromata, a carbonised epithecium, dark brown setae on the ascostromatal surface, hyaline paraphysoids, ovoid to clavate asci and oblong to elliptical, muriform ascospores. The fungus has a dark pigmented surface and is occasionally facultatively associated with patches of green algae, but not actually lichenised. Instead, the fungus penetrates the upper leaf surface, forming dark pigmented isodiametric cells below the epidermis. NEW INFORMATION: Re-examination of specimens of M.chiangraiensis, M.macrostroma and M.yunnanensis revealed the absence of algal associations. The status of Mendogiaphilippinensis (= M.calami) and M.bambusina (= Uleopeltisbambusina) was established, based on morphological comparisons and previous studies. Comprehensive morphological descriptions with phylogenetic analyses support M.diffusa as a novel species in Myriangiaceae. An updated key to the known species of the genus is also provided.

15.
Mycoscience ; 62(3): 212-216, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37091320

RESUMEN

A novel, wood-inhabiting jelly fungus from China is described as a new species, Exidia qinghaiensis (Basidiomycota: Auriculariaceae). Phylogenetic analyses were based on sequences of the nuclear ribosomal DNA internal transcribed spacer (nrITS) and large subunit (nrLSU), RNA polymerase II second largest subunit (RPB2), and translation elongation factor 1-α (Tef1) regions. Sequences of the new taxon formed a sister group to Exidia thuretiana, a species known from Europe and Asia, and distant to sequences of Exidia repanda from Europe. Fruiting bodies are cushion-shaped to irregularly lobed and yellowish brown, basidiospores are hyaline, allantoid (averaging 12.7 × 3.4 µm; average length/width is 3.7), and the host is Betula. The new species also can be distinguished by nrITS, nrLSU, RPB2, and Tef1 sequences. Our multigene phylogeny supports an Exidia including Exidia japonica, type species of Tremellochaete, but defining generic limits in Auriculariaceae will require more extensive taxon sampling.

16.
Mycoscience ; 62(4): 239-243, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37092169

RESUMEN

The obligate biotrophic oomycete genus Pustula is one of the four major linages of white blister rusts (Albuginaceae) identified so far. Species of the genus Pustula cause white blister rust on numerous genera in the asterids, represented by several phylogenetically distinct genus-specific lineages, most of which still await formal description. Thus, the observation of the species of Pustula on the Asteraceae subfamily Gymnorhenoideae pointed out to the existence of a hitherto undescribed species. By the morphological and molecular phylogenetic investigation conducted in this study it is concluded that the pathogen on Gymnarrhena micrantha from Iran indeed represents a hitherto unknown species and is described as P. persica. This species has apparently adapted to desert condition and is, after Albugo arenosa, the second species of white blister rust from Iranian deserts, highlighting the adaptability of white blister rusts to hot and dry habitats.

17.
Mycobiology ; 49(4): 355-362, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512079

RESUMEN

Obligate endoparasitic oomycetes are known to ubiquitously occur in marine and freshwater diatoms, but their diversity is still largely unexplored. Many of these parasitoids are members of the early-diverging oomycete lineages (Miracula, Diatomophthora), others are within the Leptomitales of the Saprolegniomycetes (Ectrogella, Lagenisma) and some have been described in the Peronosporomycetes (Aphanomycopsis, Lagenidium). Even though some species have been recently described and two new genera were introduced (Miracula and Diatomophthora), the phylogeny and taxonomy of most of these organisms remain unresolved. This is contrasted by the high number of sequences from unclassified species, as recently revealed from environmental sequencing, suggesting the presence of several undiscovered species. In this study, a new species of Miracula is reported from a marine centric diatom (Minidiscus sp.) isolated from Skagaströnd harbor in Northwest Iceland. The morphology and life cycle traits of this novel oomycete parasite are described herein, and its taxonomic placement within the genus Miracula is confirmed by molecular phylogeny. As it cannot be assigned to any previously described species, it is introduced as Miracula islandica in this study. The genus Miracula thus contains three described holocarpic species (M. helgolandica, M. islandica, M. moenusica) to which likely additional species will need to be added in the future, considering the presence of several lineages known only from environmental sequencing that clustered within the Miracula clade.

18.
Biodivers Data J ; 9: e63643, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692649

RESUMEN

BACKGROUND: Thunbergia grandiflora belongs to the family Acanthaceae and is a widely distributed dicotyledonous plant in tropical and subtropical regions. Three isolates of Allophoma (Dothideomycetes, Pleosporales, Didymellaceae) were collected from leaves of T. grandiflora in Guangxi Province, China. NEW INFORMATION: Phylogenetic analyses of a combined ITS-LSU-rpb2-tub2 dataset indicate that one of our three strains represents an undescribed species with close affinity to A. minor and the other two strains clustered amongst other isolates of A. pterospermicola. Evidence from morphology and sequence analysis indicates that GUCC 2070.7 is a new species that we introduce here as A. thunbergiae. This is the first report about taxa of Allophoma from this host plant.

19.
Biodivers Data J ; 9: e59001, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33510577

RESUMEN

BACKGROUND: Two hyphomycetous species were collected from leaves of Smilax china (Liliales, Smilacaceae) and Cremastra appendiculata (Asparagales, Orchidaceae). ITS barcoding indicated that they belong to the genus Zasmidium. NEW INFORMATION: Morphological data in combination with molecular phylogenetic analyses based on ITS, LSU and rpb2 confirmed that our Chinese strains represented a new species, Zasmidium liboense and a new record of Z. citri-griseum.

20.
Life (Basel) ; 11(10)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34685442

RESUMEN

The genus Apiospora is known as a cosmopolitan genus, found across various substrates. In this study, four Apiospora taxa were obtained from the decaying stems of bamboo and maize in northern Thailand. Apiospora collections were compared with known species based on the morphological characteristics and the DNA sequence data of internal transcribed spacer (ITS), the partial large subunit nuclear rDNA (LSU), the translation elongation factor 1-alpha gene (TEF1-α) and beta-tubulins (TUB2). Apiospora chiangraiense sp. nov. and two new host records (Ap. intestini and Ap. rasikravindra) are introduced here based on the morphological characteristics and multi-locus analyses. Additionally, thirteen species previously identified as Arthrinium are introduced as new combinations in Apiospora, viz., Ap. acutiapica, Ap. bambusicola, Ap. biserialis, Ap. cordylines, Ap. cyclobalanopsidis, Ap. euphorbiae, Ap. gelatinosa, Ap. locuta-pollinis, Ap. minutispora, Ap. pseudorasikravindrae, Ap. septate, Ap. setariae and Ap. sorghi.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA