Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(8): 1229-1248, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541186

RESUMEN

Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order, and emerging technologies, such as optical genome mapping and long-read DNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to research consortia focused on elucidating the underlying cause of rare unsolved genetic disorders.


Asunto(s)
Exoma , Pruebas Genéticas , Humanos , Exoma/genética , Análisis de Secuencia de ADN , Fenotipo , Secuenciación del Exoma , Enfermedades Raras
2.
Hum Genomics ; 18(1): 29, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38520002

RESUMEN

Chromosomal structural rearrangements consist of anomalies in genomic architecture that may or may not be associated with genetic material gain and loss. Evaluating the precise breakpoint is crucial from a diagnostic point of view, highlighting possible gene disruption and addressing to appropriate genotype-phenotype association. Structural rearrangements can either occur randomly within the genome or present with a recurrence, mainly due to peculiar genomic features of the surrounding regions. We report about three non-related individuals, harboring chromosomal structural rearrangements interrupting SETBP1, leading to gene haploinsufficiency. Two out of them resulted negative to Chromosomal Microarray Analysis (CMA), being the rearrangement balanced at a microarray resolution. The third one, presenting with a complex three-chromosome rearrangement, had been previously diagnosed with SETBP1 haploinsufficiency due to a partial gene deletion at one of the chromosomal breakpoints. We thoroughly characterized the rearrangements by means of Optical Genome Mapping (OGM) and Whole Genome Sequencing (WGS), providing details about the involved sequences and the underlying mechanisms. We propose structural variants as a recurrent event in SETBP1 haploinsufficiency, which may be overlooked by laboratory routine genomic analyses (CMA and Whole Exome Sequencing) or only partially determined when associated with genomic losses at breakpoints. We finally introduce a possible role of SETBP1 in a Noonan-like phenotype.


Asunto(s)
Aberraciones Cromosómicas , Haploinsuficiencia , Humanos , Haploinsuficiencia/genética , Reordenamiento Génico , Cromosomas , Secuenciación Completa del Genoma/métodos , Proteínas Portadoras/genética , Proteínas Nucleares/genética
3.
Genomics ; 116(5): 110894, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019410

RESUMEN

Technologies for detecting structural variation (SV) have advanced with the advent of long-read sequencing, which enables the validation of SV at a nucleotide level. Optical genome mapping (OGM), a technology based on physical mapping, can also provide comprehensive SVs analysis. We applied long-read whole genome sequencing (LRWGS) to accurately reconstruct breakpoint (BP) segments in a patient with complex chromosome 6q rearrangements that remained elusive by conventional karyotyping. Although all BPs were precisely identified by LRWGS, there were two possible ways to construct the BP segments in terms of their orders and orientations. Thus, we also used OGM analysis. Notably, OGM recognized entire inversions exceeding 500 kb in size, which LRWGS could not characterize. Consequently, here we successfully unveil the full genomic structure of this complex chromosomal 6q rearrangement and cryptic SVs through combined long-molecule genomic analyses, showcasing how LRWGS and OGM can complement each other in SV analysis.

4.
Int J Cancer ; 154(4): 607-614, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37776287

RESUMEN

Genetic predisposition is one of the major risk factors for pediatric cancer, with ~10% of children being carriers of a predisposing germline alteration. It is likely that this is the tip of the iceberg and many children are underdiagnosed, as most of the analysis focuses on single or short nucleotide variants, not considering the full spectrum of DNA alterations. Hence, we applied optical genome mapping (OGM) to our cohort of 34 pediatric cancer patients to perform an unbiased germline screening and analyze the frequency of structural variants (SVs) and their impact on cancer predisposition. All children were clinically highly suspicious for germline alterations (concomitant conditions or congenital anomalies, positive family cancer history, particular cancer type, synchronous or metachronous tumors), but whole exome sequencing (WES) had failed to detect pathogenic variants in cancer predisposing genes. OGM detected a median of 49 rare SVs (range 27-149) per patient. By analysis of 18 patient-parent trios, we identified three de novo SVs. Moreover, we discovered a likely pathogenic deletion of exon 3 in the known cancer predisposition gene BRCA2, and identified a duplication in RPA1, which might represent a new cancer predisposition gene. We conclude that optical genome mapping is a suitable tool for detecting potentially predisposing SVs in addition to WES in pediatric cancer patients.


Asunto(s)
Mutación de Línea Germinal , Neoplasias , Niño , Humanos , Predisposición Genética a la Enfermedad , Mutación , Neoplasias/genética , Mapeo Cromosómico
5.
Cancer Sci ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180374

RESUMEN

Genomic structural variants (SVs) play a pivotal role in driving the evolution of hematologic malignancies, particularly in leukemia, in which genetic abnormalities are crucial features. Detecting SVs is essential for achieving precise diagnosis and prognosis in these cases. Karyotyping, often complemented by fluorescence in situ hybridization and/or chromosomal microarray analysis, provides standard diagnostic outcomes for various types of SVs in front-line testing for leukemia. Recently, optical genome mapping (OGM) has emerged as a promising technique due to its ability to detect all SVs identified by other cytogenetic methods within one single assay. Furthermore, OGM has revealed additional clinically significant SVs in various clinical laboratories, underscoring its considerable potential for enhancing front-line testing in cases of leukemia. This review aims to elucidate the principles of conventional cytogenetic techniques and OGM, with a focus on the technical performance of OGM and its applications in diagnosing and prognosticating myelodysplastic syndromes, acute myeloid leukemia, acute lymphoblastic leukemia, and chronic lymphocytic leukemia.

6.
Am J Hum Genet ; 108(8): 1409-1422, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34237280

RESUMEN

Chromosomal aberrations including structural variations (SVs) are a major cause of human genetic diseases. Their detection in clinical routine still relies on standard cytogenetics. Drawbacks of these tests are a very low resolution (karyotyping) and the inability to detect balanced SVs or indicate the genomic localization and orientation of duplicated segments or insertions (copy number variant [CNV] microarrays). Here, we investigated the ability of optical genome mapping (OGM) to detect known constitutional chromosomal aberrations. Ultra-high-molecular-weight DNA was isolated from 85 blood or cultured cells and processed via OGM. A de novo genome assembly was performed followed by structural variant and CNV calling and annotation, and results were compared to known aberrations from standard-of-care tests (karyotype, FISH, and/or CNV microarray). In total, we analyzed 99 chromosomal aberrations, including seven aneuploidies, 19 deletions, 20 duplications, 34 translocations, six inversions, two insertions, six isochromosomes, one ring chromosome, and four complex rearrangements. Several of these variants encompass complex regions of the human genome involved in repeat-mediated microdeletion/microduplication syndromes. High-resolution OGM reached 100% concordance compared to standard assays for all aberrations with non-centromeric breakpoints. This proof-of-principle study demonstrates the ability of OGM to detect nearly all types of chromosomal aberrations. We also suggest suited filtering strategies to prioritize clinically relevant aberrations and discuss future improvements. These results highlight the potential for OGM to provide a cost-effective and easy-to-use alternative that would allow comprehensive detection of chromosomal aberrations and structural variants, which could give rise to an era of "next-generation cytogenetics."


Asunto(s)
Aberraciones Cromosómicas , Trastornos de los Cromosomas/diagnóstico , Mapeo Cromosómico/métodos , Análisis Citogenético/métodos , Variaciones en el Número de Copia de ADN , Genoma Humano , Análisis por Micromatrices/métodos , Trastornos de los Cromosomas/genética , Humanos , Cariotipificación
7.
Am J Hum Genet ; 108(8): 1423-1435, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34237281

RESUMEN

Somatic structural variants (SVs) are important drivers of cancer development and progression. In a diagnostic set-up, especially for hematological malignancies, the comprehensive analysis of all SVs in a given sample still requires a combination of cytogenetic techniques, including karyotyping, FISH, and CNV microarrays. We hypothesize that the combination of these classical approaches could be replaced by optical genome mapping (OGM). Samples from 52 individuals with a clinical diagnosis of a hematological malignancy, divided into simple (<5 aberrations, n = 36) and complex (≥5 aberrations, n = 16) cases, were processed for OGM, reaching on average: 283-fold genome coverage. OGM called a total of 918 high-confidence SVs per sample, of which, on average, 13 were rare and >100 kb. In addition, on average, 73 CNVs were called per sample, of which six were >5 Mb. For the 36 simple cases, all clinically reported aberrations were detected, including deletions, insertions, inversions, aneuploidies, and translocations. For the 16 complex cases, results were largely concordant between standard-of-care and OGM, but OGM often revealed higher complexity than previously recognized. Detailed technical comparison with standard-of-care tests showed high analytical validity of OGM, resulting in a sensitivity of 100% and a positive predictive value of >80%. Importantly, OGM resulted in a more complete assessment than any previous single test and most likely reported the most accurate underlying genomic architecture (e.g., for complex translocations, chromoanagenesis, and marker chromosomes). In conclusion, the excellent concordance of OGM with diagnostic standard assays demonstrates its potential to replace classical cytogenetic tests as well as to rapidly map novel leukemia drivers.


Asunto(s)
Aberraciones Cromosómicas , Mapeo Cromosómico/métodos , Análisis Citogenético/métodos , Variaciones en el Número de Copia de ADN , Genoma Humano , Neoplasias Hematológicas/diagnóstico , Análisis por Micromatrices/métodos , Neoplasias Hematológicas/genética , Humanos , Cariotipificación
8.
Mod Pathol ; 37(2): 100387, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38007157

RESUMEN

PATZ1-rearranged sarcomas are well-recognized tumors as part of the family of round cell sarcoma with EWSR1-non-ETS fusions. Whether PATZ1-rearranged central nervous system (CNS) tumors are a distinct tumor type is debatable. We thoroughly characterized a pediatric series of PATZ1-rearranged CNS tumors by chromosome microarray analysis (CMA), DNA methylation analysis, gene expression profiling and, when frozen tissue is available, optical genome mapping (OGM). The series consisted of 7 cases (M:F=1.3:1, 1-17 years, median 12). On MRI, the tumors were supratentorial in close relation to the lateral ventricles (intraventricular or iuxtaventricular), preferentially located in the occipital lobe. Two major histologic groups were identified: one (4 cases) with an overall glial appearance, indicated as "neuroepithelial" (NET) by analogy with the corresponding methylation class (MC); the other (3 cases) with a predominant spindle cell sarcoma morphology, indicated as "sarcomatous" (SM). A single distinct methylation cluster encompassing both groups was identified by multidimensional scaling analysis. Despite the epigenetic homogeneity, unsupervised clustering analysis of gene expression profiles revealed 2 distinct transcriptional subgroups correlating with the histologic phenotypes. Interestingly, genes implicated in epithelial-mesenchymal transition and extracellular matrix composition were enriched in the subgroup associated to the SM phenotype. The combined use of CMA and OGM enabled the identification of chromosome 22 chromothripsis in all cases suitable for the analyses, explaining the physical association of PATZ1 to EWSR1 or MN1. Six patients are currently disease-free (median follow-up 30 months, range 12-92). One patient of the SM group developed spinal metastases at 26 months from diagnosis and is currently receiving multimodal therapy (42 months). Our data suggest that PATZ1-CNS tumors are defined by chromosome 22 chromothripsis as causative of PATZ1 fusion, show peculiar MRI features (eg, relation to lateral ventricles, supratentorial frequently posterior site), and, although epigenetically homogenous, encompass 2 distinct histologic and transcriptional subgroups.


Asunto(s)
Cromotripsis , Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Niño , Factores de Transcripción/genética , Sarcoma/genética , Proteína EWS de Unión a ARN/genética , Sistema Nervioso Central/patología , Transcriptoma , Neoplasias de los Tejidos Blandos/genética , Proteínas Represoras/genética , Factores de Transcripción de Tipo Kruppel/genética
9.
Genet Med ; 26(4): 101070, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38376505

RESUMEN

Clinical cytogenomic studies of solid tumor samples are critical to the diagnosis, prognostication, and treatment selection for cancer patients. An overview of current cytogenomic techniques for solid tumor analysis is provided, including standards for sample preparation, clinical and technical considerations, and documentation of results. With the evolving technologies and their application in solid tumor analysis, these standards now include sequencing technology and optical genome mapping, in addition to the conventional cytogenomic methods, such as G-banded chromosome analysis, fluorescence in situ hybridization, and chromosomal microarray analysis. This updated Section E6.7-6.12 supersedes the previous Section E6.5-6.8 in Section E: Clinical Cytogenetics of the American College of Medical Genetics and Genomics Standards for Clinical Genetics Laboratories.


Asunto(s)
Genética Médica , Neoplasias , Humanos , Estados Unidos , Laboratorios , Hibridación Fluorescente in Situ/métodos , Aberraciones Cromosómicas , Neoplasias/diagnóstico , Neoplasias/genética , Cromosomas , Genómica
10.
Am J Med Genet A ; 194(2): 368-373, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37840436

RESUMEN

Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder due to pathogenic variants in Fibrillin-1 (FBN1) affecting nearly one in every 10,000 individuals. We report a 16-month-old female with early-onset MFS heterozygous for an 11.2 kb de novo duplication within the FBN1 gene. Tandem location of the duplication was further confirmed by optical genome mapping in addition to genetic sequencing and chromosomal microarray. This is the third reported case of a large multi-exon duplication in FBN1, and the only one confirmed to be in tandem. As the vast majority of pathogenic variants associated with MFS are point mutations, this expands the landscape of known FBN1 pathogenic variants and supports consistent use of genetic testing strategies that can detect large, indel-type variants.


Asunto(s)
Síndrome de Marfan , Humanos , Femenino , Lactante , Fibrilina-1/genética , Mutación , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Síndrome de Marfan/patología , Pruebas Genéticas , Mutación Puntual , Fibrilinas/genética , Adipoquinas/genética
11.
Am J Med Genet A ; : e63847, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189835

RESUMEN

In 1971, Ruvalcaba and colleagues reported a new syndrome in two brothers with severe intellectual disability, dysmorphic features, osseous dysplasia, and overlapping features in two intellectually disabled female maternal first cousins. No genetic cause was identified. We report on updated genomic studies and clinical follow-up in this family, including one of the original probands and their niece, whose own lifelong diagnostic odyssey had been unresolved for over four decades. Trio exome sequencing and copy number variant analysis in an original proband revealed an unbalanced chromosome translocation with a 3.18 Mb terminal deletion of 2q37.3qter and 6.54 Mb terminal duplication of 5q35.2qter. His unaffected sister had no evidence of a chromosomal imbalance, and her affected daughter has the reciprocal terminal duplication at 2q37.3qter and terminal deletion at 5q35.2qter. We used optical genome mapping and Hi-C analysis to further characterize the t(2;5)(q37.3;q35.2) translocation as well as RNA-seq analysis and genome-wide methylation profiling to elucidate the functional consequences of the genomic alterations. Candidate genes for the observed phenotypes include HDAC4, KIF1A, D2HGDH, FLT4, HNRNPH1, and NSD1.

12.
Am J Med Genet A ; : e63818, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041659

RESUMEN

Despite advances in next generation sequencing (NGS), genetic diagnoses remain elusive for many patients with neurologic syndromes. Long-read sequencing (LRS) and optical genome mapping (OGM) technologies improve upon existing capabilities in the detection and interpretation of structural variation in repetitive DNA, on a single haplotype, while also providing enhanced breakpoint resolution. We performed LRS and OGM on two patients with known chromosomal rearrangements and inconclusive Sanger or NGS. The first patient, who had epilepsy and developmental delay, had a complex translocation between two chromosomes that included insertion and inversion events. The second patient, who had a movement disorder, had an inversion on a single chromosome disrupted by multiple smaller inversions and insertions. Sequence level resolution of the rearrangements identified pathogenic breaks in noncoding sequence in or near known disease-causing genes with relevant neurologic phenotypes (MBD5, NKX2-1). These specific variants have not been reported previously, but expected molecular consequences are consistent with previously reported cases. As the use of LRS and OGM technologies for clinical testing increases and data analyses become more standardized, these methods along with multiomic data to validate noncoding variation effects will improve diagnostic yield and increase the proportion of probands with detectable pathogenic variants for known genes implicated in neurogenetic disease.

13.
Am J Med Genet A ; : e63814, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011850

RESUMEN

We report a 17-year-old male with supravalvular stenosis, initial failure to thrive and delayed early development, short stature, acromelia, dysmorphic facial features, hypertelorism, macrocephaly, syringomyelia, hypertension, and anxiety disorder. Fluorescent in situ hybridization (FISH), chromosomal microarray analysis (CMA), and exome sequencing (ES) were nondiagnostic. Combined optical genome mapping (OGM) and genome sequencing (GS) showed a complex rearrangement including an X chromosome with a 22.5 kb deletion in band Xq28 replaced by a 61.4 kb insertion of duplicated chromosome 7p22.3 material. The deletion removes the distal 3' untranslated region (UTR) of FUNDC2, the entire CMC4 and MTCP1, and the first five exons of BRCC3. Transcriptome analysis revealed absent expression of CMC4 and MTCP1 and BRCC3 with normal transcript level of FUNDC2. The inserted duplication includes only one known gene: UNCX. Similar overlapping Xq28 deletions have been reported to be associated with Moyamoya disease (MMD), short stature, hypergonadotropic hypogonadism (HH), and facial dysmorphism. Although he has short stature, our patient does not have signs of Moyamoya arteriopathy or hypogonadism. The structurally abnormal X chromosome was present in his mother, but not in his unaffected brother, maternal uncle, or maternal grandparents. We propose that the combination of his absent Xq28 and duplicated 7p22.3 genomic material is responsible for his phenotype. This case highlights the potential of combined OGM and GS for detecting complex structural variants compared with standard of care genetic testing such as CMA and ES.

14.
J Pathol ; 260(3): 329-338, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37203791

RESUMEN

The molecular characteristics of pediatric brain tumors have not only allowed for tumor subgrouping but have led to the introduction of novel treatment options for patients with specific tumor alterations. Therefore, an accurate histologic and molecular diagnosis is critical for optimized management of all pediatric patients with brain tumors, including central nervous system embryonal tumors. We present a case where optical genome mapping identified a ZNF532::NUTM1 fusion in a patient with a unique tumor best characterized histologically as a central nervous system embryonal tumor with rhabdoid features. Additional analyses including immunohistochemistry for NUT protein, methylation array, whole genome, and RNA-sequencing was done to confirm the presence of the fusion in the tumor. This is the first description of a pediatric patient with a ZNF532::NUTM1 fusion, yet the histology of this tumor is similar to that of adult cancers with ZNF::NUTM1 fusions reported in the literature. Although rare, the distinct pathology and underlying molecular characteristics of the ZNF532::NUTM1 tumor separates this from other embryonal tumors. Therefore, screening for this or similar NUTM1 rearrangements should be considered for all patients with unclassified central nervous system tumors with rhabdoid features to ensure accurate diagnosis. Ultimately, with additional cases, we may be able to better inform therapeutic management for these patients. © 2023 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de Células Germinales y Embrionarias , Proteínas de Fusión Oncogénica , Tumor Rabdoide , Niño , Humanos , Neoplasias Encefálicas/genética , Mapeo Cromosómico , Proteínas de Neoplasias/genética , Proteínas de Fusión Oncogénica/genética , Factores de Transcripción/genética , Tumor Rabdoide/genética , Neoplasias de Células Germinales y Embrionarias/genética
15.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39000022

RESUMEN

CDKL5 deficiency disorder (CDD) is an X-linked dominant epileptic encephalopathy, characterized by early-onset and drug-resistant seizures, psychomotor delay, and slight facial features. Genomic variants inactivating CDKL5 or impairing its protein product kinase activity have been reported, making next-generation sequencing (NGS) and chromosomal microarray analysis (CMA) the standard diagnostic tests. We report a suspicious case of CDD in a female child who tested negative upon NGS and CMA and harbored an X chromosome de novo pericentric inversion. The use of recently developed genomic techniques (optical genome mapping and whole-genome sequencing) allowed us to finely characterize the breakpoints, with one of them interrupting CDKL5 at intron 1. This is the fifth case of CDD reported in the scientific literature harboring a structural rearrangement on the X chromosome, providing evidence for the hypothesis that this type of anomaly can represent a recurrent pathogenic mechanism, whose frequency is likely underestimated, with it being overlooked by standard techniques. The identification of the molecular etiology of the disorder is extremely important in evaluating the pathological outcome and to better investigate the mechanisms associated with drug resistance, paving the way for the development of specific therapies. Karyotype and genomic techniques should be considered in all cases presenting with CDD without molecular confirmation.


Asunto(s)
Cromosomas Humanos X , Proteínas Serina-Treonina Quinasas , Humanos , Femenino , Cromosomas Humanos X/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Inversión Cromosómica , Síndromes Epilépticos/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Espasmos Infantiles
16.
Cytogenet Genome Res ; 163(1-2): 32-35, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37369188

RESUMEN

Optical genome mapping (OGM) appears as a new tool for matching standard cytogenetic methods (karyotype and microarray) into a single assay. The chromosomal region 11p15.5 harbours two differentially methylated regions, the imprinting centre regions 1 and 2 (ICR1, ICR2). Disturbances in both regions alter human growth and are associated with two imprinting disorders, Beckwith-Wiedemann (BWS) and Silver-Russell syndromes. Herein, we present a prenatal case with a triplication in 11p15.5, including the H19/IGF2 imprinted region, detected by microarray and OGM. A 30-year-old pregnant woman of 17 weeks of gestation was referred for prenatal karyotype and microarray study because of increased nuchal translucency, short femur, megabladder, hyperechogenic bowel, and renal ectasia. Microarray, OGM, and MS-MLPA were performed, and a tandem cis-triplication in 11p15.5 and hypermethylation of the ICR1 region, compatible with BWS was detected. OGM, with its power to detect all classes of structural variants, including copy number variants, at a higher resolution than traditional cytogenetic methods can play a significant role in prenatal care and management as a next-generation cytogenomic tool. This study further supports the hypotheses that the amplification/duplication-triplication of the H19/IGF2 region could be related to BWS if it is of paternal origin.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Síndrome de Silver-Russell , Embarazo , Femenino , Humanos , Adulto , Impresión Genómica , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Metilación de ADN/genética , Síndrome de Silver-Russell/genética , Mapeo Cromosómico , Factor II del Crecimiento Similar a la Insulina/genética
17.
Genet Med ; 25(3): 100345, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36524988

RESUMEN

PURPOSE: Structural variants (SVs) play an important role in inherited retinal diseases (IRD). Although the identification of SVs significantly improved upon the availability of genome sequencing, it is expected that involvement of SVs in IRDs is higher than anticipated. We revisited short-read genome sequencing data to enhance the identification of gene-disruptive SVs. METHODS: Optical genome mapping was performed to improve SV detection in short-read genome sequencing-negative cases. In addition, reanalysis of short-read genome sequencing data was performed to improve the interpretation of SVs and to re-establish SV prioritization criteria. RESULTS: In a monoallelic USH2A case, optical genome mapping identified a pericentric inversion (173 megabase), with 1 breakpoint disrupting USH2A. Retrospectively, the variant could be observed in genome sequencing data but was previously deemed false positive. Reanalysis of short-read genome sequencing data (427 IRD cases) was performed which yielded 30 pathogenic SVs affecting, among other genes, USH2A (n = 15), PRPF31 (n = 3), and EYS (n = 2). Eight of these (>25%) were overlooked during previous analyses. CONCLUSION: Critical evaluation of our findings allowed us to re-establish and improve our SV prioritization and interpretation guidelines, which will prevent missing pathogenic events in future analyses. Our data suggest that more attention should be paid to SV interpretation and the current contribution of SVs in IRDs is still underestimated.


Asunto(s)
Genoma Humano , Enfermedades de la Retina , Humanos , Estudios Retrospectivos , Genoma Humano/genética , Mapeo Cromosómico , Análisis de Secuencia , Enfermedades de la Retina/genética , Variación Estructural del Genoma , Proteínas del Ojo/genética
18.
Am J Med Genet A ; 191(7): 1849-1857, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37081310

RESUMEN

Partial deletions at chromosome 7q11.23 are causative for the autosomal-dominant Williams-Beuren syndrome (WBS), whereas the partial duplication of this region leads to the 7q11.23 duplication syndrome. Both syndromes are highly penetrant and occur with a frequency of 1:7500-10,000 (WBS) and 1:13,000-20,000 (7q11.23 duplication syndrome). They are associated with multiple organ defects, intellectual disability, and typical facial dysmorphisms showing broad phenotypic variability. The 7q11.23 region is susceptible to chromosomal rearrangements due to flanking segmental duplications and regions of long repetitive DNA segments. Here, we report on a family with two children affected by WBS and clinically unaffected parents. Interestingly, metaphase fluorescence in situ hybridization (FISH) revealed a deletion on 7q11.23 in the father. Intensive genetic testing, using interphase FISH, whole genome sequencing and optical genome mapping led to the confirmation of a 1.5 Mb deletion at one 7q11.23 allele and the identification of a reciprocal 1.8 Mb duplication at the other allele. This finding is highly important regarding genetic counseling in this family. The father is a silent carrier for two syndromic disorders, thus his risk to transmit a disease-causing allele is 100%. To the best of our knowledge we, here, report on the first case in which the phenotype of a microdeletion/microduplication syndrome was compensated by its reciprocal counterpart.


Asunto(s)
Síndrome de Williams , Humanos , Hibridación Fluorescente in Situ , Síndrome de Williams/genética , Pruebas Genéticas , Fenotipo , Aberraciones Cromosómicas , Cromosomas Humanos Par 7/genética , Deleción Cromosómica
19.
Acta Obstet Gynecol Scand ; 102(8): 1053-1062, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37366235

RESUMEN

INTRODUCTION: Chromosomal aberrations are the most important etiological factors for birth defects. Optical genome mapping is a novel cytogenetic tool for detecting a broad range of chromosomal aberrations in a single assay, but relevant clinical feasibility studies of optical genome mapping in prenatal diagnosis are limited. MATERIAL AND METHODS: We retrospectively performed optical genome mapping analysis of amniotic fluid samples from 34 fetuses with various clinical indications and chromosomal aberrations detected through standard-of-care technologies, including karyotyping, fluorescence in situ hybridization, and/or chromosomal microarray analysis. RESULTS: In total, we analyzed 46 chromosomal aberrations from 34 amniotic fluid samples, including 5 aneuploidies, 10 large copy number variations, 27 microdeletions/microduplications, 2 translocations, 1 isochromosome, and 1 region of homozygosity. Overall, 45 chromosomal aberrations could be confirmed by our customized analysis strategy. Optical genome mapping reached 97.8% concordant clinical diagnosis with standard-of-care methods for all chromosomal aberrations in a blinded fashion. Compared with the widely used chromosomal microarray analysis, optical genome mapping additionally determined the relative orientation and position of repetitive segments for seven cases with duplications or triplications. The additional information provided by optical genome mapping will be conducive to characterizing complex chromosomal rearrangements and allowing us to propose mechanisms to explain rearrangements and predict the genetic recurrence risk. CONCLUSIONS: Our study highlights that optical genome mapping can provide comprehensive and accurate information on chromosomal aberrations in a single test, suggesting that optical genome mapping has the potential to become a promising cytogenetic tool for prenatal diagnosis.


Asunto(s)
Trastornos de los Cromosomas , Embarazo , Femenino , Humanos , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Hibridación Fluorescente in Situ , Variaciones en el Número de Copia de ADN , Estudios Retrospectivos , Aberraciones Cromosómicas , Diagnóstico Prenatal/métodos , Mapeo Cromosómico
20.
Int J Mol Sci ; 24(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37686382

RESUMEN

Neurofibromatosis type 1 (NF1) is a clinically heterogeneous neurocutaneous disorder inherited in autosomal dominant manner. Approximately 5-10% of the cases are caused by NF1 microdeletions involving the NF1 gene and its flanking regions. Microdeletions, which lead to more severe clinical manifestations, can be subclassified into four different types (type 1, 2, 3 and atypical) according to their size, the genomic location of the breakpoints and the number of genes included within the deletion. Besides the prominent hallmarks of NF1, patients with NF1 microdeletions frequently exhibit specific additional clinical manifestations like dysmorphic facial features, macrocephaly, overgrowth, global developmental delay, cognitive disability and an increased risk of malignancies. It is important to identify the genes co-deleted with NF1, because they are likely to have an effect on the clinical manifestation. Multiplex ligation-dependent probe amplification (MLPA) and microarray analysis are the primary techniques for the investigation of NF1 microdeletions. However, based on previous research, optical genome mapping (OGM) could also serve as an alternative method to identify copy number variations (CNVs). Here, we present a case with NF1 microdeletion identified by means of OGM and demonstrate that this novel technology is a suitable tool for the identification and classification of the NF1 microdeletions.


Asunto(s)
Megalencefalia , Neurofibromatosis 1 , Humanos , Neurofibromatosis 1/genética , Variaciones en el Número de Copia de ADN , Genes de Neurofibromatosis 1 , Mapeo Cromosómico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA