Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Virus Genes ; 60(1): 100-104, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182930

RESUMEN

Bluetongue disease is a reportable animal disease that affects wild and farmed ruminants, including white-tailed deer (WTD). This report documents the clinical findings, ancillary diagnostics, and genomic characterization of a novel reassortant bluetongue virus serotype 2 (BTV-2) strain isolated from a dead Florida farmed WTD in 2022. Our analyses support that this BTV-2 strain likely stemmed from the acquisition of genome segments from co-circulating BTV strains in Florida and Louisiana. In addition, our analyses also indicate that genetically uncharacterized BTV strains may be circulating in the Southeastern USA; however, the identity and reassortant status of these BTV strains cannot be determined based on the VP2 and VP5 genome sequences. Hence, continued surveillance based on complete genome characterization is needed to understand the genetic diversity of BTV strains in this region and the potential threat they may pose to the health of deer and other ruminants.


Asunto(s)
Virus de la Lengua Azul , Ciervos , Animales , Florida , Virus de la Lengua Azul/genética , Serogrupo
2.
Risk Anal ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955987

RESUMEN

Europe faces regular introductions and reintroductions of bluetongue virus (BTV) serotypes, most recently exemplified by the incursion of serotype 3 in the Netherlands. Although the long-distance wind dispersal of the disease vector, Culicoides spp., is recognized as a virus introduction pathway, it remains understudied in risk assessments. A Quantitative Risk Assessment framework was developed to estimate the risk of BTV-3 incursion into mainland Europe from Sardinia, where the virus has been present since 2018. We used an atmospheric transport model (HYbrid Single-Particle Lagrangian Integrated Trajectory) to infer the probability of airborne dispersion of the insect vector. Epidemiological disease parameters quantified the virus prevalence in vector population in Sardinia and its potential first transmission after introduction in a new area. When assuming a 24h maximal flight duration, the risk of BTV introduction from Sardinia is limited to the Mediterranean Basin, mainly affecting the southwestern area of the Italian Peninsula, Sicily, Malta, and Corsica. The risk extends to the northern and central parts of Italy, Balearic archipelago, and mainland France and Spain, mostly when maximal flight duration is longer than 24h. Additional knowledge on vector flight conditions and Obsoletus complex-specific parameters could improve the robustness of the model. Providing both spatial and temporal insights into BTV introduction risks, our framework is a key tool to guide global surveillance and preparedness against epizootics.

3.
J Gen Virol ; 104(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37018120

RESUMEN

Sand flies (Diptera: Phlebotominae) are proven vectors of various pathogens of medical and veterinary importance. Although mostly known for their pivotal role in the transmission of parasitic protists of the genus Leishmania that cause leishmaniases, they are also proven or suspected vectors of many arboviruses, some of which threaten human and animal health, causing disorders such as human encephalitis (Chandipura virus) or serious diseases of domestic animals (vesicular stomatitis viruses). We reviewed the literature to summarize the current published information on viruses detected in or isolated from phlebotomine sand flies, excluding the family Phenuiviridae with the genus Phlebovirus, as these have been well investigated and up-to-date reviews are available. Sand fly-borne viruses from four other families (Rhabdoviridae, Flaviviridae, Reoviridae and Peribunyaviridae) and one unclassified group (Negevirus) are reviewed for the first time regarding their distribution in nature, host and vector specificity, and potential natural transmission cycles.


Asunto(s)
Arbovirus , Phlebovirus , Psychodidae , Rhabdoviridae , Animales , Humanos , Animales Domésticos
4.
J Virol ; 96(13): e0053122, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35727032

RESUMEN

Segmented RNA viruses are a taxonomically diverse group that can infect plant, wildlife, livestock and human hosts. A shared feature of these viruses is the ability to exchange genome segments during coinfection of a host by a process termed "reassortment." Reassortment enables rapid evolutionary change, but where transmission involves a biological arthropod vector, this change is constrained by the selection pressures imposed by the requirement for replication in two evolutionarily distant hosts. In this study, we use an in vivo, host-arbovirus-vector model to investigate the impact of reassortment on two phenotypic traits, virus infection rate in the vector and virulence in the host. Bluetongue virus (BTV) (Reoviridae) is the causative agent of bluetongue (BT), an economically important disease of domestic and wild ruminants and deer. The genome of BTV comprises 10 linear segments of dsRNA, and the virus is transmitted between ruminants by Culicoides biting midges (Diptera: Ceratopogonidae). Five strains of BTV representing three serotypes (BTV-1, BTV-4, and BTV-8) were isolated from naturally infected ruminants in Europe and ancestral/reassortant lineage status assigned through full genome sequencing. Each strain was then assessed in parallel for the ability to replicate in vector Culicoides and to cause BT in sheep. Our results demonstrate that two reassortment strains, which themselves became established in the field, had obtained high replication ability in C. sonorensis from one of the ancestral virus strains, which allowed inferences of the genome segments conferring this phenotypic trait. IMPORTANCE Reassortment between virus strains can lead to major shifts in the transmission parameters and virulence of segmented RNA viruses, with consequences for spread, persistence, and impact. The ability of these pathogens to adapt rapidly to their environment through this mechanism presents a major challenge in defining the conditions under which emergence can occur. Utilizing a representative mammalian host-insect vector infection and transmission model, we provide direct evidence of this phenomenon in closely related ancestral and reassortant strains of BTV. Our results demonstrate that efficient infection of Culicoides observed for one of three ancestral BTV strains was also evident in two reassortant strains that had subsequently emerged in the same ecosystem.


Asunto(s)
Vectores Artrópodos , Virus de la Lengua Azul , Lengua Azul , Ceratopogonidae , Enfermedades de las Ovejas , Animales , Vectores Artrópodos/virología , Lengua Azul/transmisión , Lengua Azul/virología , Virus de la Lengua Azul/clasificación , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/patogenicidad , Ceratopogonidae/virología , Ciervos , Fenotipo , Virus Reordenados/metabolismo , Ovinos , Enfermedades de las Ovejas/transmisión , Enfermedades de las Ovejas/virología , Replicación Viral
5.
Virus Genes ; 59(2): 223-233, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36441333

RESUMEN

In July 2019, a novel viral strain (JH2019C603) was isolated from sentinel cattle in Jinghong City, in the subtropical region of Yunnan Province, China. The virus replicated and caused cytopathological effects in both Aedes albopictus (C6/36) and Baby Hamster Syrian Kidney (BHK-21) cells. Agarose gel electrophoresis analysis revealed a viral genome comprised of 10 segments of double-stranded RNA, with a 1-2-2-1-1-1-1-1 migration pattern. Complete genome sequences of the JH2019C603 virus were determined through full-length cDNA amplification. Phylogenetic analysis based on the amino acid (aa) sequences of RNA-dependent RNA Polymerase (Pol), Major subcore (T2) and Major core-surface (T13) showed that JH2019C603 clustered with Yonaguni orbivirus (YONOV) from Japan, with aa identities relative to YONOV of 97.7% (Pol), 99.0% (T2) and 98.5% (T13). However, phylogenetic analysis based on the aa sequences of the outer capsid protein one and two (OC1 and OC2) showed that JH2019C603 formed an independent branch in the phylogenetic tree, and its aa identity with YONOV was only 55.4% (OC1) and 80.8% (OC2), respectively. Compared with the prototype of YONOV, a notable sequence deletion was observed in the 3' non-coding region of NS1, with the NS1 of JH2019C603 encoded within segment 7 (Seg-7), in contrast to YONOV, which contains NS1 in Seg-6. These results indicate that JH2019C603 belongs to the YONOV lineage and might be a novel serotype or a highly variant strain of YONOV. These findings will facilitate the identification of new isolates and clarify their geographical distribution, epidemiology, genetic diversity and possible disease associations.


Asunto(s)
Orbivirus , Cricetinae , Bovinos , Animales , China , Filogenia , Serogrupo , Secuencia de Aminoácidos , Genoma Viral/genética , ARN Viral/genética
6.
Virus Genes ; 59(5): 732-740, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37439882

RESUMEN

Hemorrhagic diseases caused by epizootic hemorrhagic disease virus or by bluetongue virus (BTV) are the most important orbivirus diseases affecting ruminants, including white-tailed deer (WTD). Bluetongue virus is of particular concern for farmed WTD in Florida, given its lethality and its wide distribution throughout the state. This study reports the clinical findings, ancillary diagnostics, and genomic characterization of two BTV serotype 1 strains isolated from two farmed WTD, from two different farms in Florida in 2019 and 2022. Phylogenetic and genetic analyses indicated that these two novel BTV-1 strains were reassortants. In addition, our analyses reveal that most genome segments of these strains were acquired from BTVs previously detected in ruminants in Florida, substantiating their endemism in the Southeastern U.S. Our findings underscore the need for additional research to determine the genetic diversity of BTV strains in Florida, their prevalence, and the potential risk of new BTV strains to WTD and other ruminants.


Asunto(s)
Virus de la Lengua Azul , Lengua Azul , Ciervos , Virus de la Enfermedad Hemorrágica Epizoótica , Infecciones por Reoviridae , Ovinos , Animales , Virus de la Lengua Azul/genética , Florida , Serogrupo , Granjas , Filogenia , Rumiantes , Virus de la Enfermedad Hemorrágica Epizoótica/genética , Infecciones por Reoviridae/veterinaria
7.
Anim Biotechnol ; 34(9): 4968-4977, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37222605

RESUMEN

Bluetongue (BT) disease is a viral, insect borne, noncontagious illness of small ruminants caused by Orbivirus, impacting huge economic loss worldwide. The existing BT diagnostic techniques are costly, time-consuming and require both specialized equipment and also skilled personnel. So there is need to develop a rapid, sensitive, on site detection assay for diagnosis of BT. This study utilized secondary antibody derivatized Gold nanoprobes for rapid and sensitive detection of BT over lateral flow device (LFD). The detection limit for this assay was found 1.875 µg of BT IgG/ml and a comparison between LFD and indirect ELISA was performed and the sensitivity and specificity was found at 96% and 99.23%, respectively, with observed kappa value of 0.952. This developed LFD may therefore offer a quick, affordable and accurate diagnosis of BT disease at the field level.


Asunto(s)
Virus de la Lengua Azul , Lengua Azul , Enfermedades de las Ovejas , Ovinos , Animales , Lengua Azul/diagnóstico , Rumiantes , Anticuerpos , Ensayo de Inmunoadsorción Enzimática
8.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047816

RESUMEN

Bioinformatic analyses have predicted that orbiviruses encode an additional, small non-structural protein (NS5) from a secondary open reading frame on genome segment 10. However, this protein has not previously been detected in infected mammalian or insect cells. NS5-specific antibodies were generated in mice and were used to identify NS5 synthesised in orbivirus-infected BSR cells or cells transfected with NS5 expression plasmids. Confocal microscopy shows that although NS5 accumulates in the nucleus, particularly in the nucleolus, which becomes disrupted, it also appears in the cell cytoplasm, co-localising with mitochondria. NS5 helps to prevent the degradation of ribosomal RNAs during infection and reduces host-cell protein synthesis However, it helps to extend cell viability by supporting viral protein synthesis and virus replication. Pulldown studies showed that NS5 binds to ssRNAs and supercoiled DNAs and demonstrates interactions with ZBP1, suggesting that it modulates host-cell responses.


Asunto(s)
Orbivirus , Animales , Ratones , Núcleo Celular/metabolismo , ADN , Orbivirus/genética , Orbivirus/metabolismo , ARN Viral/genética , Proteínas de Unión al ARN , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
9.
Microb Ecol ; 83(3): 739-752, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34173031

RESUMEN

RNA viruses are extremely diverse and rapidly evolving in various organisms. Our knowledge on viral evolution with interacted hosts in the manner of ecology is still limited. In the agricultural ecosystem, invasive insect species are posing a great threat to sustainable crop production. Among them, fruit flies (Diptera: Tephritidae Bactrocera and Zeugodacus) are destructive to fruits and vegetables, which are also closely related and often share similar ecological niches. Thus, they are ideal models for investigating RNA virome dynamics in host species. Using meta-transcriptomics, we found 39 viral sequences in samples from 12 fly species. These viral species represented the diversity of the viromes including Dicistroviridae, negev-like virus clades, Thika virus clades, Solemoviridae, Narnaviridae, Nodaviridae, Iflaviridae, Orthomyxoviridae, Bunyavirales, Partitiviridae, and Reoviridae. In particular, dicistrovirus, negev-like virus, orthomyxovirus, and orbivirus were common in over four of the fly species, which suggests a positive interaction between fly viromes that exist under the same ecological conditions. For most of the viruses, the virus-derived small RNAs displayed significantly high peaks in 21 nt and were symmetrically distributed throughout the viral genome. These results suggest that infection by these viruses can activate the host's RNAi immunity. Our study provides RNA virome diversity and evidence on their infection activity in ecologically associated invasive fruit fly species, which could help our understanding of interactions between complex species and viruses.


Asunto(s)
Virus ARN , Tephritidae , Animales , Ecosistema , Kenia , Virus ARN/genética , Transcriptoma
10.
Med Vet Entomol ; 36(3): 320-328, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35266572

RESUMEN

Culicoides midges are hematophagous insects that transmit arboviruses of veterinary importance. These viruses include bluetongue virus (BTV) and epizootic hemorrhagic fever virus (EHDV). The endosymbiont Wolbachia pipientis Hertig spreads rapidly through insect host populations and has been demonstrated to inhibit viral pathogen transmission in multiple mosquito vectors. Here, we have demonstrated a replication inhibitory effect on BTV and EHDV in a Wolbachia (wAlbB strain)-infected Culicoides sonorensis Wirth and Jones W8 cell line. Viral replication was significantly reduced by day 5 for BTV and by day 2 for EHDV as detected by real-time polymerase chain reaction (RT-qPCR) of the non-structural NS3 gene of both viruses. Evaluation of innate cellular immune responses as a cause of the inhibitory effect showed responses associated with BTV but not with EHDV infection. Wolbachia density also did not play a role in the observed pathogen inhibitory effects, and an alternative hypothesis is suggested. Applications of Wolbachia-mediated pathogen interference to impact disease transmission by Culicoides midges are discussed.


Asunto(s)
Virus de la Lengua Azul , Lengua Azul , Ceratopogonidae , Virus del Dengue , Enfermedades de las Ovejas , Wolbachia , Animales , Virus de la Lengua Azul/fisiología , Ceratopogonidae/fisiología , Virus del Dengue/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Ovinos , Wolbachia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA