Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(7): e0071424, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-38940583

RESUMEN

Oligotrophic deep-water lakes are unique and sensitive ecosystems with limited nutrient availability. Understanding bacterial communities within these lakes is crucial for assessing ecosystem health, biogeochemical cycling, and responses to environmental changes. In this study, we investigated the seasonal and vertical dynamics of both free-living (FL) and particle-attached (PA) bacteria in Lake Fuxian, a typical oligotrophic deep freshwater lake in southeast China. Our findings revealed distinct seasonal and vertical dynamics of FL and PA bacterial communities, driven by similar physiochemical environmental factors. PA bacteria exhibited higher α- and ß-diversity and were enriched with Proteobacteria, Cyanobacteria, Firmicutes, Patescibacteria, Planctomycetota, and Verrucomicrobiota, while FL bacteria were enriched with Actinobacteria and Bacteroidota. FL bacteria showed enrichment in putative functions related to chemoheterotrophy and aerobic anoxygenic photosynthesis, whereas the PA fraction was enriched with intracellular parasites (mainly contributed by Rickettsiales, Chlamydiales, and Legionellales) and nitrogen metabolism functions. Deterministic processes predominantly shaped the assembly of both FL and PA bacterial communities, with stochastic processes playing a greater role in the FL fraction. Network analysis revealed extensive species interactions, with a higher proportion of positively correlated edges in the PA network, indicating mutualistic or cooperative interactions. Cyanobium, Comamonadaceae, and Roseomonas were identified as keystone taxa in the PA network, underscoring potential cooperation between autotrophic and heterotrophic bacteria in organic particle microhabitats. Overall, the disparities in bacterial diversity, community composition, putative function, and network characteristics between FL and PA fractions highlight their adaptation to distinct ecological niches within these unique lake ecosystems.IMPORTANCEUnderstanding the diversity of microbial communities, their assembly mechanisms, and their responses to environmental changes is fundamental to the study of aquatic microbial ecology. Oligotrophic deep-water lakes are fragile ecosystems with limited nutrient resources, rendering them highly susceptible to environmental fluctuations. Examining different bacterial types within these lakes offers valuable insights into the intricate mechanisms governing community dynamics and adaptation strategies across various scales. In our investigation of oligotrophic deep freshwater Lake Fuxian in China, we explored the seasonal and vertical dynamics of two bacterial types: free-living (FL) and particle-attached (PA). Our findings unveiled distinct patterns in the diversity, composition, and putative functions of these bacteria, all shaped by environmental factors. Understanding these subtleties provides insight into bacterial interactions, thereby influencing the overall ecosystem functioning. Ultimately, our research illuminates the adaptation and roles of FL and PA bacteria within these unique lake environments, contributing significantly to our broader comprehension of ecosystem stability and health.


Asunto(s)
Bacterias , Lagos , Microbiota , Lagos/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , China , Ecosistema , Estaciones del Año
2.
Microb Ecol ; 87(1): 96, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046558

RESUMEN

In aquatic ecosystems with low nutrient levels, organic aggregates (OAs) act as nutrient hotspots, hosting a diverse range of microbial species compared to those in the water column. Lake eutrophication, marked by intensified and prolonged cyanobacterial blooms, significantly impacts material and energy cycling processes, potentially altering the ecological traits of both free-living (FL) and particle-attached (PA) bacteria. However, the extent to which observed patterns of FL and PA bacterial diversity, community assembly, and stability extend to hypereutrophic lakes remains understudied. To address this gap, we investigated bacterial diversity, composition, assembly processes, and stability within hypereutrophic Lake Xingyun. Our results revealed that FL bacterial communities exhibited higher α-diversity than PA counterparts, coupled with discernible taxonomic compositions. Both bacterial communities showed distinct seasonality, influenced by cyanobacterial bloom intensity. Environmental factors accounted for 71.1% and 54.2% of the variation among FL and PA bacteria, respectively. The assembly of the PA bacterial community was predominantly stochastic, while FL assembly was more deterministic. The FL network demonstrated greater stability, complexity, and negative interactions, indicative of competitive relationships, while the PA network showed a prevalence of positive correlations, suggesting mutualistic interactions. Importantly, these findings differ from observations in oligotrophic, mesotrophic, and eutrophic lakes. Overall, this research provides valuable insights into the interplay among bacterial fractions, enhancing our understanding of nutrient status and cyanobacterial blooms in shaping bacterial communities.


Asunto(s)
Bacterias , Biodiversidad , Cianobacterias , Eutrofización , Lagos , Microbiota , Lagos/microbiología , Cianobacterias/genética , Cianobacterias/clasificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Estaciones del Año , Ecosistema , China
3.
Can J Microbiol ; 69(6): 228-239, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36753712

RESUMEN

To elucidate the effects of environmental heterogeneity on diversity, composition, and degree of overlap between free-living (FL) and particle-attached (PA) bacteria, we sampled large, shallow, eutrophic Lake Taihu, China across gradients spanning riverine inflow, cyanobacterial blooms, and the open limnetic area. Using high-throughput sequencing of the 16S rRNA gene, we show that (i) bacterial communities near riverine inflow had high α-diversity and a high degree of overlap between FL and PA lifestyles, (ii) communities in cyanobacterial blooms have reduced α-diversity within the PA lifestyle, and (iii) communities from the limnetic area had the lowest bacterial α-diversity within the FL lifestyle and a medium degree of overlap between the FL and PA lifestyles. Redundancy analysis showed that the variation of the FL bacterial community was shaped by suspended solids and total phosphorous, while the variation of the PA bacterial community was shaped by suspended solids, dissolved oxygen, and the percentage of organic matter in suspended solids. This study highlights the importance of environmental heterogeneity, riverine input, cyanobacterial blooms, and nutrient status on the spatial distribution patterns of FL and PA bacterial communities in freshwater lakes.


Asunto(s)
Cianobacterias , Lagos , Lagos/microbiología , ARN Ribosómico 16S/genética , Biodiversidad , Cianobacterias/genética , China , Eutrofización
4.
Huan Jing Ke Xue ; 44(4): 2052-2061, 2023 Apr 08.
Artículo en Zh | MEDLINE | ID: mdl-37040955

RESUMEN

Organic aggregates (OA) are the important circulation hub of matter and energy in aquatic ecosystems. However, the comparison studies on OA in lakes with different nutrient levels are limited. In this study, spatio-temporal abundances of OA and OA-attached bacteria (OAB) in oligotrophic Lake Fuxian, mesotrophic Lake Tianmu, middle-eutrophic Lake Taihu, and hyper-eutrophic Lake Xingyun were investigated in different seasons during 2019-2021 using a scanning electron microscope, epi-fluorescence microscope, and flow cytometry. The results showed that:① the annual average abundances of OA in Lake Fuxian, Lake Tianmu, Lake Taihu, and Lake Xingyun were 1.4×104, 7.0×104, 27.7×104, and 16.0×104 ind·mL-1, whereas the annual average abundances of OAB in the four lakes were 0.3×106, 1.9×106, 4.9×106, and 6.2×106 cells·mL-1. The ratios of OAB:total bacteria (TB) in the four lakes were 30%, 31%, 50%, and 38%, respectively. ② OA abundance in summer was significantly higher than that in autumn and winter; however, the ratio of OAB:TB in summer was approximately 26%, which was significantly lower than that in the other three seasons. ③ Lake nutrient status was the most important environmental factor that affected the abundance variations of OA and OAB, accounting for 50% and 68% of the spatio-temporal variations in OA and OAB abundances. ④ Nutrient and organic matters were enriched in OA, especially in Lake Xingyun; the proportions of particle phosphorous, particle nitrogen, and organic matters in this lake were as high as 69%, 59%, and 79%, respectively. Under the circumstance of future climate change and the expansion of lake algal blooms, the effects of algal-originated OA in the degradation of organic matters and nutrient recycling would be increased.


Asunto(s)
Ecosistema , Lagos , Estaciones del Año , Eutrofización , Fósforo
5.
Ecol Evol ; 6(20): 7397-7408, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-28725407

RESUMEN

Bivalves process large volumes of water, leading to their accumulation of bacteria, including potential human pathogens (e.g., vibrios). These bacteria are captured at low efficiencies when freely suspended in the water column, but they also attach to marine aggregates, which are captured with near 100% efficiency. For this reason, and because they are often enriched with heterotrophic bacteria, marine aggregates have been hypothesized to function as important transporters of bacteria into bivalves. The relative contribution of aggregates and unattached bacteria to the accumulation of these cells, however, is unknown. We developed an agent-based model to simulate accumulation of vibrio-type bacteria in oysters. Simulations were conducted over a realistic range of concentrations of bacteria and aggregates and incorporated the dependence of pseudofeces production on particulate matter. The model shows that the contribution of aggregate-attached bacteria depends strongly on the unattached bacteria, which form the colonization pool for aggregates and are directly captured by the simulated oysters. The concentration of aggregates is also important, but its effect depends on the concentration of unattached bacteria. At high bacterial concentrations, aggregates contribute the majority of bacteria in the oysters. At low concentrations of unattached bacteria, aggregates have a neutral or even a slightly negative effect on bacterial accumulation. These results provide the first evidence suggesting that the concentration of aggregates could influence uptake of pathogenic bacteria in bivalves and show that the tendency of a bacterial species to remain attached to aggregates is a key factor for understanding species-specific accumulation.

6.
Ecol Evol ; 3(13): 4300-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24340173

RESUMEN

Organic aggregates provide a favorable habitat for aquatic microbes, are efficiently filtered by shellfish, and may play a major role in the dynamics of aquatic pathogens. Quantifying this role requires understanding how pathogen abundance in the water and aggregate size interact to determine the presence and abundance of pathogen cells on individual aggregates. We build upon current understanding of the dynamics of bacteria and bacterial grazers on aggregates to develop a model for the dynamics of a bacterial pathogen species. The model accounts for the importance of stochasticity and the balance between colonization and extinction. Simulation results suggest that while colonization increases linearly with background density and aggregate size, extinction rates are expected to be nonlinear on small aggregates in a low background density of the pathogen. Under these conditions, we predict lower probabilities of pathogen presence and reduced abundance on aggregates compared with predictions based solely on colonization. These results suggest that the importance of aggregates to the dynamics of aquatic bacterial pathogens may be dependent on the interaction between aggregate size and background pathogen density, and that these interactions are strongly influenced by ecological interactions and pathogen traits. The model provides testable predictions and can be a useful tool for exploring how species-specific differences in pathogen traits may alter the effect of aggregates on disease transmission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA