Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Pathol ; 264(1): 101-111, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39022853

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver condition that often progresses to more advanced stages, such as metabolic dysfunction-associated steatohepatitis (MASH). MASH is characterized by inflammation and hepatocellular ballooning, in addition to hepatic steatosis. Despite the relatively high incidence of MASH in the population and its potential detrimental effects on human health, this liver disease is still not fully understood from a pathophysiological perspective. Deregulation of polyamine levels has been detected in various pathological conditions, including neurodegenerative diseases, inflammation, and cancer. However, the role of the polyamine pathway in chronic liver disorders such as MASLD has not been explored. In this study, we measured the expression of liver ornithine decarboxylase (ODC1), the rate-limiting enzyme responsible for the production of putrescine, and the hepatic levels of putrescine, in a preclinical model of MASH as well as in liver biopsies of patients with obesity undergoing bariatric surgery. Our findings reveal that expression of ODC1 and the levels of putrescine, but not spermidine nor spermine, are elevated in hepatic tissue of both diet-induced MASH mice and patients with biopsy-proven MASH compared with control mice and patients without MASH, respectively. Furthermore, we found that the levels of putrescine were positively associated with higher aspartate aminotransferase concentrations in serum and an increased SAF score (steatosis, activity, fibrosis). Additionally, in in vitro assays using human HepG2 cells, we demonstrate that elevated levels of putrescine exacerbate the cellular response to palmitic acid, leading to decreased cell viability and increased release of CK-18. Our results support an association between the expression of ODC1 and the progression of MASLD, which could have translational relevance in understanding the onset of this disease. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Progresión de la Enfermedad , Hígado , Ornitina Descarboxilasa , Putrescina , Animales , Humanos , Putrescina/metabolismo , Ornitina Descarboxilasa/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Hígado Graso/metabolismo , Hígado Graso/patología , Ratones , Modelos Animales de Enfermedad , Femenino , Persona de Mediana Edad , Obesidad/metabolismo , Obesidad/complicaciones , Células Hep G2 , Adulto
2.
Proc Natl Acad Sci U S A ; 119(45): e2214900119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36279426

RESUMEN

Group 3 innate lymphoid cells (ILC3s) are RORγT+ lymphocytes that are predominately enriched in mucosal tissues and produce IL-22 and IL-17A. They are the innate counterparts of Th17 cells. While Th17 lymphocytes utilize unique metabolic pathways in their differentiation program, it is unknown whether ILC3s make similar metabolic adaptations. We employed single-cell RNA sequencing and metabolomic profiling of intestinal ILC subsets to identify an enrichment of polyamine biosynthesis in ILC3s, converging on the rate-limiting enzyme ornithine decarboxylase (ODC1). In vitro and in vivo studies demonstrated that exogenous supplementation with the polyamine putrescine or its biosynthetic substrate, ornithine, enhanced ILC3 production of IL-22. Conditional deletion of ODC1 in ILC3s impaired mouse antibacterial defense against Citrobacter rodentium infection, which was associated with a decrease in anti-microbial peptide production by the intestinal epithelium. Furthermore, in a model of anti-CD40 colitis, deficiency of ODC1 in ILC3s markedly reduced the production of IL-22 and severity of inflammatory colitis. We conclude that ILC3-intrinsic polyamine biosynthesis facilitates efficient defense against enteric pathogens as well as exacerbates autoimmune colitis, thus representing an attractive target to modulate ILC3 function in intestinal disease.


Asunto(s)
Colitis , Infecciones por Enterobacteriaceae , Ratones , Animales , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Interleucina-17 , Ornitina Descarboxilasa/genética , Inmunidad Innata , Putrescina , Colitis/genética , Infecciones por Enterobacteriaceae/genética , Células Th17/metabolismo , Ornitina , Antibacterianos , Interleucina-22
3.
J Mol Recognit ; 36(7): e3021, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37092713

RESUMEN

Visceral leishmaniasis (VL) is caused by Leishmania donovani (Ld), and most cases occur in Brazil, East Africa, and India. The treatment for VL is limited and has many adverse effects. The development of safer and more efficacious drugs is urgently needed. Drug repurposing is one of the best processes to repurpose existing drugs. Ornithine decarboxylase (ODC) is an important target against L. donovani in the polyamine biosynthesis pathway. In this study, we have modeled the 3D structure of ODC and performed high-throughput virtual screening of 8630 ZINC database ligands against Leishmania donovani ornithine decarboxylase (Ld ODC), selecting 45 ligands based on their high binding score. It is further validated through molecular docking simulation and the selection of the top two lead molecules (ceftaroline fosamil and rimegepant) for Molecular Dynamics (MD) simulation, Density functional theory (DFT), and molecular mechanics generalized born surface area (MMGBSA) analysis. The results showed that the binding affinities of ceftaroline fosamil, and rimegepant are, respectively, -10.719 and 10.159 kcal/mol. The docking complexes of the two lead compounds, ceftaroline fosamil, and rimegepant, with the target ODC, were found stable during molecular dynamics simulations. Furthermore, the analysis of MMGBSA revealed that these compounds had a high binding free energy. The DFT analysis showed that the top lead molecules were more reactive than the standard drug (pentamidine). In-silico findings demonstrated that ceftaroline fosamil, and rimegepant might be recognized as potent antagonists against ODC for the treatment of VL.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Humanos , Inhibidores de la Ornitina Descarboxilasa/química , Inhibidores de la Ornitina Descarboxilasa/farmacología , Reposicionamiento de Medicamentos , Simulación del Acoplamiento Molecular , Ornitina Descarboxilasa/química , Ornitina Descarboxilasa/metabolismo , Ornitina Descarboxilasa/farmacología , Ligandos , Leishmania donovani/metabolismo , Ceftarolina
4.
BMC Gastroenterol ; 23(1): 202, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308808

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) is a chronic disorder of the gut-brain axis with significant morbidity. Triptolide, an active compound extracted from Tripterygium wilfordii Hook F (TwHF), has been widely used as a major medicinal herb in the treatment of inflammatory disease. METHODS: The chronic-acute combined stress (CAS) stimulation was used to establish IBS rat model. The model rats were then gavaged with triptolide. Forced swimming, marble-burying, fecal weight and abdominal withdrawal reflex (AWR) score were recorded. Pathologic changes in the ileal and colonic tissues were validated by hematoxylin and eosin staining. The inflammatory cytokines and Ornithine Decarboxylase-1 (ODC1) in the ileal and colonic tissues were performed by ELISA and WB. RESULTS: Triptolide didn't have antidepressant- and antianxiety- effects in rats caused by CAS, but decreased fecal weight and AWR score. In addition, Triptolide reduced the release of IL-1, IL-6, and TNF-α and the expression of ODC1 in the ileum and colon. CONCLUSION: The therapeutic efficacy of triptolide for IBS induced by CAS was revealed in this study, which may be related to the reduction of ODC1.


Asunto(s)
Diterpenos , Síndrome del Colon Irritable , Fenantrenos , Animales , Ratas
5.
Exp Parasitol ; 249: 108503, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36925097

RESUMEN

Trichinella spiralis is a zoonotic parasite with worldwide distribution that can seriously harm human health and animal husbandry. Ornithine decarboxylase is a component of the acid resistance (AR) system in Escherichia coli. The aim of this study was to investigate the role that T. spiralis ornithine decarboxylase (TsODC) plays in the acid resistance mechanism of T. spiralis. This study involved assessing the transcription and expression of TsODC in worms under acidic conditions. According to mRNA sequences published by NCBI and the results of molecular biology experiments, the complete TsODC sequence was cloned and expressed. rTsODC had good immunogenicity, and immunofluorescence analysis revealed that TsODC was principally localized on the surface tissues of the nematode, especially at the head and tail. qRT‒PCR and Western blotting analysis indicated that the relative expression levels of TsODC mRNA and protein were highest when cultured at pH 2.5 for 2 h. The muscle larvae (ML) of T. spiralis were treated with curcumin and rapamycin, as well as arginine and TsODC polyantisera. The expression levels of TsODC mRNA and protein were significantly increased by arginine and suppressed by curcumin and rapamycin. After reducing the amount of TsODC, the relative expression of TsODC mRNA and the survival rate of T. spiralis ML were both reduced when compared to these values in the phosphate-buffered saline (PBS) group. The results indicated that TsODC is a member of the T. spiralis AR system and different treatments on TsODC have different effects; thus, these treatments might be a new way to prevent T. spiralis infection.


Asunto(s)
Curcumina , Trichinella spiralis , Triquinelosis , Animales , Humanos , Triquinelosis/parasitología , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Antígenos Helmínticos/genética , Proteínas del Helminto/genética , Larva/metabolismo
6.
Metab Brain Dis ; 38(4): 1143-1153, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36745250

RESUMEN

Glioma is the most common malignant tumor of the central nervous system. The urea cycle (UC) is an essential pathway to convert excess nitrogen and ammonia into the less toxic urea in humans. However, less is known about the functional significance of the urea cycle in glioma. p53 functions as a tumor suppressor and modulates several cellular functions and disease processes. In the present study, we aimed to explore whether p53 influences glioma progression by regulating the urea cycle. Here, we demonstrated the inhibitory impact of p53 on the expression of urea cycle enzymes and urea genesis in glioma cells. The level of polyamine, a urea cycle metabolite, was also regulated by p53 in glioma cells. Carbamoyl phosphate synthetase-1 (CPS1) is the first key enzyme involved in the urea cycle. Functionally, we demonstrated that CPS1 knockdown suppressed glioma cell proliferation, migration and invasion. Mechanistically, we demonstrated that the expression of ornithine decarboxylase (ODC), which determines the generation of polyamine, was regulated by CPS1. In addition, the impacts of p53 knockdown on ODC expression, glioma cell growth and aggressive phenotypes were significantly reversed by CPS1 inhibition. In conclusion, these results demonstrated that p53 inhibits polyamine metabolism by suppressing the urea cycle, which inhibits glioma progression.


Asunto(s)
Glioma , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Poliaminas/metabolismo , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Urea/farmacología , Urea/metabolismo
7.
J Enzyme Inhib Med Chem ; 38(1): 309-318, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36451618

RESUMEN

Ornithine decarboxylase (ODC), the first rate-limiting enzyme in polyamine synthesis, has emerged as a therapeutic target for cancer and Alzheimer's disease (AD). To inhibit ODC, α-difluoromethylornithine (DFMO), an irreversible ODC inhibitor, has been widely used. However, due to its poor pharmacokinetics, the need for discovery of better ODC inhibitors is inevitable. For high-throughput screening (HTS) of ODC inhibitors, an ODC enzyme assay using supramolecular tandem assay has been introduced. Nevertheless, there has been no study utilising the ODC tandem assay for HTS, possibly due to its intolerability to dimethyl sulfoxide (DMSO), a common amphipathic solvent used for drug libraries. Here we report a DMSO-tolerant ODC tandem assay in which DMSO-dependent fluorescence quenching becomes negligible by separating enzyme reaction and putrescine detection. Furthermore, we optimised human cell-line-based mass production of ODC for HTS. Our newly developed assay can be a crucial first step in discovering more effective ODC modulators than DFMO.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Ornitina Descarboxilasa , Humanos , Dimetilsulfóxido , Bioensayo , Putrescina
8.
Pediatr Dermatol ; 40(3): 528-531, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36443247

RESUMEN

Bachmann-Bupp syndrome (OMIM #619075) is a novel autosomal dominant disorder caused by variants in the c-terminus of the ornithine decarboxylase 1 gene, resulting in increased levels of ornithine decarboxylase. This case report includes two patients diagnosed with Bachmann-Bupp syndrome who were treated with difluoromethylornithine through compassionate use approval from the United States Food and Drug Administration. In both patients, treatment with difluoromethylornithine has resulted in improved dermatologic signs, including regrowth of eyebrow and scalp hair and cessation of recurrent follicular cyst development.


Asunto(s)
Eflornitina , Ornitina Descarboxilasa , Estados Unidos , Humanos , Eflornitina/uso terapéutico , Ornitina Descarboxilasa/genética , Inhibidores de la Ornitina Descarboxilasa , Ornitina
9.
Genomics ; 114(1): 84-94, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34839021

RESUMEN

Plant ODC (ornithine decarboxylase) plays a vital role in normalizing cell division in actively growing tissues. The ODC is a key precursor enzyme for nicotine and nornicotine biosynthesis in plants. ODCs are widely present in many plant families but have not been functionally validated and characterized at the molecular level. In the present study, 58 plant ODCs were identified and were found to contain two putative regulatory motifs, specifically PLP (Pyridoxal 5'-phosphate) and Orn/DAP/Arg decarboxylase family 2 pyridoxal-phosphate, that are highly conserved among diverse plant species. Further, the cis-regulatory elements and interacting partners of the gene revealed the importance of ODC in various metabolic pathways. The qRT-PCR revealed highest relative expression of ODC in floral meristem and roots. Our results suggest that ODC can be effectively used as an ideal candidate for engineering polyamine biosynthesis and would be crucial for developing ultra-low nicotine content tobacco lines via genome editing.


Asunto(s)
Nicotiana , Ornitina Descarboxilasa , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
10.
J Cell Physiol ; 237(4): 2140-2154, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35019151

RESUMEN

We present a mechanism for how ornithine decarboxylase (ODC) regulates the crosstalk between autophagy and apoptosis. In cancer cells, low-intensity ultraviolet B (UVBL ) induces autophagy while high-intensity UVB (UVBH ) induces apoptosis. Overexpression of ODC decreases UVBL -induced autophagy by inhibiting Atg5-Atg12 conjugation and suppressing the expression of autophagy markers LC3, Atg7, Atg12, and BECN1 proteins. In contrast, when ODC-overexpressing cells are exposed to UVBH radiation, the levels of LC3-II, Atg5-Atg12 conjugate, BECN1, Atg7, and Atg12 increase, while the apoptosis marker cleaved-PARP proteins decrease, indicating that ODC overexpression induced UVBH -induced autophagy but inhibited UVBH -induced cellular apoptosis. Additionally, when exposed to UVBH radiation, silencing BECN1, Atg5, and Atg12 genes results in a decrease in the level of LC3-II proteins but an increase in the level of cleaved-PARP proteins, and apoptotic bodies were significantly increased while autophagosomes were significantly decreased. These findings imply that ODC inhibits apoptosis in cells via the autophagy pathway. The role of Atg12 in ODC-overexpressing cells exposed to UVBH radiation is investigated using site-directed mutagenesis. Our results indicate that the Atg12-D111S mutant has increased cell survival. The Atg12-ΔG186 mutant impairs autophagy and enhances apoptosis. We demonstrate that when ODC-overexpressing cells are silenced for the Atg12 protein, autophagy and apoptosis are strongly affected, and ODC-induced autophagy protects against UVBH -induced apoptosis via the Atg12 protein.


Asunto(s)
Ornitina Descarboxilasa , Traumatismos por Radiación , Apoptosis/genética , Autofagia/genética , Proteína 12 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/genética , Humanos , Ornitina Descarboxilasa/genética , Rayos Ultravioleta
11.
Kidney Int ; 102(1): 78-95, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35337891

RESUMEN

Kidney mass and function are sexually determined, but the cellular events and the molecular mechanisms involved in this dimorphism are poorly characterized. By combining female and male mice with castration/replacement experiments, we showed that male mice exhibited kidney overgrowth from five weeks of age. This effect was organ specific, since liver and heart weight were comparable between males and females, regardless of age. Consistently, the androgen receptor was found to be expressed in the kidneys of males, but not in the liver. In growing mice, androgens led to kidney overgrowth by first inducing a burst of cell proliferation and then an increase of cell size. Remarkably, androgens were also required to maintain cell size in adults. In fact, orchiectomy resulted in smaller kidneys in a matter of few weeks. These changes paralleled the changes of the expression of ornithine decarboxylase and cyclin D1, two known mediators of kidney growth, whereas, unexpectedly, mTORC1 and Hippo pathways did not seem to be involved. Androgens also enhanced kidney autophagy, very likely by increasing transcription factor EB nuclear translocation. Functionally, the increase of tubular mass resulted in increased sodium/phosphate transport. These findings were relevant to humans. Remarkably, by studying living gender-paired kidney donors-recipients, we showed that tubular cell size increased three months after transplantation in men as compared to women, regardless of the donor gender. Thus, our results identify novel signaling pathways that may be involved in androgen-induced kidney growth and homeostasis and suggest that androgens determine kidney size after transplantation.


Asunto(s)
Andrógenos , Caracteres Sexuales , Andrógenos/farmacología , Animales , Femenino , Homeostasis , Humanos , Riñón , Masculino , Ratones , Tamaño de los Órganos
12.
Biol Reprod ; 106(4): 792-801, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-34935905

RESUMEN

In all mammalian species examined thus far, the ovaries produce a burst of ornithine decarboxylase (ODC) and putrescine during ovulation or after application of human chorionic gonadotropin (hCG). Aged mice have significantly reduced levels of this periovulatory ODC and putrescine rise. Putrescine supplementation, in vitro during oocyte maturation or in mouse drinking water during the periovulatory period, reduces egg aneuploidies and embryo resorption, improving fertility of aged mice. These studies suggest that periovulatory putrescine supplementation may be a simple and effective therapy for reproductive aging for women. However, putrescine supplementation is expected to increase widespread tissue putrescine levels, raising concerns of nonspecific and unwanted side effects. Given that ODC is highly expressed in the ovaries during ovulation but otherwise exhibits low activity in most tissues, we hypothesized that periovulatory supplementation of L-ornithine, the substrate of ODC, might be suitable for delivering putrescine specifically to the ovaries. In this study, we have demonstrated that systemic application of L-ornithine via oral gavage or subcutaneous injection increased ovarian putrescine levels; the increase was restricted to animals that had been injected with hCG. Furthermore, L-ornithine specifically increased ovarian putrescine levels without affecting putrescine levels in any other tissues. However, our attempts to improve fertility of aged mice through L-ornithine supplementation in mouse drinking water produced either no effects (1% L-ornithine) or negative impact on fertility (4% ornithine). Our results suggest that it might not be feasible to achieve fertility-enhancing ovarian putrescine levels via L-ornithine supplementation in drinking water without encountering undesired consequences of high dose of exogenous L-ornithine.


Asunto(s)
Suplementos Dietéticos , Ornitina , Putrescina , Animales , Gonadotropina Coriónica/farmacología , Agua Potable , Femenino , Humanos , Ratones , Ornitina/farmacología , Ornitina Descarboxilasa/farmacología , Ovario , Ovulación , Putrescina/farmacología
13.
Plant Biotechnol J ; 20(10): 1968-1982, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35748533

RESUMEN

The polyamine putrescine (1,4-diaminobutane) contributes to cellular fitness in most organisms, where it is derived from the amino acids ornithine or arginine. In the chemical industry, putrescine serves as a versatile building block for polyamide synthesis. The green microalga Chlamydomonas reinhardtii accumulates relatively high putrescine amounts, which, together with recent advances in genetic engineering, enables the generation of a powerful green cell factory to promote sustainable biotechnology for base chemical production. Here, we report a systematic investigation of the native putrescine metabolism in C. reinhardtii, leading to the first CO2 -based bio-production of putrescine, by employing modern synthetic biology and metabolic engineering strategies. A CRISPR/Cas9-based knockout of key enzymes of the polyamine biosynthesis pathway identified ornithine decarboxylase 1 (ODC1) as a gatekeeper for putrescine accumulation and demonstrated that the arginine decarboxylase (ADC) route is likely inactive and that amine oxidase 2 (AMX2) is mainly responsible for putrescine degradation in C. reinhardtii. A 4.5-fold increase in cellular putrescine levels was achieved by engineered overexpression of potent candidate ornithine decarboxylases (ODCs). We identified unexpected substrate promiscuity in two bacterial ODCs, which exhibited co-production of cadaverine and 4-aminobutanol. Final pathway engineering included overexpression of recombinant arginases for improved substrate availability as well as functional knockout of putrescine degradation, which resulted in a 10-fold increase in cellular putrescine titres and yielded 200 mg/L in phototrophic high cell density cultivations after 10 days.


Asunto(s)
Carboxiliasas , Putrescina , Aminoácidos , Arginina , Cadaverina , Dióxido de Carbono , Carboxiliasas/genética , Carboxiliasas/metabolismo , Nylons , Ornitina/metabolismo , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Oxidorreductasas , Poliaminas/metabolismo , Putrescina/metabolismo
14.
Biochem J ; 478(23): 4137-4149, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34796899

RESUMEN

Ornithine decarboxylase (ODC) is the rate-limiting enzyme for the synthesis of polyamines (PAs). PAs are oncometabolites that are required for proliferation, and pharmaceutical ODC inhibition is pursued for the treatment of hyperproliferative diseases, including cancer and infectious diseases. The most potent ODC inhibitor is 1-amino-oxy-3-aminopropane (APA). A previous crystal structure of an ODC-APA complex indicated that APA non-covalently binds ODC and its cofactor pyridoxal 5-phosphate (PLP) and functions by competing with the ODC substrate ornithine for binding to the catalytic site. We have revisited the mechanism of APA binding and ODC inhibition through a new crystal structure of APA-bound ODC, which we solved at 2.49 Šresolution. The structure unambiguously shows the presence of a covalent oxime between APA and PLP in the catalytic site, which we confirmed in solution by mass spectrometry. The stable oxime makes extensive interactions with ODC but cannot be catabolized, explaining APA's high potency in ODC inhibition. In addition, we solved an ODC/PLP complex structure with citrate bound at the substrate-binding pocket. These two structures provide new structural scaffolds for developing more efficient pharmaceutical ODC inhibitors.


Asunto(s)
Inhibidores de la Ornitina Descarboxilasa/metabolismo , Ornitina Descarboxilasa/metabolismo , Propilaminas/metabolismo , Humanos , Unión Proteica , Dominios Proteicos
15.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361762

RESUMEN

Polyamines are essential biogenic poly-cations with important roles in many cellular processes and diseases such as cancer. A rate-limiting step early in the biosynthesis of polyamines is the conversion of ornithine to putrescine by the homodimeric enzyme ornithine decarboxylase (ODC). In a conserved mechanism of posttranslational regulation, ODC antizyme (OAZ) binds to ODC monomers promoting their ubiquitin-independent degradation by the proteasome. Decoding of OAZ mRNA is unusual in that it involves polyamine-regulated bypassing of an internal translation termination (STOP) codon by a ribosomal frameshift (RFS) event. Using Saccharomyces cerevisiae, we earlier showed that high polyamine concentrations lead to increased efficiency of OAZ1 mRNA translation by binding to nascent Oaz1 polypeptide. The binding of polyamines prevents stalling of the ribosomes on OAZ1 mRNA caused by nascent Oaz1 polypeptide thereby promoting synthesis of full-length Oaz1. Polyamine depletion, however, also inhibits RFS during the decoding of constructs bearing the OAZ1 shift site lacking sequences encoding the Oaz1 parts implicated in polyamine binding. Polyamine depletion is known to impair hypusine modification of translation factor eIF5A. Using a novel set of conditional mutants impaired in the function of eIF5A/Hyp2 or its hypusination, we show here that hypusinated eIF5A is required for efficient translation across the OAZ1 RFS site. These findings identify eIF5A as a part of Oaz1 regulation, and thereby of polyamine synthesis. Additional experiments with DFMO, however, show that depletion of polyamines inhibits translation across the OAZ1 RFS site not only by reducing Hyp2 hypusination, but in addition, and even earlier, by affecting RFS more directly.


Asunto(s)
Sistema de Lectura Ribosómico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Poliaminas/metabolismo
16.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35563006

RESUMEN

The polyamines, spermine (Spm) and spermidine (Spd), are important for cell growth and function. Their homeostasis is strictly controlled, and a key downregulator of the polyamine pool is the polyamine-inducible protein, antizyme 1 (OAZ1). OAZ1 inhibits polyamine uptake and targets ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis, for proteasomal degradation. Here we report, for the first time, that polyamines induce dimerization of mouse recombinant full-length OAZ1, forming an (OAZ1)2-Polyamine complex. Dimerization could be modulated by functionally active C-methylated spermidine mimetics (MeSpds) by changing the position of the methyl group along the Spd backbone-2-MeSpd was a poor inducer as opposed to 1-MeSpd, 3-MeSpd, and Spd, which were good inducers. Importantly, the ability of compounds to inhibit polyamine uptake correlated with the efficiency of the (OAZ1)2-Polyamine complex formation. Thus, the (OAZ1)2-Polyamine complex may be needed to inhibit polyamine uptake. The efficiency of polyamine-induced ribosomal +1 frameshifting of OAZ1 mRNA could also be differentially modulated by MeSpds-2-MeSpd was a poor inducer of OAZ1 biosynthesis and hence a poor downregulator of ODC activity unlike the other MeSpds. These findings offer new insight into the OAZ1-mediated regulation of polyamine homeostasis and provide the chemical tools to study it.


Asunto(s)
Poliaminas , Espermidina , Animales , Dimerización , Sistema de Lectura Ribosómico , Ratones , Ornitina Descarboxilasa/metabolismo , Poliaminas/química , Poliaminas/metabolismo , Poliaminas/farmacología , Proteínas , Espermidina/química , Espermidina/metabolismo , Espermidina/farmacología
17.
Molecules ; 27(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209071

RESUMEN

The cause of death in most breast cancer patients is disease metastasis and the occurrence of multidrug resistance (MDR). Ornithine decarboxylase (ODC), which is involved into multiple pathways, is closely related to carcinogenesis and development. Ursolic acid (UA), a natural triterpenoid compound, has been shown to reverse the MDR characteristics of tumor cells. However, the effect of UA on the invasion and metastasis of tumor cells with MDR is not known. Therefore, we investigated the effects of UA on invasion and metastasis, ODC-related polyamine metabolism, and MAPK-Erk-VEGF/MMP-9 signaling pathways in a doxorubicin-resistant breast cancer cell (MCF-7/ADR) model. The obtained results showed that UA significantly inhibited the adhesion and migration of MCF-7/ADR cells, and had higher affinities with key active cavity residues of ODC compared to the known inhibitor di-fluoro-methyl-ornithine (DFMO). UA could downregulate ODC, phosphorylated Erk (P-Erk), VEGF, and matrix metalloproteinase-9 (MMP-9) activity. Meanwhile, UA significantly reduced the content of metabolites of the polyamine metabolism. Furthermore, UA increased the intracellular accumulation of Dox in MCF-7/ADR cells. Taken together, UA can inhibit against tumor progression during the treatment of breast cancer with Dox, and possibly modulate the Erk-VEGF/MMP-9 signaling pathways and polyamine metabolism by targeting ODC to exert these effects.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Movimiento Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Triterpenos/farmacología , Antineoplásicos Fitogénicos/química , Proteínas Portadoras/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Doxorrubicina/farmacología , Células Endoteliales/metabolismo , Femenino , Humanos , Células MCF-7 , Modelos Moleculares , Estructura Molecular , Ornitina Descarboxilasa/química , Ornitina Descarboxilasa/metabolismo , Fosforilación , Unión Proteica , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Triterpenos/química , Ácido Ursólico
18.
J Biol Chem ; 295(19): 6263-6277, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32139506

RESUMEN

Treatment of patients with triple-negative breast cancer (TNBC) is limited by a lack of effective molecular therapies targeting this disease. Recent studies have identified metabolic alterations in cancer cells that can be targeted to improve responses to standard-of-care chemotherapy regimens. Using MDA-MB-468 and SUM-159PT TNBC cells, along with LC-MS/MS and HPLC metabolomics profiling, we found here that exposure of TNBC cells to the cytotoxic chemotherapy drugs cisplatin and doxorubicin alter arginine and polyamine metabolites. This alteration was because of a reduction in the levels and activity of a rate-limiting polyamine biosynthetic enzyme, ornithine decarboxylase (ODC). Using gene silencing and inhibitor treatments, we determined that the reduction in ODC was mediated by its negative regulator antizyme, targeting ODC to the proteasome for degradation. Treatment with the ODC inhibitor difluoromethylornithine (DFMO) sensitized TNBC cells to chemotherapy, but this was not observed in receptor-positive breast cancer cells. Moreover, TNBC cell lines had greater sensitivity to single-agent DFMO, and ODC levels were elevated in TNBC patient samples. The alterations in polyamine metabolism in response to chemotherapy, as well as DFMO-induced preferential sensitization of TNBC cells to chemotherapy, reported here suggest that ODC may be a targetable metabolic vulnerability in TNBC.


Asunto(s)
Poliaminas Biogénicas/biosíntesis , Citotoxinas/farmacología , Eflornitina/farmacología , Proteínas de Neoplasias , Inhibidores de la Ornitina Descarboxilasa/farmacología , Ornitina Descarboxilasa/metabolismo , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Femenino , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Proteolisis/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
19.
J Cell Physiol ; 236(8): 5646-5663, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33432662

RESUMEN

This study reveals an uncovered mechanism for the regulation of polyamine homeostasis through protein arginyl citrullination of antizyme (AZ), a natural inhibitor of ornithine decarboxylase (ODC). ODC is critical for the cellular production of polyamines. AZ binds to ODC dimers and promotes the degradation of ODC via the 26S proteasome. This study demonstrates the protein citrullination of AZ catalyzed by peptidylarginine deiminase type 4 (PAD4) both in vitro and in cells. Upon PAD4 activation, the AZ protein was citrullinated and accumulated, leading to higher levels of ODC proteins in the cell. In the PAD4-overexpressing and activating cells, the levels of ODC enzyme activity and the product putrescine increased with the level of citrullinated AZ proteins and PAD4 activity. Suppressing cellular PAD4 activity reduces the cellular levels of ODC and downregulates cellular polyamines. Furthermore, citrullination of AZ in the C-terminus attenuates AZ function in the inhibition, binding, and degradation of ODC. This paper provides evidence to illustrate that PAD4-mediated AZ citrullination upregulates cellular ODC and polyamines by retarding ODC degradation, thus interfering with the homeostasis of cellular polyamines, which may be an important pathway regulating AZ functions that is relevant to cancer biology.


Asunto(s)
Citrulinación/efectos de los fármacos , Homeostasis/fisiología , Inhibidores de la Ornitina Descarboxilasa/farmacología , Ornitina Descarboxilasa/metabolismo , Poliaminas/metabolismo , Proteínas Portadoras/metabolismo , Citrulinación/fisiología , Homeostasis/efectos de los fármacos , Humanos , Inhibidores de la Ornitina Descarboxilasa/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo
20.
Breast Cancer Res Treat ; 190(2): 255-264, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34529197

RESUMEN

PURPOSE: Several cancer subtypes (pancreatic, breast, liver, and colorectal) rapidly advance to higher aggressive stages in diabetes. Though hyperglycemia has been considered as a fuel for growth of cancer cells, pathways leading to this condition are still under investigation. Cellular polyamines can modulate normal and cancer cell growth, and inhibitors of polyamine synthesis have been approved for treating colon cancer, however the role of polyamines in diabetes-mediated cancer advancement is unclear as yet. We hypothesized that polyamine metabolic pathway is involved with increased proliferation of breast cancer cells under high glucose (HG) conditions. METHODS: Studies were performed with varying concentrations of glucose (5-25 mM) exposure in invasive, triple negative breast cancer cells, MDA-MB-231; non-invasive, estrogen/progesterone receptor positive breast cancer cells, MCF-7; and non-tumorigenic mammary epithelial cells, MCF-10A. RESULTS: There was a significant increase in proliferation with HG (25 mM) at 48-72 h in both MDA-MB-231 and MCF-10A cells but no such effect was observed in MCF-7 cells. This was correlated to higher activity of ornithine decarboxylase (ODC), a rate-limiting enzyme in polyamine synthesis pathway. Inhibitor of polyamine synthesis (difluoromethylornithine, DFMO, 5 mM) was quite effective in suppressing HG-mediated cell proliferation and ODC activity in MDA-MB-231 and MCF-10A cells. Polyamine (putrescine) levels were significantly elevated with HG treatment in MDA-MB-231 cells. HG exposure also increased the metastasis of MDA-MB-231 cells. CONCLUSIONS: Our cellular findings indicate that polyamine inhibition should be explored in patient population as a target for future chemotherapeutics in diabetic breast cancer.


Asunto(s)
Neoplasias de la Mama , Hiperglucemia , Neoplasias de la Mama Triple Negativas , Eflornitina/farmacología , Femenino , Humanos , Ornitina Descarboxilasa/genética , Inhibidores de la Ornitina Descarboxilasa , Putrescina , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA