RESUMEN
Organic anion transporting polypeptide 1B1 (OATP1B1) is an influx transporter protein of the SLC superfamily, expressed mainly in the liver and some tumor cells. The mechanisms of its regulation are being actively studied. In the present study, the effect of sex hormones (estradiol, progesterone and testosterone) on OATP1B1 expression in HepG2 cells was examined. The role of adopted orphan receptors, farnasoid X receptor (FXR), constitutive androstane receptor (CAR), pregnane X receptor (PXR) and liver X receptor subtype alpha (LXRa), was also evaluated. Hormones were used in concentrations of 1, 10 and 100 µM, with incubation for 24 h. The protein expression of OATP1B1, FXR, CAR, PXR and LXRa was analyzed by Western blot. It was shown that estradiol (10 and 100 µM) increased the expression of OATP1B1, acting through CAR. Testosterone (1, 10 and 100 µM) increased the expression of OATP1B1, acting through FXR, PXR and LXRa. Progesterone (10 and 100 µM) decreased the expression of OATP1B1 (10 and 100 µM) and adopted orphan receptors are not involved in this process. The obtained results have important practical significance and determine ways for targeted regulation of the transporter, in particular in cancer.
RESUMEN
The retinoic acid receptor-related orphan receptors (RORs) are ligand-mediated transcription factors with important biological roles in regulating circadian rhythms, metabolism, immunity, angiogenesis, inflammation, and development. They belong to the superfamily of nuclear receptors and include three family members: RORα, RORß, and RORγ. Currently identified ROR ligands include cholesterol and cholesterol derivatives for RORα and RORγ, and stearic acid and all-trans retinoic acid for RORß. Aberrant signaling of the RORs is involved in the pathogenesis of several human diseases including autoimmune diseases, metabolic disorders, and certain cancers. In the eye, RORs regulate normal development of the lens and the retina, and also contribute to potentially blinding eye diseases, especially retinal vascular diseases. Here, we review the role of RORs in eye development and disease to highlight their potential as druggable targets for therapeutic development in retinal vascular and degenerative diseases.
Asunto(s)
Neoplasias , Receptores de Ácido Retinoico , Humanos , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Factores de Transcripción , Tretinoina , Neoplasias/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores NuclearesRESUMEN
Cystic neoplasms of the pancreas are an increasingly important public health problem. The majority of these lesions are benign but some progress to invasive pancreatic ductal adenocarcinoma (PDAC). There is a dearth of mouse models of these conditions. The orphan nuclear receptor NR5A2 regulates development, differentiation, and inflammation. Germline Nr5a2 heterozygosity sensitizes mice to the oncogenic effects of mutant Kras in the pancreas. Here, we show that - unlike constitutive Nr5a2+/- mice - conditional Nr5a2 heterozygosity in pancreatic epithelial cells, combined with mutant Kras (KPN+/- ), leads to a dramatic replacement of the pancreatic parenchyma with cystic structures and an accelerated development of high-grade PanINs and PDAC. Timed histopathological analyses indicated that in KPN+/- mice PanINs precede the formation of cystic lesions and the latter precede PDAC. A single episode of acute caerulein pancreatitis is sufficient to accelerate the development of cystic lesions in KPN+/- mice. Epithelial cells of cystic lesions of KPN+/- mice express MUC1, MUC5AC, and MUC6, but lack expression of MUC2, CDX2, and acinar markers, indicative of a pancreato-biliary/gastric phenotype. In accordance with this, in human samples we found a non-significantly decreased expression of NR5A2 in mucinous tumours, compared with conventional PDAC. These results highlight that the effects of loss of one Nr5a2 allele are time- and cell context-dependent. KPN+/- mice represent a new model to study the formation of cystic pancreatic lesions and their relationship with PanINs and classical PDAC. Our findings suggest that pancreatitis could also contribute to acceleration of cystic tumour progression in patients. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Asunto(s)
Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Receptores Citoplasmáticos y Nucleares/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Carcinoma Ductal Pancreático/genética , Progresión de la Enfermedad , Células Epiteliales/patología , Femenino , Heterocigoto , Humanos , Masculino , Ratones , Persona de Mediana Edad , Quiste Pancreático/patología , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptores Citoplasmáticos y Nucleares/genéticaRESUMEN
Recently, the scientific community has started to focus on the neurogenic potential of cannabinoids. The phytocompound cannabidiol (CBD) shows different mechanism of signaling on cannabinoid receptor 1 (CB1), depending on its concentration. In this study, we investigated if CBD may induce in vitro neuronal differentiation after treatment at 5 µM and 10 µM. For this purpose, we decided to use the spinal cord × neuroblastoma hybrid cell line (NSC-34) because of its proliferative and undifferentiated state. The messenger RNAs (mRNAs) expression profiles were tested using high-throughput sequencing technology and Western blot assay was used to determine the number of main proteins in different pathways. Interestingly, the treatment shows different genes associated with neurodifferentiation statistically significant, such as Rbfox3, Tubb3, Pax6 and Eno2. The CB1 signaling pathway is responsible for neuronal differentiation at 10 µM, as suggested by the presence of p-ERK and p-AKT, but not at 5 µM. A new correlation between CBD, neurodifferentiation and retinoic acid receptor-related orphan receptors (RORs) has been observed.
Asunto(s)
Cannabidiol , Cannabinoides , Cannabidiol/metabolismo , Cannabidiol/farmacología , Cannabinoides/farmacología , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Transducción de SeñalRESUMEN
Metabolic syndrome (MS) has been related with alterations in expression levels of orphan G protein coupled receptors (GPCRs) such as GPR21 and GPR82, which could be involved in some of the elements that characterizes the metabolic syndrome. The aim of this work was to evaluate changes in GPR21 and GPR82 receptors expression in two models of metabolic syndrome: one genetic (Zucker rats), and the other based on a diet (70% fructose for 9 weeks). GPR21 and GPR82 gene expressions were evaluated in brain, heart, aorta, liver and kidney by RT-qPCR. Rats with a high fructose diet, as well as obese Zucker rats, showed initial stages of pancreatic damage and alterations in some biochemical parameters related to the model consistent with the classification of MS. GPR21 and GPR82 receptors expressed in all tissues. The expression of GPR21 decreased in heart, aorta and kidney, but in liver the expression was different: decreased in diet model and increased in genetic model. In contrast, GPR82 expression depended of tissue and metabolic syndrome model. The results highlight the possible role of GPR21 and GPR82 receptors in the development MS. We conclude that the expression of GPR21 and GPR82 in different tissues is related with MS and depend of the origin of the syndrome, so they could be a therapeutic target for that syndrome.
Asunto(s)
Síndrome Metabólico/genética , Miocardio/metabolismo , Obesidad/genética , Receptores Acoplados a Proteínas G/genética , Animales , Aorta/metabolismo , Aorta/patología , Encéfalo/metabolismo , Encéfalo/patología , Dieta/efectos adversos , Regulación de la Expresión Génica/genética , Humanos , Riñón/metabolismo , Riñón/patología , Hígado/metabolismo , Hígado/patología , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Miocardio/patología , Obesidad/metabolismo , Obesidad/patología , Páncreas/lesiones , Páncreas/patología , Ratas , Ratas Zucker/genética , Triglicéridos/sangreRESUMEN
Hypertension is a disease, which in spite of existing treatments continues to have high morbidity and mortality, which suggests that there are other mechanisms involved in this pathology. In this sense, the orphan receptors are G protein-coupled receptor associated with various pathologies such as GPR99 which has been linked to mice develop left ventricular hypertrophy induced by blood pressure overload while GPR107 with patients with idiopathic pulmonary arterial hypertension. For this reason, the aim of this work was to study if the expression of the orphan receptors GPR99 and GPR107 are modified by arterial hypertension. Male SHR and WKY rats of 6-8 and 10-12 weeks old were used. The weight, systolic blood pressure and heart rate were measured, as well as the mRNA of the receptors GPR99 and GPR107 in the aorta, kidney, heart and brain by RT-PCR, also was realized an in silico analysis to predict which G protein could be coupled the orphan receptor GPR107. Our results showed that receptors GPR99 and GPR107 are expressed in the analyzed tissues and their expression profile tends to change at different ages and with the development of hypertension, for the other hand, the bioinformatics analysis for GPR107 showed that is coupled to Gi protein. Therefore, we do not rule out that GPR99 and GPR107 could be involved in the pathophysiology of hypertension and could be used as targets therapeutic in hypertension.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hipertensión/patología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2/metabolismo , Animales , Presión Sanguínea , Hipertensión/genética , Hipertensión/metabolismo , Masculino , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores Acoplados a Proteínas G/genética , Receptores Purinérgicos P2/genéticaRESUMEN
The pace of deorphanization of G protein-coupled receptors (GPCRs) has slowed, and new approaches are required. Small molecule targeting of orphan GPCRs can potentially be of clinical benefit even if the endogenous receptor ligand has not been identified. Many GPCRs lack common variants that lead to reproducible genome-wide disease associations, and rare-variant approaches have emerged as a viable alternative to identify disease associations for such genes. Therefore, our goal was to prioritize orphan GPCRs by determining their associations with human diseases in a large clinical population. We used sequence kernel association tests to assess the disease associations of 85 orphan or understudied GPCRs in an unselected cohort of 51,289 individuals. Using rare loss-of-function variants, missense variants predicted to be pathogenic or likely pathogenic, and a subset of rare synonymous variants that cause large changes in local codon bias as independent data sets, we found strong, phenome-wide disease associations shared by two or more variant categories for 39% of the GPCRs. To validate the bioinformatics and sequence kernel association test analyses, we functionally characterized rare missense and synonymous variants of GPR39, a family A GPCR, revealing altered expression or Zn2+-mediated signaling for members of both variant classes. These results support the utility of rare variant analyses for identifying disease associations for GPCRs that lack impactful common variants. We highlight the importance of rare synonymous variants in human physiology and argue for their routine inclusion in any comprehensive analysis of genomic variants as potential causes of disease.
Asunto(s)
Receptores Acoplados a Proteínas G/genética , Transducción de Señal/genética , Mutación Silenciosa , Estudio de Asociación del Genoma Completo , HumanosRESUMEN
Stress profoundly affects physiological properties of neurons across brain circuits and thereby increases the risk for depression. However, the molecular and cellular mechanisms mediating these effects are poorly understood. In this study, we report that chronic physical restraint stress in mice decreases excitability specifically in layer 2/3 of pyramidal neurons within the prelimbic subarea of the prefrontal cortex (PFC) accompanied by the induction of depressive-like behavioral states. We found that a complex between G protein-coupled receptor (GPCR) 158 (GPR158) and regulator of G protein signaling 7 (RGS7), a regulatory GPCR signaling node recently discovered to be a key modulator of affective behaviors, plays a key role in controlling stress-induced changes in excitability in this neuronal population. Deletion of GPR158 or RGS7 enhanced excitability of layer 2/3 PFC neurons and prevented the impact of stress. Investigation of the underlying molecular mechanisms revealed that the A-type potassium channel Kv4.2 subunit is a molecular target of the GPR158-RGS7 complex. We further report that GPR158 physically associates with Kv4.2 channel and promotes its function by suppressing inhibitory modulation by cAMP-protein kinase A (PKA)-mediated phosphorylation. Taken together, our observations reveal a critical mechanism that adjusts neuronal excitability in L2/3 pyramidal neurons of the PFC and may thereby modulate the effects of stress on depression.
Asunto(s)
Canales de Potasio con Entrada de Voltaje/metabolismo , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas RGS/deficiencia , Receptores Acoplados a Proteínas G/deficienciaRESUMEN
Cortical D2 dopamine receptor (Drd2) have mostly been examined in the context of cognitive function regulation and neurotransmission modulation of medial prefrontal cortex by principal neurons and parvalbumin positive, fast-spiking, interneurons in schizophrenia. Early studies suggested the presence of D2 receptors in several cortical areas, albeit with major technical limitations. We used combinations of transgenic reporter systems, recombinase activated viral vectors, quantitative translatome analysis, and high sensitivity in situ hybridization to identify D2 receptor expressing cells and establish a map of their respective projections. Our results identified previously uncharacterized clusters of D2 expressing neurons in limbic and sensory regions of the adult mouse brain cortex. Characterization of these clusters by translatome analysis and cell type specific labeling revealed highly heterogeneous expression of D2 receptors in principal neurons and various populations of interneurons across cortical areas. Transcript enrichment analysis also demonstrated variable levels of D2 receptor expression and several orphan G-protein-coupled receptors coexpression in different neuronal clusters, thus suggesting strategies for genetic and therapeutic targeting of D2 expressing neurons in specific cortical areas. These results pave the way for a thorough re-examination of cortical D2 receptor functions, which could provide information about neuronal circuits involved in psychotic and mood disorders.
Asunto(s)
Encéfalo/metabolismo , Neuronas/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Ratones Transgénicos , Vías Nerviosas/metabolismo , ARN Mensajero/metabolismoRESUMEN
Bone morphogenetic protein 6 (BMP6) is a multifunctional growth factor involved in organ development and homeostasis. BMP6 controls expression of the liver hormone, hepcidin, and thereby plays a crucial role in regulating iron homeostasis. BMP6 gene transcriptional regulation in liver is largely unknown, but would be of great help to externally modulate iron load in pathologic conditions. Here, we describe a detailed molecular mechanism of hepatic BMP6 gene expression by an orphan nuclear receptor, estrogen-related receptor γ (ERRγ), in response to the pro-inflammatory cytokine interleukin 6 (IL-6). Recombinant IL-6 treatment increases hepatic ERRγ and BMP6 expression. Overexpression of ERRγ is sufficient to increase BMP6 gene expression in hepatocytes, suggesting that IL-6 is upstream of ERRγ. In line, knock-down of ERRγ in cell lines or a hepatocyte specific knock-out of ERRγ in mice significantly decreases IL-6 mediated BMP6 expression. Promoter studies show that ERRγ directly binds to the ERR response element (ERRE) in the mouse BMP6 gene promoter and positively regulates BMP6 gene transcription in IL-6 treatment conditions, which is further confirmed by ERRE mutated mBMP6-luciferase reporter assays. Finally, an inverse agonist of ERRγ, GSK5182, markedly inhibits IL-6 induced hepatic BMP6 expression in vitro and in vivo. Taken together, these results reveal a novel molecular mechanism on ERRγ mediated transcriptional regulation of hepatic BMP6 gene expression in response to IL-6.
Asunto(s)
Proteína Morfogenética Ósea 6/genética , Interleucina-6/genética , Hígado/metabolismo , Receptores de Estrógenos/genética , Elementos de Respuesta , Activación Transcripcional , Animales , Sitios de Unión , Proteína Morfogenética Ósea 6/metabolismo , Genes Reporteros , Células Hep G2 , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-6/farmacología , Hierro/metabolismo , Hígado/citología , Hígado/efectos de los fármacos , Luciferasas/genética , Luciferasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/metabolismo , Transducción de Señal , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologíaRESUMEN
The G protein-coupled receptors 3, 6, and 12 (GPR3, GPR6, and GPR12) comprise a family of closely related orphan receptors with no confirmed endogenous ligands. These receptors are constitutively active and capable of signaling through G protein-mediated and non-G protein-mediated mechanisms. These orphan receptors have previously been reported to play important roles in many normal physiological functions and to be involved in a variety of pathological conditions. Although they are orphans, GPR3, GPR6, and GPR12 are phylogenetically most closely related to the cannabinoid receptors. Using ß-arrestin2 recruitment and cAMP accumulation assays, we recently found that the nonpsychoactive phytocannabinoid cannabidiol (CBD) is an inverse agonist for GPR3, GPR6, and GPR12. This discovery highlights these orphan receptors as potential new molecular targets for CBD, provides novel mechanisms of action, and suggests new therapeutic uses of CBD for illnesses such as Alzheimer's disease, Parkinson's disease, cancer, and infertility. Furthermore, identification of CBD as a new inverse agonist for GPR3, GPR6, and GPR12 provides the initial chemical scaffolds upon which potent and efficacious agents acting on these receptors can be developed, with the goal of developing chemical tools for studying these orphan receptors and ultimately new therapeutic agents.
Asunto(s)
Cannabidiol/farmacología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animales , Agonismo Inverso de Drogas , Humanos , Ligandos , Neuronas/metabolismo , Transducción de Señal/fisiologíaRESUMEN
Discovery of neuroprotective pathways is one of the major priorities for neuroscience. Astrocytes are natural neuroprotectors and it is likely that brain resilience can be enhanced by mobilizing their protective potential. Among G-protein coupled receptors expressed by astrocytes, two highly related receptors, GPR37L1 and GPR37, are of particular interest. Previous studies suggested that these receptors are activated by a peptide Saposin C and its neuroactive fragments (prosaptide TX14(A)), which were demonstrated to be neuroprotective in various animal models by several groups. However, pairing of Saposin C or prosaptides with GPR37L1/GPR37 has been challenged and presently GPR37L1/GPR37 have regained their orphan status. Here, we demonstrate that in their natural habitat, astrocytes, these receptors mediate a range of effects of TX14(A), including protection from oxidative stress. The Saposin C/GPR37L1/GPR37 pathway is also involved in the neuroprotective effect of astrocytes on neurons subjected to oxidative stress. The action of TX14(A) is at least partially mediated by Gi-proteins and the cAMP-PKA axis. On the other hand, when recombinant GPR37L1 or GPR37 are expressed in HEK293 cells, they are not functional and do not respond to TX14(A), which explains unsuccessful attempts to confirm the ligand-receptor pairing. Therefore, this study identifies GPR37L1/GPR37 as the receptors for TX14(A), and, by extension of Saposin C, and paves the way for the development of neuroprotective therapeutics acting via these receptors.
Asunto(s)
Astrocitos/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Saposinas/metabolismo , Adyuvantes Inmunológicos/farmacología , Animales , Animales Recién Nacidos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Colforsina/farmacología , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , AMP Cíclico/farmacología , Embrión de Mamíferos , Células HEK293 , Humanos , L-Lactato Deshidrogenasa/metabolismo , Factores de Crecimiento Nervioso/farmacología , Fármacos Neuroprotectores/química , Interferencia de ARN/fisiología , Ratas , Ratas Wistar , Receptores Acoplados a Proteínas G/genética , Saposinas/química , Agua/farmacología , Heridas y Lesiones/tratamiento farmacológicoRESUMEN
GPR3, GPR6, and GPR12 are three orphan receptors that belong to the Class A family of G-protein-coupled receptors (GPCRs). These GPCRs share over 60% of sequence similarity among them. Because of their close phylogenetic relationship, GPR3, GPR6, and GPR12 share a high percentage of homology with other lipid receptors such as the lysophospholipid and the cannabinoid receptors. On the basis of sequence similarities at key structural motifs, these orphan receptors have been related to the cannabinoid family. However, further experimental data are required to confirm this association. GPR3, GPR6, and GPR12 are predominantly expressed in mammalian brain. Their high constitutive activation of adenylyl cyclase triggers increases in cAMP levels similar in amplitude to fully activated GPCRs. This feature defines their physiological role under certain pathological conditions. In this review, we aim to summarize the knowledge attained so far on the understanding of these receptors. Expression patterns, pharmacology, physiopathological relevance, and molecules targeting GPR3, GPR6, and GPR12 will be analyzed herein. Interestingly, certain cannabinoid ligands have been reported to modulate these orphan receptors. The current debate about sphingolipids as putative endogenous ligands will also be addressed. A special focus will be on their potential role in the brain, particularly under neurological conditions such as Parkinson or Alzheimer's disease. Reported physiological roles outside the central nervous system will also be covered. This critical overview may contribute to a further comprehension of the physiopathological role of these orphan GPCRs, hopefully attracting more research towards a future therapeutic exploitation of these promising targets.
Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Animales , HumanosRESUMEN
AIMS: Metabolic syndrome (MS) is composed of several metabolic abnormalities that increase the risk of cardiovascular diseases and diabetes. Although there are treatments for the components of MS, this pathology maintains a high mortality, suggesting that there are other mechanisms in which orphan receptors such as GPR26 and GPR39 may be involved. For this reason, the aim of this work was to evaluate the expression of GPR26 and GPR39 orphan receptors in two models of MS (diet and genetics). MATERIALS AND METHODS: We used male Wistar rats, which received 70% fructose in drinking water for 9 weeks, and obese Zucker rats. We measured weight, blood pressure, glucose, triglycerides, total cholesterol, HDL cholesterol, LDL cholesterol to determine the MS and the expression of the orphan receptors GPR26 and GPR39 in brain, heart, aorta, liver, and kidney by RT-PCR. RESULTS: The analysis of the expression of the orphan receptors GPR26 and GPR39 showed that the receptors are expressed in some tissues, but the expression of the GPR26 tends to decrease in the heart and aorta, whereas in the brain, no changes were observed, this receptor is not expressed in the liver and kidney of both strains. The expression of GPR39 isoforms depends on the tissue and MS model. CONCLUSIONS: We conclude that the orphan receptors GPR26, GPR39v1, and GPR39v2 are expressed in different tissues and their profile expression is dependent on the etiology of the MS.
Asunto(s)
Síndrome Metabólico/genética , Obesidad/genética , Receptores Acoplados a Proteínas G/genética , Animales , Regulación de la Expresión Génica/genética , Glucosa/metabolismo , Humanos , Hígado/metabolismo , Hígado/patología , Síndrome Metabólico/sangre , Síndrome Metabólico/patología , Obesidad/sangre , Obesidad/patología , Ratas , Distribución Tisular , Triglicéridos/sangreRESUMEN
The skin forms a vital barrier between an organism's external environment, providing protection from pathogens and numerous physical and chemical threats. Moreover, the intact barrier is essential to prevent water and electrolyte loss without which terrestrial life could not be maintained. Accordingly, acute disruption of the skin through physical or chemical trauma needs to be repaired timely and efficiently as sustained skin pathologies ranging from mild irritations and inflammation through to malignancy impact considerably on morbidity and mortality. The Nuclear Hormone Receptor Family of transcriptional regulators has proven to be highly valuable targets for addressing a range of pathologies, including metabolic syndrome and cancer. Indeed members of the classic endocrine sub-group, such as the glucocorticoid, retinoid, and Vitamin D receptors, represent mainstay treatment strategies for numerous inflammatory skin disorders, though side effects from prolonged use are common. Emerging evidence has now highlighted important functional roles for nuclear receptors belonging to the adopted and orphan subgroups in skin physiology and patho-physiology. This review will focus on these subgroups and explore the current evidence that suggests these nuclear receptor hold great promise as future stand-alone or complementary drug targets in treating common skin diseases and maintaining skin homeostasis.
Asunto(s)
Salud , Terapia Molecular Dirigida , Receptores Citoplasmáticos y Nucleares/metabolismo , Enfermedades de la Piel/metabolismo , Animales , HumanosRESUMEN
The estrogen-related receptors (ERRs) comprise a small group of orphan nuclear receptor transcription factors. The ERRα and ERRγ isoforms play a central role in the regulation of metabolic genes and cellular energy metabolism. Although less is known about ERRß, recent studies have revealed the importance of this isoform in the maintenance of embryonic stem cell pluripotency. Thus, ERRs are essential to many biological processes. The development of several ERR knockout and overexpression models and the application of advanced functional genomics have allowed rapid advancement of our understanding of the physiology regulated by ERR pathways. Moreover, it has enabled us to begin to delineate the distinct programs regulated by ERRα and ERRγ that have overlapping effects on metabolism and growth. The current review primarily focuses on the physiologic roles of ERR isoforms related to their metabolic regulation; therefore, the ERRα and ERRγ are discussed in the greatest detail. We emphasize findings from gain- and loss-of-function models developed to characterize ERR control of skeletal muscle, heart and musculoskeletal physiology. These models have revealed that coordinating metabolic capacity with energy demand is essential for seemingly disparate processes such as muscle differentiation and hypertrophy, innate immune function, thermogenesis, and bone remodeling. Furthermore, the models have revealed that ERRα- and ERRγ-deficiency in mice accelerates progression of pathologic processes and implicates ERRs as etiologic factors in disease. We highlight the human diseases in which ERRs and their downstream metabolic pathways are perturbed, including heart failure and diabetes. While no natural ligand has been identified for any of the ERR isoforms, the potential for using synthetic small molecules to modulate their activity has been demonstrated. Based on our current understanding of their transcriptional mechanisms and physiologic relevance, the ERRs have emerged as potential therapeutic targets for treatment of osteoporosis, muscle atrophy, insulin resistance and heart failure in humans.
RESUMEN
This paper discusses the discovery of ligands for orphan receptors and the identification of the natural endogenous ligands for those receptors in physiology. The central thesis is that orphan seven transmembrane receptors (7TMRs) are allosteric conduits of chemical information exchange from extracellular ligands to intracellar signaling mechanisms. This being the case, the optimal systems for discovery of orphan ligands must be synoptic in nature, that is, include the allosteric co-binding species that interact with the receptor since this latter component is essential for normal orphan 7TMR function. Constitutively active orphan receptor systems are also discussed as useful testing systems for orphan ligands. This is because the activated orphan receptor has a heightened sensitivity to cellular signaling species and thus whole cell constitutively active systems become sensitive to ligand binding. Finally, the phenomenon of biased signaling (due to stabilization of unique receptor active conformations) is discussed as a roadblock to the definitive identification of the natural orphan ligand but not to the detection of ligand tools to elucidate orphan 7TMR function.
Asunto(s)
Descubrimiento de Drogas/métodos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Humanos , Ligandos , Conformación Proteica/efectos de los fármacos , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/químicaRESUMEN
AIMS/INTRODUCTION: Diabetes mellitus is a chronic degenerative disease characterized by high blood glucose levels as a result of problems in the action or insulin secretion. Although there are many treatments for this pathology, it has been associated with a high mortality rate. For this reason, it is important to try to identify new pathways that could be involved in diabetic complications. Recently, a new class of receptors has been reported, called orphan receptors because the associated ligand and signaling pathways are unknown, these receptors have been associated with certain pathologies. Therefore, the aim of this work was to study the expression of the orphan receptors GPR22 and GPR162 in heart, aorta, brain and kidney of diabetic rats. MATERIALS AND METHODS: We used Wistar male rats with 10-12 weeks of age. Diabetes was induced by a single dose of streptozotocin (60 mg/kg i.p.). After four weeks, the tissue was obtained and the expression of the mRNA was measured by RT-PCR. RESULTS: Our results showed that the orphan receptors are expressed in a different way in heart, kidney, brain and aorta of diabetic and non-diabetic rats. CONCLUSIONS: We conclude that orphan receptors could be involved in the development of diabetes complications.
Asunto(s)
Complicaciones de la Diabetes/genética , Diabetes Mellitus Experimental/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Animales , Aorta/metabolismo , Aorta/patología , Encéfalo/metabolismo , Encéfalo/patología , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/patología , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Regulación de la Expresión Génica , Humanos , Riñón/metabolismo , Riñón/patología , Miocardio/metabolismo , Ratas , Receptores Acoplados a Proteínas G/metabolismoRESUMEN
Current methods of G protein coupled receptors (GPCRs) phylogenetic classification are sequence based and therefore inappropriate for highly divergent sequences, sharing low sequence identity. In this study, sequence structure profile based alignment generated by PROMALS3D was used to understand the GPCR Class A Rhodopsin superfamily evolution using the MEGA 5 software. Phylogenetic analysis included a combination of Neighbor-Joining method and Maximum Likelihood method, with 1000 bootstrap replicates. Our study was able to identify potential ligand association for Class A Orphans and putative/unclassified Class A receptors with no cognate ligand information: GPR21 and GPR52 with fatty acids; GPR75 with Neuropeptide Y; GPR82, GPR18, GPR141 with N-arachidonylglycine; GPR176 with Free fatty acids, GPR10 with Tachykinin & Neuropeptide Y; GPR85 with ATP, ADP & UDP glucose; GPR151 with Galanin; GPR153 and GPR162 with Adrenalin, Noradrenalin; GPR146, GPR139, GPR142 with Neuromedin, Ghrelin, Neuromedin U-25 & Thyrotropin-releasing hormone; GPR171 with ATP, ADP & UDP Glucose; GPR88, GPR135, GPR161, GPR101with 11-cis-retinal; GPR83 with Tackykinin; GPR148 with Prostanoids, GPR109b, GPR81, GPR31with ATP & UTP and GPR150 with GnRH I & GnRHII. Furthermore, we suggest that this study would prove useful in re-classification of receptors, selecting templates for homology modeling and identifying ligands which may show cross reactivity with other GPCRs as signaling via multiple ligands play a significant role in disease modulation.
Asunto(s)
Filogenia , Receptores Acoplados a Proteínas G/genética , Animales , Evolución Molecular , Humanos , Funciones de Verosimilitud , Receptores Acoplados a Proteínas G/metabolismo , Rodopsina/metabolismo , Análisis de Secuencia de ADNRESUMEN
G protein-coupled receptors (GPCRs) make up the largest receptor superfamily, accounting for 4% of protein-coding genes. Despite the prevalence of such transmembrane receptors, a significant number remain orphans, lacking identified endogenous ligands. Since their conception, the reverse pharmacology approach has been used to characterize such receptors. However, the multifaceted and nuanced nature of GPCR signaling poses a great challenge to their pharmacological elucidation. Considering their therapeutic relevance, the search for native orphan GPCR ligands continues. Despite limited structural input in terms of 3D crystallized structures, with advances in machine-learning approaches, there has been great progress with respect to accurate ligand prediction. Though such an approach proves valuable given that ligand scarcity is the greatest hurdle to orphan GPCR deorphanization, the future pairings of the remaining orphan GPCRs may not necessarily take a one-size-fits-all approach but should be more comprehensive in accounting for numerous nuanced possibilities to cover the full spectrum of GPCR signaling.