Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 92(5): 2222-2236, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38988088

RESUMEN

PURPOSE: Retrospective frequency-and-phase correction (FPC) methods attempt to remove frequency-and-phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a 2D linear-combination model (2D-LCM) of individual transients ("model-based FPC"). We investigated how model-based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D-LCM in estimating frequency-and-phase drifts and, consequentially, metabolite level estimates. METHODS: We created synthetic in-vivo-like 64-transient short-TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D-LCM with the traditional approach (spectral registration, averaging, then 1D-LCM). Outcome measures were the frequency/phase/amplitude errors, the SD of those ground-truth errors, and amplitude Cramér Rao lower bounds (CRLBs). We further tested the proposed method on publicly available in-vivo short-TE PRESS data. RESULTS: 2D-LCM estimates (and accounts for) frequency-and-phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D-LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D-LCM estimation of FPC and amplitudes performed substantially better at low-to-very-low SNR. CONCLUSION: Model-based FPC with 2D linear-combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low-SNR conditions, for example, long TEs or strong diffusion weighting.


Asunto(s)
Algoritmos , Encéfalo , Relación Señal-Ruido , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Modelos Lineales , Procesamiento de Imagen Asistido por Computador/métodos , Espectroscopía de Protones por Resonancia Magnética/métodos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos
2.
Magn Reson Med ; 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39449248

RESUMEN

PURPOSE: Flow quantification using phase-contrast (PC) MRI is based on steady-state gradient echo (GRE) sequences and is hampered by spatially varying background phase offsets. The purpose of this work was to investigate the effect of steady-state disruptions during PC-MRI GRE sequences on these background phases. Based on these findings, a specific sequence and timing is suggested, and caution is expressed when using typical correction algorithms. METHODS: Steady-state responses in stationary tissue were investigated in different prospectively triggered through-plane phase-contrast MRI sequence. Different spoiling methods (gradient spoiling/FISP versus gradient+RF spoiling/FLASH) and interleaving of flow encoding gradients (every TR vs. every ECG cycle) were investigated using simulations, in phantoms and in vivo. Additionally, the effect of relaxation times on the phase offsets was simulated and measured. The impact on image- and phantom-based background phase correction was studied. RESULTS: Good agreement between simulation and phantom measurements were observed. Different sequences lead to different spatiotemporal and tissue dependent background phases. Average flow rates in the popliteal artery were over- and underestimated for ECG-interleaved and TR-interleaved FISP acquisitions compared to FLASH, respectively. CONCLUSION: Background phase measurements are influenced by steady-state effects leading to potentially false background phase quantification. Current background phase correction methods cannot correct for the disturbance.

3.
Magn Reson Med ; 92(2): 556-572, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38441339

RESUMEN

PURPOSE: To evaluate the utility of up to second-order motion-compensated diffusion encoding in multi-shot human brain acquisitions. METHODS: Experiments were performed with high-performance gradients using three forms of diffusion encoding motion-compensated through different orders: conventional zeroth-order-compensated pulsed gradients (PG), first-order-compensated gradients (MC1), and second-order-compensated gradients (MC2). Single-shot acquisitions were conducted to correlate the order of motion compensation with resultant phase variability. Then, multi-shot acquisitions were performed at varying interleaving factors. Multi-shot images were reconstructed using three levels of shot-to-shot phase correction: no correction, channel-wise phase correction based on FID navigation, and correction based on explicit phase mapping (MUSE). RESULTS: In single-shot acquisitions, MC2 diffusion encoding most effectively suppressed phase variability and sensitivity to brain pulsation, yielding residual variations of about 10° and of low spatial order. Consequently, multi-shot MC2 images were largely satisfactory without phase correction and consistently improved with the navigator correction, which yielded repeatable high-quality images; contrarily, PG and MC1 images were inadequately corrected using the navigator approach. With respect to MUSE reconstructions, the MC2 navigator-corrected images were in close agreement for a standard interleaving factor and considerably more reliable for higher interleaving factors, for which MUSE images were corrupted. Finally, owing to the advanced gradient hardware, the relative SNR penalty of motion-compensated diffusion sensitization was substantially more tolerable than that faced previously. CONCLUSION: Second-order motion-compensated diffusion encoding mitigates and simplifies shot-to-shot phase variability in the human brain, rendering the multi-shot acquisition strategy an effective means to circumvent limitations of retrospective phase correction methods.


Asunto(s)
Encéfalo , Procesamiento de Imagen Asistido por Computador , Movimiento (Física) , Humanos , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Difusión por Resonancia Magnética , Algoritmos , Artefactos
4.
Magn Reson Med ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250435

RESUMEN

PURPOSE: To develop a 3D spherical EPTI (sEPTI) acquisition and a comprehensive reconstruction pipeline for rapid high-quality whole-brain submillimeter T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and QSM quantification. METHODS: For the sEPTI acquisition, spherical k-space coverage is utilized with variable echo-spacing and maximum kx ramp-sampling to improve efficiency and signal incoherency compared to existing EPTI approaches. For reconstruction, an iterative rank-shrinking B0 estimation and odd-even high-order phase correction algorithms were incorporated into the reconstruction to better mitigate artifacts from field imperfections. A physics-informed unrolled network was utilized to boost the SNR, where 1-mm and 0.75-mm isotropic whole-brain imaging were performed in 45 and 90 s at 3 T, respectively. These protocols were validated through simulations, phantom, and in vivo experiments. Ten healthy subjects were recruited to provide sufficient data for the unrolled network. The entire pipeline was validated on additional five healthy subjects where different EPTI sampling approaches were compared. Two additional pediatric patients with epilepsy were recruited to demonstrate the generalizability of the unrolled reconstruction. RESULTS: sEPTI achieved 1.4 × $$ \times $$ faster imaging with improved image quality and quantitative map precision compared to existing EPTI approaches. The B0 update and the phase correction provide improved reconstruction performance with lower artifacts. The unrolled network boosted the SNR, achieving high-quality T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and QSM quantification with single average data. High-quality reconstruction was also obtained in the pediatric patients using this network. CONCLUSION: sEPTI achieved whole-brain distortion-free multi-echo imaging and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and QSM quantification at 0.75 mm in 90 s which has the potential to be useful for wide clinical applications.

5.
Sensors (Basel) ; 24(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39275610

RESUMEN

Atmospheric phase error is the main factor affecting the accuracy of ground-based synthetic aperture radar (GB-SAR). The atmospheric phase screen (APS) may be very complicated, so the atmospheric phase correction (APC) model is very important; in particular, the parameters to be estimated in the model are the key to improving the accuracy of APC. However, the conventional APC method first performs phase unwrapping and then removes the APS based on the least-squares method (LSM), and the general phase unwrapping method is prone to introducing unwrapping error. In particular, the LSM is difficult to apply directly due to the phase wrapping of permanent scatterers (PSs). Therefore, a novel methodology for estimating parameters of the APC model based on the maximum likelihood estimation (MLE) and the Gauss-Newton algorithm is proposed in this paper, which first introduces the MLE method to provide a suitable objective function for the parameter estimation of nonlinear far-end and near-end correction models. Then, based on the Gauss-Newton algorithm, the parameters of the objective function are iteratively estimated with suitable initial values, and the Matthews and Davies algorithm is used to optimize the Gauss-Newton algorithm to improve the accuracy of parameter estimation. Finally, the parameter estimation performance is evaluated based on Monte Carlo simulation experiments. The method proposed in this paper experimentally verifies the feasibility and superiority, which avoids phase unwrapping processing unlike the conventional method.

6.
Magn Reson Med ; 89(1): 396-410, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36110059

RESUMEN

PURPOSE: To introduce a novel imaging and parameter estimation framework for accurate multi-shot diffusion MRI. THEORY AND METHODS: We propose a new framework called ADEPT (Accurate Diffusion Echo-Planar imaging with multi-contrast shoTs) that enables fast diffusion MRI by allowing diffusion contrast settings to change between shots in a multi-shot EPI acquisition (i.e., intra-scan modulation). The framework estimates diffusion parameter maps directly from the acquired intra-scan modulated k-space data, while simultaneously accounting for shot-to-shot phase inconsistencies. The performance of the estimation framework is evaluated using Monte Carlo simulation studies and in-vivo experiments and compared to that of reference methods that rely on parallel imaging for shot-to-shot phase correction. RESULTS: Simulation and real-data experiments show that ADEPT yields more accurate and more precise estimates of the diffusion metrics in multi-shot EPI data in comparison with the reference methods. CONCLUSION: ADEPT allows fast multi-shot EPI diffusion MRI without significantly degrading the accuracy and precision of the estimated diffusion maps.


Asunto(s)
Imagen Eco-Planar , Procesamiento de Imagen Asistido por Computador , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Simulación por Computador , Método de Montecarlo , Encéfalo/diagnóstico por imagen
7.
Magn Reson Med ; 89(3): 1221-1236, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36367249

RESUMEN

PURPOSE: A supervised deep learning (DL) approach for frequency and phase correction (FPC) of MRS data recently showed encouraging results, but obtaining transients with labels for supervised learning is challenging. This work investigates the feasibility and efficiency of unsupervised deep learning-based FPC. METHODS: Two novel deep learning-based FPC methods (deep learning-based Cr referencing and deep learning-based spectral registration), which use a priori physics domain knowledge, are presented. The proposed networks were trained, validated, and evaluated using simulated, phantom, and publicly accessible in vivo MEGA-edited MRS data. The performance of our proposed FPC methods was compared with other generally used FPC methods, in terms of precision and time efficiency. A new measure was proposed in this study to evaluate the FPC method performance. The ability of each of our methods to carry out FPC at varying SNR levels was evaluated. A Monte Carlo study was carried out to investigate the performance of our proposed methods. RESULTS: The validation using low-SNR manipulated simulated data demonstrated that the proposed methods could perform FPC comparably with other methods. The evaluation showed that the deep learning-based spectral registration over a limited frequency range method achieved the highest performance in phantom data. The applicability of the proposed method for FPC of GABA-edited in vivo MRS data was demonstrated. Our proposed networks have the potential to reduce computation time significantly. CONCLUSIONS: The proposed physics-informed deep neural networks trained in an unsupervised manner with complex data can offer efficient FPC of large MRS data in a shorter time.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Fantasmas de Imagen , Método de Montecarlo , Procesamiento de Imagen Asistido por Computador/métodos
8.
Magn Reson Med ; 90(5): 1932-1948, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37448116

RESUMEN

PURPOSE: To improve the image reconstruction for prospective motion correction (PMC) of simultaneous multislice (SMS) EPI of the brain, an update of receiver phase and resampling of coil sensitivities are proposed and evaluated. METHODS: A camera-based system was used to track head motion (3 translations and 3 rotations) and dynamically update the scan position and orientation. We derived the change in receiver phase associated with a shifted field of view (FOV) and applied it in real-time to each k-space line of the EPI readout trains. Second, for the SMS reconstruction, we adapted resampled coil sensitivity profiles reflecting the movement of slices. Single-shot gradient-echo SMS-EPI scans were performed in phantoms and human subjects for validation. RESULTS: Brain SMS-EPI scans in the presence of motion with PMC and no phase correction for scan plane shift showed noticeable artifacts. These artifacts were visually and quantitatively attenuated when corrections were enabled. Correcting misaligned coil sensitivity maps improved the temporal SNR (tSNR) of time series by 24% (p = 0.0007) for scans with large movements (up to ˜35 mm and 30°). Correcting the receiver phase improved the tSNR of a scan with minimal head movement by 50% from 50 to 75 for a United Kingdom biobank protocol. CONCLUSION: Reconstruction-induced motion artifacts in single-shot SMS-EPI scans acquired with PMC can be removed by dynamically adjusting the receiver phase of each line across EPI readout trains and updating coil sensitivity profiles during reconstruction. The method may be a valuable tool for SMS-EPI scans in the presence of subject motion.


Asunto(s)
Imagen Eco-Planar , Procesamiento de Imagen Asistido por Computador , Humanos , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Estudios Prospectivos , Encéfalo/diagnóstico por imagen , Movimientos de la Cabeza , Movimiento (Física) , Artefactos
9.
Magn Reson Med ; 90(6): 2500-2509, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37668095

RESUMEN

PURPOSE: Brain MRI is increasingly used in the emergency department (ED), where T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted MRI is an essential tool for detecting hemorrhage and stroke. The goal of this study was to develop a rapid T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted MRI technique capable of correcting motion-induced artifacts, thereby simultaneously improving scan time and motion robustness for ED applications. METHODS: A 2D gradient-echo (GRE)-based multishot EPI (msEPI) technique was implemented using a navigator echo for estimating motion-induced errors. Bulk rigid head motion and phase errors were retrospectively corrected using an iterative conjugate gradient approach in the reconstruction pipeline. Three volunteers and select patients were imaged at 3 T and/or 1.5 T with an approximately 1-min full-brain protocol using the proposed msEPI technique and compared to an approximately 3-min standard-of-care GRE protocol to examine its performance. RESULTS: Data from volunteers demonstrated that in-plane motion artifacts could be effectively corrected with the proposed msEPI technique, and through-plane motion artifacts could be mitigated. Patient images were qualitatively reviewed by one radiologist without a formal statistical analysis. These results suggested the proposed technique could correct motion-induced artifacts in the clinical setting. In addition, the conspicuity of susceptibility-related lesions using the proposed msEPI technique was comparable, or improved, compared to GRE. CONCLUSION: A 1-min full-brain T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted MRI technique was developed using msEPI with a navigator echo to correct motion-induced errors. Preliminary clinical results suggest faster scans and improved motion robustness and lesion conspicuity make msEPI a competitive alternative to traditional T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted MRI techniques for brain studies in the ED.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Humanos , Estudios Retrospectivos , Interpretación de Imagen Asistida por Computador/métodos , Imagen Eco-Planar/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Movimiento (Física) , Artefactos
10.
Int J Hyperthermia ; 40(1): 2266594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37813397

RESUMEN

In transabdominal histotripsy, ultrasound pulses are focused on the body to noninvasively destroy soft tissues via cavitation. However, the ability to focus is limited by phase aberration, or decorrelation of the ultrasound pulses due to spatial variation in the speed of sound throughout heterogeneous tissue. Phase aberration shifts, broadens, and weakens the focus, thereby reducing the safety and efficacy of histotripsy therapy. This paper reviews and discusses aberration effects in histotripsy and in related therapeutic ultrasound techniques (e.g., high intensity focused ultrasound), with an emphasis on aberration by soft tissues. Methods for aberration correction are reviewed and can be classified into two groups: model-based methods, which use segmented images of the tissue as input to an acoustic propagation model to predict and compensate phase differences, and signal-based methods, which use a receive-capable therapy array to detect phase differences by sensing acoustic signals backpropagating from the focus. The relative advantages and disadvantages of both groups of methods are discussed. Importantly, model-based methods can correct focal shift, while signal-based methods can restore substantial focal pressure, suggesting that both methods should be combined in a 2-step approach. Aberration correction will be critical to improving histotripsy treatments and expanding the histotripsy treatment envelope to enable non-invasive, non-thermal histotripsy therapy for more patients.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Humanos , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Ultrasonografía , Sonido , Microburbujas , Fantasmas de Imagen
11.
Hum Brain Mapp ; 43(11): 3386-3403, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35384130

RESUMEN

Resting-state functional magnetic resonance imaging (fMRI) has been used in numerous studies to map networks in the brain that employ spatially disparate regions. However, attempts to map networks with high spatial resolution have been hampered by conflicting technical demands and associated problems. Results from recent fMRI studies have shown that spatial resolution remains around 0.7 × 0.7 × 0.7 mm3 , with only partial brain coverage. Therefore, this work aims to present a novel fMRI technique that was developed based on echo-planar-imaging with keyhole (EPIK) combined with repetition-time-external (TR-external) EPI phase correction. Each technique has been previously shown to be effective in enhancing the spatial resolution of fMRI, and in this work, the combination of the two techniques into TR-external EPIK provided a nominal spatial resolution of 0.51 × 0.51 × 1.00 mm3 (0.26 mm3 voxel) with whole-cerebrum coverage. Here, the feasibility of using half-millimetre in-plane TR-external EPIK for resting-state fMRI was validated using 13 healthy subjects and the corresponding reproducible mapping of resting-state networks was demonstrated. Furthermore, TR-external EPIK enabled the identification of various resting-state networks distributed throughout the brain from a single fMRI session, with mapping fidelity onto the grey matter at 7T. The high-resolution functional image further revealed mesoscale anatomical structures, such as small cerebral vessels and the internal granular layer of the cortex within the postcentral gyrus.


Asunto(s)
Mapeo Encefálico , Cerebro , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Imagen Eco-Planar/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos
12.
Magn Reson Med ; 88(4): 1775-1784, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35696532

RESUMEN

PURPOSE: The phase mismatch between odd and even echoes in EPI causes Nyquist ghost artifacts. Existing ghost correction methods often suffer from severe residual artifacts and are ineffective with k-space undersampling data. This study proposed a deep learning-based method (PEC-DL) to correct phase errors for DWI at 7 Tesla. METHODS: The acquired k-space data were divided into 2 independent undersampled datasets according to their readout polarities. Then the proposed PEC-DL network reconstructed 2 ghost-free images using the undersampled data without calibration and navigator data. The network was trained with fully sampled images and applied to two- and fourfold accelerated data. Healthy volunteers and patients with Moyamoya disease were recruited to validate the efficacy of the PEC-DL method. RESULTS: The PEC-DL method was capable to mitigate the ghost artifacts in DWI in healthy volunteers as well as patients with Moyamoya disease. The fourfold accelerated results showed much less distortion in the lesions of the Moyamoya patient using high b-value DWI and the corresponding ADC maps. The ghost-to-signal ratios were significantly lower in PEC-DL images compared to conventional linear phase corrections, mini-entropy, and PEC-GRAPPA algorithms. CONCLUSION: The proposed method can effectively eliminate ghost artifacts for full sampled and up to fourfold accelerated EPI data without calibration and navigator data.


Asunto(s)
Aprendizaje Profundo , Enfermedad de Moyamoya , Algoritmos , Artefactos , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Enfermedad de Moyamoya/diagnóstico por imagen , Fantasmas de Imagen , Relación Señal-Ruido
13.
Magn Reson Med ; 87(4): 1700-1710, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34931715

RESUMEN

PURPOSE: To introduce a novel convolutional neural network (CNN)-based approach for frequency-and-phase correction (FPC) of MR spectroscopy (MRS) spectra to achieve fast and accurate FPC of single-voxel MEGA-PRESS MRS data. METHODS: Two neural networks (one for frequency and one for phase) were trained and validated using published simulated and in vivo MEGA-PRESS MRS dataset with wide-range artificial frequency and phase offsets applied. The CNN-based approach was subsequently tested and compared to the current deep learning solution: multilayer perceptrons (MLP). Furthermore, random noise was added to the original simulated dataset to further investigate the model performance at varied signal-to-noise ratio (SNR) levels (i.e., 10, 5, and 2.5). Additional frequency and phase offsets (i.e., small, moderate, large) were also applied to the in vivo dataset, and the CNN model was compared to the conventional approach SR and model-based SR implementation (mSR). RESULTS: The CNN model is more robust to noise compared to the MLP-based approach due to having smaller mean absolute errors in both frequency (0.01 ± 0.01 Hz at SNR = 10 and 0.01 ± 0.02 Hz at SNR = 2.5) and phase (0.12 ± 0.09° at SNR = 10 and -0.07 ± 0.44° at SNR = 2.5) offset prediction. Furthermore, better performance was demonstrated for FPC when compared to the MLP-based approach, and SR when applied to the in vivo dataset for both with and without additional offsets. CONCLUSION: A CNN-based approach provides a solution to the automated preprocessing of MRS data, and the experimental results demonstrate the quantitatively improved spectra quality compared to the state-of-the-art approach.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos , Espectroscopía de Resonancia Magnética , Relación Señal-Ruido
14.
Magn Reson Med ; 88(6): 2709-2717, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35916368

RESUMEN

PURPOSE: Flow quantification by phase-contrast MRI is hampered by spatially varying background phase offsets. Correction performance by polynomial regression on stationary tissue may be affected by outliers such as wrap-around or constant flow. Therefore, we propose an alternative, M-estimate SAmple Consensus (MSAC) to reject outliers, and improve and fully automate background phase correction. METHODS: The MSAC technique fits polynomials to randomly drawn small samples from the image. Over several trials, it aims to find the best consensus set of valid pixels by rejecting outliers to the fit and minimizing the residuals of the remaining pixels. The robustness of MSAC to its few parameters was investigated and verified using third-order polynomial correction fits on a total of 118 2D flow (97 with wrap-around) and 18 4D flow data sets (14 with wrap-around), acquired at 1.5 T and 3 T. Background phase was compared with standard stationary correction and phantom correction. Pulmonary/systemic flow ratios in 2D flow were derived, and exemplary 4D flow analysis was performed. RESULTS: The MSAC technique is robust over a range of parameter choices, and a unique set of parameters is suitable for both 2D and 4D flow. In 2D flow, phase errors were significantly reduced by MSAC compared with stationary correction (p = 0.005), and stationary correction shows larger errors in pulmonary/systemic flow ratios compared with MSAC. In 4D flow, MSAC shows similar performance as stationary correction. CONCLUSIONS: The MSAC method provides fully automated background phase correction to 2D and 4D flow data and shows improved robustness over stationary correction, especially with outliers present.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Velocidad del Flujo Sanguíneo , Consenso , Voluntarios Sanos , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Reproducibilidad de los Resultados
15.
Magn Reson Med ; 88(3): 1098-1111, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35576148

RESUMEN

PURPOSE: Present a method to use change in phase in repeated Cartesian k-space measurements to monitor the change in magnetic field for dynamic MR temperature imaging. METHODS: The method is applied to focused ultrasound heating experiments in a gelatin phantom and an ex vivo salt pork sample, without and with simulated respiratory motion. RESULTS: In each experiment, phase variations due to B0 field drift and respiration were readily apparent in the measured phase difference. With correction, the SD of the temperature over time was reduced from 0.18°C to 0.14°C (no breathing) and from 0.81°C to 0.22°C (with breathing) for the gelatin phantom, and from 0.68°C to 0.13°C (no breathing) and from 1.06°C to 0.17°C (with breathing) for the pork sample. The accuracy in nonheated regions, assessed as the RMS error deviation from 0°C, improved from 1.70°C to 1.11°C (no breathing) and from 4.73°C to 1.47°C (with breathing) for the gelatin phantom, and from 5.95°C to 0.88°C (no breathing) and from 13.40°C to 1.73°C (with breathing) for the pork sample. The correction did not affect the temperature measurement accuracy in the heated regions. CONCLUSION: This work demonstrates that phase changes resulting from variations in B0 due to drift and respiration, commonly seen in MR thermometry applications, can be measured directly from 3D Cartesian acquisition methods. The correction of temporal field variations using the presented technique improved temperature accuracy, reduced variability in nonheated regions, and did not reduce accuracy in heated regions.


Asunto(s)
Gelatina , Termometría , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Temperatura , Termometría/métodos
16.
IEEE Sens J ; 22(24): 24493-24503, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37497077

RESUMEN

A flexible fiber-coupled confocal laser endomicroscope has been developed using an electrostatic micro-electromechanical system (MEMS) scanner located in at distal optics to collect in vivo images in human subjects. Long transmission lines are required that deliver drive and sense signals with limited bandwidth. Phase shifts have been observed between orthogonal X and Y scanner axes from environmental perturbations, which impede image reconstruction. Image processing algorithms used for correction depend on image content and quality, while scanner calibration in the clinic can be limited by potential patient exposure to lasers. We demonstrate a capacitive sensing method to track the motion of the electrostatically driven two-dimensional MEMS scanner and to extract phase information needed for image reconstruction. This circuit uses an amplitude modulation envelope detection method on shared drive and sensing electrodes of the scanner. Circuit parameters were optimized for performance given high scan frequencies, transmission line effects, and substantial parasitic coupling of drive signal to circuit output. Extraction of phase information further leverages nonlinear dynamics of the MEMS scanner. The sensing circuit was verified by comparing with data from a position sensing detector measurement. The phase estimation showed an accuracy of 2.18° and 0.79° in X and Y axes for motion sensing, respectively. The results indicate that the sensing circuit can be implemented with feedback control for pre-calibration of the scanner in clinical MEMS-based imaging systems.

17.
Neuroimage ; 244: 118632, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34627977

RESUMEN

PURPOSE: A phase correction method for high-resolution multi-shot (MSH) diffusion weighted imaging (DWI) is proposed. The efficacy and generalization capability of the method were validated on both healthy volunteers and patients. THEORY AND METHODS: Conventionally, inter-shot phase variations for MSH echo-planar imaging (EPI) DWI are corrected by model-based algorithms. However, many acquisition imperfections are hard to measure accurately for conventional model-based methods, making the phase estimation and artifacts suppression unreliable. We propose a deep learning multiplexed sensitivity-encoding (DL-MUSE) framework to improve the phase estimations based on convolutional neural network (CNN) reconstruction. Aliasing-free single-shot (SSH) DW images, which have been used routinely in clinical settings, were used for training before the aliasing correction of MSH-DWI images. A dual-channel U-net comprising multiple convolutional layers was used for the phase estimation of MSH-EPI. The network was trained on a dataset containing 30 healthy volunteers and tested on another dataset of 52 healthy subjects and 15 patients with lesions or tumors with different shot numbers (4, 6 and 8). To further validate the generalization capability of our network, we acquired a dataset with different numbers of shots, TEs, partial Fourier factors, resolutions, ETLs, FOVs, coil numbers, and image orientations from two sites. We also compared the reconstruction performance of our proposed method with that of the conventional MUSE and SSH-EPI qualitatively and quantitatively. RESULTS: Our results show that DL-MUSE is capable of correcting inter-shot phase errors with high and robust performance. Compared to conventional model-based MUSE, our method, by applying deep learning-based phase corrections, showed reduced distortion, noise level, and signal loss in high b-value DWIs. The improvements of image quality become more evident as the shot number increases from 4 to 8, especially in those central regions of the images, where g-factor artifacts are severe. Furthermore, the proposed method could provide the information about the orientation of the white matter with better consistency and achieve finer fibers delineation compared to the SSH-EPI method. Besides, the experiments on volunteers and patients from two different sites demonstrated the generalizability of our proposed method preliminarily. CONCLUSION: A deep learning-based reconstruction algorithm for MSH-EPI images, which helps improve image quality greatly, was proposed. Results from healthy volunteers and tumor patients demonstrated the feasibility and generalization performances of our method for high-resolution MSH-EPI DWI, which can be used for routine clinical applications as well as neuroimaging research.


Asunto(s)
Aprendizaje Profundo , Imagen de Difusión por Resonancia Magnética/métodos , Neuroimagen/métodos , Adulto , Anciano , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagen , Imagen Eco-Planar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Redes Neurales de la Computación , Variación de la Fase , Adulto Joven
18.
Magn Reson Med ; 85(4): 1755-1765, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33210342

RESUMEN

PURPOSE: To investigate whether a deep learning-based (DL) approach can be used for frequency-and-phase correction (FPC) of MEGA-edited MRS data. METHODS: Two neural networks (1 for frequency, 1 for phase) consisting of fully connected layers were trained and validated using simulated MEGA-edited MRS data. This DL-FPC was subsequently tested and compared to a conventional approach (spectral registration [SR]) and to a model-based SR implementation (mSR) using in vivo MEGA-edited MRS datasets. Additional artificial offsets were added to these datasets to further investigate performance. RESULTS: The validation showed that DL-based FPC was capable of correcting within 0.03 Hz of frequency and 0.4°of phase offset for unseen simulated data. DL-based FPC performed similarly to SR for the unmanipulated in vivo test datasets. When additional offsets were added to these datasets, the networks still performed well. However, although SR accurately corrected for smaller offsets, it often failed for larger offsets. The mSR algorithm performed well for larger offsets, which was because the model was generated from the in vivo datasets. In addition, the computation times were much shorter using DL-based FPC or mSR compared to SR for heavily distorted spectra. CONCLUSION: These results represent a proof of principle for the use of DL for preprocessing MRS data.


Asunto(s)
Aprendizaje Profundo , Ácido gamma-Aminobutírico , Algoritmos , Espectroscopía de Resonancia Magnética , Redes Neurales de la Computación
19.
Molecules ; 26(11)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205070

RESUMEN

Two-dimensional mass spectrometry (2D MS) is a tandem mass spectrometry method that relies on manipulating ion motions to correlate precursor and fragment ion signals. 2D mass spectra are obtained by performing a Fourier transform in both the precursor ion mass-to-charge ratio (m/z) dimension and the fragment ion m/z dimension. The phase of the ion signals evolves linearly in the precursor m/z dimension and quadratically in the fragment m/z dimension. This study demonstrates that phase-corrected absorption mode 2D mass spectrometry improves signal-to-noise ratios by a factor of 2 and resolving power by a factor of 2 in each dimension compared to magnitude mode. Furthermore, phase correction leads to an easier differentiation between ion signals and artefacts, and therefore easier data interpretation.

20.
IEEE ASME Trans Mechatron ; 26(3): 1445-1454, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34295138

RESUMEN

This paper applies image processing metrics to tracking of perturbations in mechanical phase delay in a multi-axis microelectromechanical system (MEMS) scanner. The compact mirror is designed to scan a laser beam in a Lissajous pattern during the collection of endoscopic confocal fluorescence images, but environmental perturbations to the mirror dynamics can lead to image registration errors and blurry images. A binarized, threshold-based blur metric and variance-based sharpness metric are introduced for detecting scanner phase delay. Accuracy of local optima of the metric for identification of phase delay is examined, and relative advantages for processing accuracy and computational complexity are assessed. Image reconstruction is demonstrated using both generic images and sample tissue images, with significant improvement in image quality for tissue imaging. Implications of non-ideal Lissajous scan effects on phase detection and image reconstruction are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA