Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.018
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 182(6): 1519-1530.e17, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32846156

RESUMEN

Cells relay a plethora of extracellular signals to specific cellular responses by using only a few second messengers, such as cAMP. To explain signaling specificity, cAMP-degrading phosphodiesterases (PDEs) have been suggested to confine cAMP to distinct cellular compartments. However, measured rates of fast cAMP diffusion and slow PDE activity render cAMP compartmentalization essentially impossible. Using fluorescence spectroscopy, we show that, contrary to earlier data, cAMP at physiological concentrations is predominantly bound to cAMP binding sites and, thus, immobile. Binding and unbinding results in largely reduced cAMP dynamics, which we term "buffered diffusion." With a large fraction of cAMP being buffered, PDEs can create nanometer-size domains of low cAMP concentrations. Using FRET-cAMP nanorulers, we directly map cAMP gradients at the nanoscale around PDE molecules and the areas of resulting downstream activation of cAMP-dependent protein kinase (PKA). Our study reveals that spatiotemporal cAMP signaling is under precise control of nanometer-size domains shaped by PDEs that gate activation of downstream effectors.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal , Análisis de la Célula Individual/métodos , Simulación por Computador , AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/química , Citoplasma/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Modelos Moleculares , Hidrolasas Diéster Fosfóricas/química , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes , Análisis Espacio-Temporal , Espectrometría de Fluorescencia
2.
Cell ; 173(5): 1231-1243.e16, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29731171

RESUMEN

Ubiquitination constitutes one of the most important signaling mechanisms in eukaryotes. Conventional ubiquitination is catalyzed by the universally conserved E1-E2-E3 three-enzyme cascade in an ATP-dependent manner. The newly identified SidE family effectors of the pathogen Legionella pneumophila ubiquitinate several human proteins by a different mechanism without engaging any of the conventional ubiquitination machinery. We now report the crystal structures of SidE alone and in complex with ubiquitin, NAD, and ADP-ribose, thereby capturing different conformations of SidE before and after ubiquitin and ligand binding. The structures of ubiquitin bound to both mART and PDE domains reveal several unique features of the two reaction steps catalyzed by SidE. Further, the structural and biochemical results demonstrate that SidE family members do not recognize specific structural folds of the substrate proteins. Our studies provide both structural explanations for the functional observations and new insights into the molecular mechanisms of this non-canonical ubiquitination machinery.


Asunto(s)
Proteínas Bacterianas/química , Legionella pneumophila/metabolismo , Hidrolasas Diéster Fosfóricas/química , Ubiquitina/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Cristalografía por Rayos X , Dimerización , Hidrolasas Diéster Fosfóricas/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Cuaternaria de Proteína , Ubiquitina/metabolismo , Ubiquitinación
3.
Physiol Rev ; 104(2): 765-834, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37971403

RESUMEN

Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.


Asunto(s)
Enfermedades Cardiovasculares , Dietilestilbestrol/análogos & derivados , Hidrolasas Diéster Fosfóricas , Humanos , Inhibidores de Fosfodiesterasa/uso terapéutico , AMP Cíclico , GMP Cíclico , Isoformas de Proteínas
4.
Mol Cell ; 77(1): 164-179.e6, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31732457

RESUMEN

The family of bacterial SidE enzymes catalyzes non-canonical phosphoribosyl-linked (PR) serine ubiquitination and promotes infectivity of Legionella pneumophila. Here, we describe identification of two bacterial effectors that reverse PR ubiquitination and are thus named deubiquitinases for PR ubiquitination (DUPs; DupA and DupB). Structural analyses revealed that DupA and SidE ubiquitin ligases harbor a highly homologous catalytic phosphodiesterase (PDE) domain. However, unlike SidE ubiquitin ligases, DupA displays increased affinity to PR-ubiquitinated substrates, which allows DupA to cleave PR ubiquitin from substrates. Interfering with DupA-ubiquitin binding switches its activity toward SidE-type ligase. Given the high affinity of DupA to PR-ubiquitinated substrates, we exploited a catalytically inactive DupA mutant to trap and identify more than 180 PR-ubiquitinated host proteins in Legionella-infected cells. Proteins involved in endoplasmic reticulum (ER) fragmentation and membrane recruitment to Legionella-containing vacuoles (LCV) emerged as major SidE targets. The global map of PR-ubiquitinated substrates provides critical insights into host-pathogen interactions during Legionella infection.


Asunto(s)
Enzimas Desubicuitinizantes/metabolismo , Serina/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Células A549 , Proteínas Bacterianas/metabolismo , Dominio Catalítico/fisiología , Línea Celular , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno/fisiología , Humanos , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/metabolismo , Vacuolas/metabolismo
5.
Mol Cell ; 80(2): 237-245.e4, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33007200

RESUMEN

Heterotrimeric G proteins communicate signals from activated G protein-coupled receptors to downstream effector proteins. In the phototransduction pathway responsible for vertebrate vision, the G protein-effector complex is composed of the GTP-bound transducin α subunit (GαT·GTP) and the cyclic GMP (cGMP) phosphodiesterase 6 (PDE6), which stimulates cGMP hydrolysis, leading to hyperpolarization of the photoreceptor cell. Here we report a cryo-electron microscopy (cryoEM) structure of PDE6 complexed to GTP-bound GαT. The structure reveals two GαT·GTP subunits engaging the PDE6 hetero-tetramer at both the PDE6 catalytic core and the PDEγ subunits, driving extensive rearrangements to relieve all inhibitory constraints on enzyme catalysis. Analysis of the conformational ensemble in the cryoEM data highlights the dynamic nature of the contacts between the two GαT·GTP subunits and PDE6 that supports an alternating-site catalytic mechanism.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Transducción de Señal , Transducina/metabolismo , Animales , Biocatálisis , Dominio Catalítico , Bovinos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/ultraestructura , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Transducina/química , Transducina/ultraestructura , Diclorhidrato de Vardenafil/química , Diclorhidrato de Vardenafil/metabolismo
6.
Mol Cell ; 74(3): 466-480.e4, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30930055

RESUMEN

The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2ß-DNA cleavage complex (TOP2ßcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2ßcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.


Asunto(s)
ADN-Topoisomerasas de Tipo II/genética , Herpesvirus Humano 1/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-akt/genética , Latencia del Virus/genética , Animales , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Herpesvirus Humano 1/patogenicidad , Humanos , Proteína Homóloga de MRE11/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Neuronas/metabolismo , Neuronas/virología , Fosforilación , Ratas , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética
7.
Annu Rev Pharmacol Toxicol ; 63: 585-615, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36206989

RESUMEN

Cyclic guanosine monophosphate (cGMP), an important intracellular second messenger, mediates cellular functional responses in all vital organs. Phosphodiesterase 5 (PDE5) is one of the 11 members of the cyclic nucleotide phosphodiesterase (PDE) family that specifically targets cGMP generated by nitric oxide-driven activation of the soluble guanylyl cyclase. PDE5 inhibitors, including sildenafil and tadalafil, are widely used for the treatment of erectile dysfunction, pulmonary arterial hypertension, and certain urological disorders. Preclinical studies have shown promising effects of PDE5 inhibitors in the treatment of myocardial infarction, cardiac hypertrophy, heart failure, cancer and anticancer-drug-associated cardiotoxicity, diabetes, Duchenne muscular dystrophy, Alzheimer's disease, and other aging-related conditions. Many clinical trials with PDE5 inhibitors have focused on the potential cardiovascular, anticancer, and neurological benefits. In this review, we provide an overview of the current state of knowledge on PDE5 inhibitors and their potential therapeutic indications for various clinical disorders beyond erectile dysfunction.


Asunto(s)
Disfunción Eréctil , Neoplasias , Masculino , Humanos , Inhibidores de Fosfodiesterasa 5/farmacología , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Disfunción Eréctil/tratamiento farmacológico , Citrato de Sildenafil/uso terapéutico , GMP Cíclico/uso terapéutico , Neoplasias/tratamiento farmacológico
8.
Proc Natl Acad Sci U S A ; 120(19): e2221045120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126699

RESUMEN

Chronic, progressive retinal diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa, arise from genetic and environmental perturbations of cellular and tissue homeostasis. These disruptions accumulate with repeated exposures to stress over time, leading to progressive visual impairment and, in many cases, legal blindness. Despite decades of research, therapeutic options for the millions of patients suffering from these disorders remain severely limited, especially for treating earlier stages of pathogenesis when the opportunity to preserve the retinal structure and visual function is greatest. To address this urgent, unmet medical need, we employed a systems pharmacology platform for therapeutic development. Through integrative single-cell transcriptomics, proteomics, and phosphoproteomics, we identified universal molecular mechanisms across distinct models of age-related and inherited retinal degenerations, characterized by impaired physiological resilience to stress. Here, we report that selective, targeted pharmacological inhibition of cyclic nucleotide phosphodiesterases (PDEs), which serve as critical regulatory nodes that modulate intracellular second messenger signaling pathways, stabilized the transcriptome, proteome, and phosphoproteome through downstream activation of protective mechanisms coupled with synergistic inhibition of degenerative processes. This therapeutic intervention enhanced resilience to acute and chronic forms of stress in the degenerating retina, thus preserving tissue structure and function across various models of age-related and inherited retinal disease. Taken together, these findings exemplify a systems pharmacology approach to drug discovery and development, revealing a new class of therapeutics with potential clinical utility in the treatment or prevention of the most common causes of blindness.


Asunto(s)
Retinopatía Diabética , Degeneración Macular , Degeneración Retiniana , Retinitis Pigmentosa , Humanos , Retina/metabolismo , Degeneración Retiniana/metabolismo , Retinitis Pigmentosa/metabolismo , Degeneración Macular/patología , Retinopatía Diabética/metabolismo
9.
J Neurosci ; 44(23)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38637154

RESUMEN

Cocaine use disorder is a significant public health issue without an effective pharmacological treatment. Successful treatments are hindered in part by an incomplete understanding of the molecular mechanisms that underlie long-lasting maladaptive plasticity and addiction-like behaviors. Here, we leverage a large RNA sequencing dataset to generate gene coexpression networks across six interconnected regions of the brain's reward circuitry from mice that underwent saline or cocaine self-administration. We identify phosphodiesterase 1b (Pde1b), a Ca2+/calmodulin-dependent enzyme that increases cAMP and cGMP hydrolysis, as a central hub gene within a nucleus accumbens (NAc) gene module that was bioinformatically associated with addiction-like behavior. Chronic cocaine exposure increases Pde1b expression in NAc D2 medium spiny neurons (MSNs) in male but not female mice. Viral-mediated Pde1b overexpression in NAc reduces cocaine self-administration in female rats but increases seeking in both sexes. In female mice, overexpressing Pde1b in D1 MSNs attenuates the locomotor response to cocaine, with the opposite effect in D2 MSNs. Overexpressing Pde1b in D1/D2 MSNs had no effect on the locomotor response to cocaine in male mice. At the electrophysiological level, Pde1b overexpression reduces sEPSC frequency in D1 MSNs and regulates the excitability of NAc MSNs. Lastly, Pde1b overexpression significantly reduced the number of differentially expressed genes (DEGs) in NAc following chronic cocaine, with discordant effects on gene transcription between sexes. Together, we identify novel gene modules across the brain's reward circuitry associated with addiction-like behavior and explore the role of Pde1b in regulating the molecular, cellular, and behavioral responses to cocaine.


Asunto(s)
Trastornos Relacionados con Cocaína , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1 , Redes Reguladoras de Genes , Ratones Endogámicos C57BL , Núcleo Accumbens , Caracteres Sexuales , Animales , Masculino , Femenino , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Ratones , Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ratas , Cocaína/farmacología , Recompensa
10.
J Biol Chem ; 300(2): 105659, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237678

RESUMEN

Bacterial lifestyles depend on conditions encountered during colonization. The transition between planktonic and biofilm growth is dependent on the intracellular second messenger c-di-GMP. High c-di-GMP levels driven by diguanylate cyclases (DGCs) activity favor biofilm formation, while low levels were maintained by phosphodiesterases (PDE) encourage planktonic lifestyle. The activity of these enzymes can be modulated by stimuli-sensing domains such as Per-ARNT-Sim (PAS). In Pseudomonas aeruginosa, more than 40 PDE/DGC are involved in c-di-GMP homeostasis, including 16 dual proteins possessing both canonical DGC and PDE motifs, that is, GGDEF and EAL, respectively. It was reported that deletion of the EAL/GGDEF dual enzyme PA0285, one of five c-di-GMP-related enzymes conserved across all Pseudomonas species, impacts biofilms. PA0285 is anchored in the membrane and carries two PAS domains. Here, we confirm that its role is conserved in various P. aeruginosa strains and in Pseudomonas putida. Deletion of PA0285 impacts the early stage of colonization, and RNA-seq analysis suggests that expression of cupA fimbrial genes is involved. We demonstrate that the C-terminal portion of PA0285 encompassing the GGDEF and EAL domains binds GTP and c-di-GMP, respectively, but only exhibits PDE activity in vitro. However, both GGDEF and EAL domains are important for PA0285 PDE activity in vivo. Complementation of the PA0285 mutant strain with a copy of the gene encoding the C-terminal GGDEF/EAL portion in trans was not as effective as complementation with the full-length gene. This suggests the N-terminal transmembrane and PAS domains influence the PDE activity in vivo, through modulating the protein conformation.


Asunto(s)
Proteínas Bacterianas , Pseudomonas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas/enzimología
11.
J Biol Chem ; 300(1): 105576, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110033

RESUMEN

The sixth family phosphodiesterases (PDE6) are principal effector enzymes of the phototransduction cascade in rods and cones. Maturation of nascent PDE6 protein into a functional enzyme relies on a coordinated action of ubiquitous chaperone HSP90, its specialized cochaperone aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1), and the regulatory Pγ-subunit of PDE6. Deficits in PDE6 maturation and function underlie severe visual disorders and blindness. Here, to elucidate the roles of HSP90, AIPL1, and Pγ in the maturation process, we developed the heterologous expression system of human cone PDE6C in insect cells allowing characterization of the purified enzyme. We demonstrate that in the absence of Pγ, HSP90, and AIPL1 convert the inactive and aggregating PDE6C species into dimeric PDE6C that is predominantly misassembled. Nonetheless, a small fraction of PDE6C is properly assembled and fully functional. From the analysis of mutant mice that lack both rod Pγ and PDE6C, we conclude that, in contrast to the cone enzyme, no maturation of rod PDE6AB occurs in the absence of Pγ. Co-expression of PDE6C with AIPL1 and Pγ in insect cells leads to a fully mature enzyme that is equivalent to retinal PDE6. Lastly, using immature PDE6C and purified chaperone components, we reconstituted the process of the client maturation in vitro. Based on this analysis we propose a scheme for the PDE6 maturation process.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6 , Células Fotorreceptoras Retinianas Conos , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ceguera/genética , Línea Celular , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/deficiencia , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Mutación , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/deficiencia , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Células Fotorreceptoras Retinianas Conos/química , Células Fotorreceptoras Retinianas Conos/metabolismo
12.
J Biol Chem ; 300(2): 105608, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159849

RESUMEN

Phototransduction in retinal rods occurs when the G protein-coupled photoreceptor rhodopsin triggers the activation of phosphodiesterase 6 (PDE6) by GTP-bound alpha subunits of the G protein transducin (GαT). Recently, we presented a cryo-EM structure for a complex between two GTP-bound recombinant GαT subunits and native PDE6, that included a bivalent antibody bound to the C-terminal ends of GαT and the inhibitor vardenafil occupying the active sites on the PDEα and PDEß subunits. We proposed GαT-activated PDE6 by inducing a striking reorientation of the PDEγ subunits away from the catalytic sites. However, questions remained including whether in the absence of the antibody GαT binds to PDE6 in a similar manner as observed when the antibody is present, does GαT activate PDE6 by enabling the substrate cGMP to access the catalytic sites, and how does the lipid membrane enhance PDE6 activation? Here, we demonstrate that 2:1 GαT-PDE6 complexes form with either recombinant or retinal GαT in the absence of the GαT antibody. We show that GαT binding is not necessary for cGMP nor competitive inhibitors to access the active sites; instead, occupancy of the substrate binding sites enables GαT to bind and reposition the PDE6γ subunits to promote catalytic activity. Moreover, we demonstrate by reconstituting GαT-stimulated PDE6 activity in lipid bilayer nanodiscs that the membrane-induced enhancement results from an increase in the apparent binding affinity of GαT for PDE6. These findings provide new insights into how the retinal G protein stimulates rapid catalytic turnover by PDE6 required for dim light vision.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6 , Modelos Moleculares , Transducina , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Guanosina Trifosfato/metabolismo , Células Fotorreceptoras Retinianas Bastones/enzimología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Transducina/química , Transducina/genética , Transducina/metabolismo , Animales , Bovinos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estructura Cuaternaria de Proteína , Unión Proteica/efectos de los fármacos , Dominio Catalítico , 1-Metil-3-Isobutilxantina/farmacología , Membrana Dobles de Lípidos/metabolismo , Activación Enzimática
13.
J Biol Chem ; : 107723, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39214301

RESUMEN

Endothelial cAMP-specific phosphodiesterase PDE3A is one of the major negative regulators of the endothelial barrier function in acute lung injury (ALI) models. However, the mechanisms underlying its regulation still need to be fully resolved. We show here that the PDE3A is a newly described client of the molecular chaperone hsp90. In endothelial cells (EC), hsp90 inhibition by geldanamycin (GA) led to a disruption of the hsp90/PDE3A complex, followed by a significant decrease in PDE3A protein levels. The decrease in PDE3A protein levels was ubiquitin-proteasome-dependent and required the activity of the E3 ubiquitin ligase C-terminus of Hsc70-interacting protein (CHIP). GA treatment also enhanced the association of PDE3A with hsp70, which partially prevented PDE3A degradation. GA-induced decreases in PDE3A protein levels correlated with decreased PDE3 activity and increased cAMP levels in EC. We also demonstrated that PKG-dependent phosphorylation of PDE3A at Ser654 can signal the dissociation of PDE3A from hsp90 and PDE3A degradation. This was confirmed by endogenous PDE3A phosphorylation and degradation in 8-Br-cGMP- or 8-CPT-cGMP- and Bay 41-8543 -stimulated EC and comparisons of wildtype- and phospho-mimic S654D mutant PDE3A protein stability in transiently transfected HEK293 cells. In conclusion, we have identified a new mechanism of PDE3A regulation mediated by the ubiquitin-proteasome system. Further, the degradation of PDE3A is controlled by the phosphorylation of S654 and the interaction with hsp90. We speculate that targeting the PDE3A/hsp90 complex could be a therapeutic approach for ALI.

14.
J Biol Chem ; 300(3): 105725, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325743

RESUMEN

The cAMP/PKA and mitogen-activated protein kinase (MAPK) signaling cascade control many cellular processes and are highly regulated for optimal cellular responses upon external stimuli. Phosphodiesterase 8A (PDE8A) is an important regulator that inhibits signaling via cAMP-dependent PKA by hydrolyzing intracellular cAMP pool. Conversely, PDE8A activates the MAPK pathway by protecting CRAF/Raf1 kinase from PKA-mediated inhibitory phosphorylation at Ser259 residue, a binding site of scaffold protein 14-3-3. It still remains enigmatic as to how the cross-talk involving PDE8A regulation influences cAMP/PKA and MAPK signaling pathways. Here, we report that PDE8A interacts with 14-3-3ζ in both yeast and mammalian system, and this interaction is enhanced upon the activation of PKA, which phosphorylates PDE8A's Ser359 residue. Biophysical characterization of phospho-Ser359 peptide with 14-3-3ζ protein further supports their interaction. Strikingly, 14-3-3ζ reduces the catalytic activity of PDE8A, which upregulates the cAMP/PKA pathway while the MAPK pathway is downregulated. Moreover, 14-3-3ζ in complex with PDE8A and cAMP-bound regulatory subunit of PKA, RIα, delays the deactivation of PKA signaling. Our results define 14-3-3ζ as a molecular switch that operates signaling between cAMP/PKA and MAPK by associating with PDE8A.


Asunto(s)
Proteínas 14-3-3 , 3',5'-AMP Cíclico Fosfodiesterasas , Proteínas Quinasas Dependientes de AMP Cíclico , Sistema de Señalización de MAP Quinasas , Humanos , Proteínas 14-3-3/metabolismo , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Fosfoserina/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo
15.
J Biol Chem ; 300(6): 107368, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750793

RESUMEN

Activating signal co-integrator complex 1 (ASCC1) acts with ASCC-ALKBH3 complex in alkylation damage responses. ASCC1 uniquely combines two evolutionarily ancient domains: nucleotide-binding K-Homology (KH) (associated with regulating splicing, transcriptional, and translation) and two-histidine phosphodiesterase (PDE; associated with hydrolysis of cyclic nucleotide phosphate bonds). Germline mutations link loss of ASCC1 function to spinal muscular atrophy with congenital bone fractures 2 (SMABF2). Herein analysis of The Cancer Genome Atlas (TCGA) suggests ASCC1 RNA overexpression in certain tumors correlates with poor survival, Signatures 29 and 3 mutations, and genetic instability markers. We determined crystal structures of Alvinella pompejana (Ap) ASCC1 and Human (Hs) PDE domain revealing high-resolution details and features conserved over 500 million years of evolution. Extending our understanding of the KH domain Gly-X-X-Gly sequence motif, we define a novel structural Helix-Clasp-Helix (HCH) nucleotide binding motif and show ASCC1 sequence-specific binding to CGCG-containing RNA. The V-shaped PDE nucleotide binding channel has two His-Φ-Ser/Thr-Φ (HXT) motifs (Φ being hydrophobic) positioned to initiate cyclic phosphate bond hydrolysis. A conserved atypical active-site histidine torsion angle implies a novel PDE substrate. Flexible active site loop and arginine-rich domain linker appear regulatory. Small-angle X-ray scattering (SAXS) revealed aligned KH-PDE RNA binding sites with limited flexibility in solution. Quantitative evolutionary bioinformatic analyses of disease and cancer-associated mutations support implied functional roles for RNA binding, phosphodiesterase activity, and regulation. Collective results inform ASCC1's roles in transactivation and alkylation damage responses, its targeting by structure-based inhibitors, and how ASCC1 mutations may impact inherited disease and cancer.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Humanos , Biología Computacional/métodos , Cristalografía por Rayos X , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Motivos de Unión al ARN/genética
16.
Mol Microbiol ; 121(1): 1-17, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37927230

RESUMEN

The ubiquitous bacterial second messenger c-di-GMP is synthesized by diguanylate cyclase and degraded by c-di-GMP-specific phosphodiesterase. The genome of Pseudomonas putida contains dozens of genes encoding diguanylate cyclase/phosphodiesterase, but the phenotypical-genotypical correlation and functional mechanism of these genes are largely unknown. Herein, we characterize the function and mechanism of a P. putida phosphodiesterase named DibA. DibA consists of a PAS domain, a GGDEF domain, and an EAL domain. The EAL domain is active and confers DibA phosphodiesterase activity. The GGDEF domain is inactive, but it promotes the phosphodiesterase activity of the EAL domain via binding GTP. Regarding phenotypic regulation, DibA modulates the cell surface adhesin LapA level in a c-di-GMP receptor LapD-dependent manner, thereby inhibiting biofilm formation. Moreover, DibA interacts and colocalizes with LapD in the cell membrane, and the interaction between DibA and LapD promotes the PDE activity of DibA. Besides, except for interacting with DibA and LapD itself, LapD is found to interact with 11 different potential diguanylate cyclases/phosphodiesterases in P. putida, including the conserved phosphodiesterase BifA. Overall, our findings demonstrate the functional mechanism by which DibA regulates biofilm formation and expand the understanding of the LapD-mediated c-di-GMP signaling network in P. putida.


Asunto(s)
Proteínas de Escherichia coli , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , GMP Cíclico/metabolismo , Biopelículas , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
17.
FASEB J ; 38(11): e23693, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38809685

RESUMEN

N6-methylated adenosine (m6A) is a crucial RNA modification in eukaryotes, particularly in cancer. However, its role in cervical cancer (CC) is unclear. We aimed to elucidate the part of m6A in CC by analyzing methyltransferase-like 3 (METTL3) expression, identifying downstream targets, and exploring the underlying mechanism. We assessed METTL3 expression in CC using western blotting, quantitative polymerase chain reaction (qPCR), and immunohistochemistry. In vitro and in vivo experiments examined METTL3's role in CC. We employed RNA sequencing, methylated RNA immunoprecipitation sequencing, qPCR, and RNA immunoprecipitation qPCR to explore METTL3's mechanism in CC. METTL3 expression was upregulated in CC, promoting cell proliferation and metastasis. METTL3 knockdown inhibited human cervical cancer by inactivating AKT/mTOR signaling pathway. METTL3-mediated m6A modification was observed in CC cells, targeting phosphodiesterase 3A (PDE3A). METTL3 catalyzed m6A modification on PDE3A mRNA through YTH domain family protein 3 (YTHDF3). Our study indicated the mechanism of m6A modification in CC and suggested the METTL3/YTHDF3/PDE3A axis as a potential clinical target for CC treatment.


Asunto(s)
Adenosina , Proliferación Celular , Metiltransferasas , Neoplasias del Cuello Uterino , Animales , Femenino , Humanos , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Transducción de Señal , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Metilación de ARN/genética
18.
Exp Cell Res ; 439(2): 114100, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38797258

RESUMEN

Widespread metastasis is the primary reason for the high mortality associated with ovarian cancer (OC), and effective targeted therapy for tumor aggressiveness is still insufficient in clinical practice. Therefore, it is urgent to find new targets to improve prognosis of patients. PDE4A is a cyclic nucleotide phosphodiesterase that plays a crucial role in the occurrence and development in various malignancies. Our study firstly reported the function of PDE4A in OC. Expression of PDE4A was validated through bioinformatics analysis, RT-qPCR, Western blot, and immunohistochemistry. Additionally, its impact on cell growth and motility was assessed via in vitro and in vivo experiments. PDE4A was downregulated in OC tissues compared with normal tissues and low PDE4A expression was correlated with poor clinical outcomes in OC patients. The knockdown of PDE4A significantly promoted the proliferation, migration and invasion of OC cells while overexpression of PDE4A resulted in the opposite effect. Furthermore, smaller and fewer tumor metastatic foci were observed in mice bearing PDE4A-overexpressing OVCAR3 cells. Mechanistically, downregulation of PDE4A expression can induce epithelial-mesenchymal transition (EMT) and nuclear translocation of Snail, which suggests that PDE4A plays a pivotal role in suppressing OC progression. Notably, Rolipram, the PDE4 inhibitor, mirrored the effects observed with PDE4A deletion. In summary, the downregulation of PDE4A appears to facilitate OC progression by modulating the Snail/EMT pathway, underscoring the potential of PDE4A as a therapeutic target against ovarian cancer metastasis.


Asunto(s)
Movimiento Celular , Proliferación Celular , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas , Factores de Transcripción de la Familia Snail , Humanos , Femenino , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Animales , Proliferación Celular/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Ratones , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Ratones Desnudos , Ratones Endogámicos BALB C , Núcleo Celular/metabolismo , Pronóstico
19.
J Bacteriol ; 206(2): e0033123, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38197635

RESUMEN

The Pel exopolysaccharide is one of the most mechanistically conserved and phylogenetically diverse bacterial biofilm matrix determinants. Pel is a major contributor to the structural integrity of Pseudomonas aeruginosa biofilms, and its biosynthesis is regulated by the binding of cyclic-3',5'-dimeric guanosine monophosphate (c-di-GMP) to the PelD receptor. c-di-GMP is synthesized from two molecules of guanosine triphosphate (GTP) by diguanylate cyclases with GGDEF domains and degraded by phosphodiesterases with EAL or HD-GYP domains. As the P. aeruginosa genome encodes 43 c-di-GMP metabolic enzymes, one way signaling specificity can be achieved is through direct interaction between specific enzyme-receptor pairs. Here, we show that the inner membrane hybrid GGDEF-EAL enzyme, BifA, directly interacts with PelD via its cytoplasmic HAMP, GGDEF, and EAL domains. Despite having no catalytic function, the degenerate active site motif of the BifA GGDEF domain (GGDQF) has retained the ability to bind GTP with micromolar affinity. Mutations that abolish GTP binding result in increased biofilm formation but stable global c-di-GMP levels. Our data suggest that BifA forms a dimer in solution and that GTP binding induces conformational changes in dimeric BifA that enhance the BifA-PelD interaction and stimulate its phosphodiesterase activity, thus reducing c-di-GMP levels and downregulating Pel biosynthesis. Structural comparisons between the dimeric AlphaFold2 model of BifA and the structures of other hybrid GGDEF-EAL proteins suggest that the regulation of BifA by GTP may occur through a novel mechanism.IMPORTANCEc-di-GMP is the most common cyclic dinucleotide used by bacteria to regulate phenotypes such as motility, biofilm formation, virulence factor production, cell cycle progression, and cell differentiation. While the identification and initial characterization of c-di-GMP metabolic enzymes are well established, our understanding of how these enzymes are regulated to provide signaling specificity remains understudied. Here we demonstrate that the inactive GGDEF domain of BifA binds GTP and regulates the adjacent phosphodiesterase EAL domain, ultimately downregulating Pel-dependent P. aeruginosa biofilm formation through an interaction with PelD. This discovery adds to the growing body of literature regarding how hybrid GGDEF-EAL enzymes are regulated and provides additional precedence for studying how direct interactions between c-di-GMP metabolic enzymes and effectors result in signaling specificity.


Asunto(s)
Proteínas de Escherichia coli , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , GMP Cíclico/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Biopelículas , Regulación Bacteriana de la Expresión Génica
20.
Am J Physiol Cell Physiol ; 326(3): C843-C849, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223929

RESUMEN

The phosphodiesterase enzymes mediate calcium-phosphate deposition in various tissues, although which enzymes are active in bone mineralization is unclear. Using gene array analysis, we found that a member of ecto-nucleotide pyrophosphatase/phosphodiesterase family, ENPP2, was strongly down-regulated with age in stromal stem cells that produce osteoblasts and make bone. This is in keeping with reduced bone formation in older animals. Thus, we hypothesized that ENPP2 is, at least in part, an early mediator of bone formation and thus may reflect reduced bone formation with age. Since ENPP2 has not previously been shown to have a role in osteoblast differentiation, we studied its effect on bone differentiation from stromal stem cells, verified by flow cytometry for stem cell antigens. In these remarkably uniform osteoblast precursors, we did transfection with ENPP2 DsiRNA, scrambled DsiRNA, or no transfection to make cells with normal or greatly reduced ENPP2 and analyzed osteoblast differentiation and mineralization. Osteoblast differentiation down-regulation was shown by alizarin red binding, silver staining, and alkaline phosphatase activity. Differences were confirmed by real-time PCR for alkaline phosphatase (ALPL), osteocalcin (BGLAP), and ENPP2 and by Western Blot for Enpp2. These were decreased, ∼50%, in osteoblasts transfected with ENPP2 DsiRNA compared with cells transfected with a scrambled DsiRNA or not transfected (control) cells. This finding is the first evidence for the role of ENPP2 in osteoblast differentiation and mineralization.NEW & NOTEWORTHY We report the discovery that the ecto-nucleotide pyrophosphatase/phosphodiesterase, ENPP2, is an important regulator of early differentiation of bone-forming osteoblasts.


Asunto(s)
Calcinosis , Osteogénesis , Pirofosfatasas , Animales , Fosfatasa Alcalina/genética , Diferenciación Celular , Hidrolasas Diéster Fosfóricas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA