Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 106(13-16): 5123-5136, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35771244

RESUMEN

The plasma membrane H+-ATPase (PMA1) is a major cytosolic pH regulator and a potential candidate for antifungal drug discovery due to its fungal specificity and criticality. In this study, the function of Penicillum digitatum PMA1 was characterized through RNA interference (RNAi) and overexpression technology. The results showed that silencing the PMA1 gene reduces cell growth and pathogenicity, and increases susceptibility of P. digitatum to proton pump inhibitors (PPIs). Under scanning electron microscopy (SEM) and transmission electron microscopy (TEM) examination, cell morphology was significantly altered in the PMA1- silenced mutant (si57). When compared with wild type (WT) and the overexpressed mutant (oe9), the cell walls of the si57 mutant were thicker and their cell membrane damage manifested particularly at sites of polarized growth. Consistent with the morphological change on the cell wall, chitin and glucan content of the cell wall of si57 were significantly lower and accompanied with increased activities of chitinase and glucanase. The lower ergosterol content in the si57 mutant then increased cell membrane permeability, ultimately leading to leakage of cytoplasmic contents such as ions, reduced sugars and soluble proteins. Furthermore, significantly decreased activity of cell wall degrading enzymes of si57 during citrus fruit infections indicates a reduced pathogenicity in this mutant. We conclude that PMA1 in P. digitatum plays an important role in maintaining pathogenesis and PMA1 could be a candidate novel fungicidal drug discovery for citrus green mold. KEY POINTS: Silencing PMA1 gene decreased the growth and pathogenicity of P. digitatum. Silencing PMA1 gene damaged cell wall and cell membrane integrity of P. digitatum. PMA1 appears to be a suitable fungicidal target against citrus green mold.


Asunto(s)
Citrus , Penicillium , Antifúngicos/metabolismo , Antifúngicos/farmacología , Membrana Celular/metabolismo , Penicillium/metabolismo , Enfermedades de las Plantas/microbiología , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Virulencia
2.
J Exp Bot ; 72(18): 6659-6671, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34161578

RESUMEN

Potassium deficiency causes severe losses in yield and quality in crops. Mepiquat chloride, a plant growth regulator, can increase K+ uptake in cotton (Gossypium hirsutum), but the underlying physiological mechanisms remain unclear. In this study, we used a non-invasive micro-test technique to measure K+ and H+ fluxes in the root apex with or without inhibitors of K+ channels, K+ transporters, non-selective cation channels, and plasma membrane H+-ATPases. We found that soaking seeds in mepiquat chloride solution increased the K+ influx mediated by K+ channels and reduced the K+ efflux mediated by non-selective cation channels in cotton seedlings. Mepiquat chloride also increased negative membrane potential (Em) and the activity of plasma membrane H+-ATPases in roots, due to higher levels of gene expression and protein accumulation of plasma membrane H+-ATPases as well as phosphorylation of H+-ATPase 11 (GhAHA11). Thus, plasma membrane hyperpolarization mediated by H+-ATPases was able to stimulate the activity of K+ channels in roots treated with mepiquat chloride. In addition, reduced K+ efflux under mepiquat chloride treatment was associated with reduced accumulation of H2O2 in roots. Our results provide important insights into the mechanisms of mepiquat chloride-induced K+ uptake in cotton and hence have the potential to help in improving K nutrition for enhancing cotton production.


Asunto(s)
Giberelinas , Gossypium , Membrana Celular , Gossypium/genética , Peróxido de Hidrógeno , Piperidinas , Raíces de Plantas , ATPasas de Translocación de Protón
3.
AoB Plants ; 13(4): plab032, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34285793

RESUMEN

Plants interface with and modify the external environment across their surfaces, and in so doing, can control or mitigate the impacts of abiotic stresses and also mediate their interactions with other organisms. Botanically, it is known that plant roots have a multi-faceted ability to modify rhizosphere conditions like pH, a factor with a large effect on a plant's biotic interactions with microbes. But plants can also modify pH levels on the surfaces of their leaves. Plants can neutralize acid rain inputs in a period of hours, and either acidify or alkalinize the pH of neutral water droplets in minutes. The pH of the phylloplane-that is, the outermost surface of the leaf-varies across species, from incredibly acidic (carnivorous plants: as low as pH 1) to exceptionally alkaline (species in the plant family, Malvaceae, up to pH 11). However, most species mildly acidify droplets on the phylloplane by 1.5 orders of magnitude in pH. Just as rhizosphere pH helps shape the plant microbiome and is known to influence belowground interactions, so too can phylloplane pH influence aboveground interactions in plant canopies. In this review, we discuss phylloplane pH regulation from the physiological, molecular, evolutionary, and ecological perspectives and address knowledge gaps and identify future research directions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA