Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39321213

RESUMEN

The cytochrome b559 heterodimer is a conserved component of photosystem II whose physiological role in photosynthetic electron transfer is enigmatic. A particularly puzzling aspect of cytochrome b559 has been its presence in etiolated seedlings, where photosystem II is absent. Whether or not the cytochrome has a specific function in etioplasts is unknown. Here, we have attempted to address the function of cytochrome b559 by generating transplastomic tobacco (Nicotiana tabacum) plants that overexpress psbE and psbF, the plastid genes encoding the two cytochrome b559 apoproteins. We show that strong overaccumulation of the PsbE apoprotein can be achieved in etioplasts by suitable manipulations of the promoter and the translation signals, while the cytochrome b559 level is only moderately elevated. The surplus PsbE protein causes striking ultrastructural alterations in etioplasts; most notably, it causes a condensed prolamellar body and a massive proliferation of prothylakoids, with multiple membrane layers coiled into spiral-like structures. Analysis of plastid lipids revealed that increased PsbE biosynthesis strongly stimulated plastid lipid biosynthesis, suggesting that membrane protein abundance controls prothylakoid membrane biogenesis. Our data provide evidence for a structural role of PsbE in prolamellar body formation and prothylakoid biogenesis, and indicate that thylakoid membrane protein abundance regulates lipid biosynthesis in etioplasts.

2.
Proc Natl Acad Sci U S A ; 119(15): e2120081119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35380896

RESUMEN

Plastid-mediated RNA interference (PM-RNAi) has emerged as a promising strategy for pest control. Expression from the plastid genome of stable double-stranded RNAs (dsRNAs) targeted against essential insect genes can effectively control some herbivorous beetles, but little is known about the efficacy of the transplastomic approach in other groups of pest insects, especially nonchewing insects that do not consume large amounts of leaf material. Here we have investigated the susceptibility of the western flower thrip (WFT, Frankliniella occidentalis), a notorious pest in greenhouses and open fields, to PM-RNAi. We show that WFTs ingest chloroplasts and take up plastid-expressed dsRNAs. We generated a series of transplastomic tobacco plants expressing dsRNAs and hairpin RNAs (hpRNAs) targeted against four essential WFT genes. Unexpectedly, we discovered plastid genome instability in transplastomic plants expressing hpRNAs, suggesting that dsRNA cassettes are preferable over hpRNA cassettes when designing PM-RNAi strategies. Feeding studies revealed that, unlike nuclear transgenic plants, transplastomic plants induced a potent RNAi response in WFTs, causing efficient suppression of the targeted genes and high insect mortality. Our study extends the application range of PM-RNAi technology to an important group of nonchewing insects, reveals design principles for the construction of dsRNA-expressing transplastomic plants, and provides an efficient approach to control one of the toughest insect pests in agriculture and horticulture.


Asunto(s)
Control Biológico de Vectores , Plastidios , Interferencia de ARN , ARN de Planta , Thysanoptera , Animales , Control Biológico de Vectores/métodos , Plastidios/genética , ARN Bicatenario , ARN de Planta/genética , Thysanoptera/genética , Nicotiana/genética , Nicotiana/parasitología
3.
Planta ; 260(1): 28, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878167

RESUMEN

MAIN CONCLUSION: We generated transplastomic tobacco lines that stably express a human Basic Fibroblast Growth Factor (hFGFb) in their chloroplasts stroma and purified a biologically active recombinant hFGFb. MAIN: The use of plants as biofactories presents as an attractive technology with the potential to efficiently produce high-value human recombinant proteins in a cost-effective manner. Plastid genome transformation stands out for its possibility to accumulate recombinant proteins at elevated levels. Of particular interest are recombinant growth factors, given their applications in animal cell culture and regenerative medicine. In this study, we produced recombinant human Fibroblast Growth Factor (rhFGFb), a crucial protein required for animal cell culture, in tobacco chloroplasts. We successfully generated two independent transplastomic lines that are homoplasmic and accumulate rhFGFb in their leaves. Furthermore, the produced rhFGFb demonstrated its biological activity by inducing proliferation in HEK293T cell lines. These results collectively underscore plastid genome transformation as a promising plant-based bioreactor for rhFGFb production.


Asunto(s)
Cloroplastos , Factor 2 de Crecimiento de Fibroblastos , Nicotiana , Plantas Modificadas Genéticamente , Proteínas Recombinantes , Nicotiana/genética , Nicotiana/metabolismo , Humanos , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células HEK293 , Proliferación Celular , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
4.
Plant Biotechnol J ; 22(4): 960-969, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38059318

RESUMEN

Inducible expression systems can overcome the trade-off between high-level transgene expression and its pleiotropic effects on plant growth. In addition, they can facilitate the expression of biochemical pathways that produce toxic metabolites. Although a few inducible expression systems for the control of transgene expression in plastids have been developed, they all depend on chemical inducers and/or nuclear transgenes. Here we report a temperature-inducible expression system for plastids that is based on the bacteriophage λ leftward and rightward promoters (pL/pR) and the temperature-sensitive repressor cI857. We show that the expression of green fluorescent protein (GFP) in plastids can be efficiently repressed by cI857 under normal growth conditions, and becomes induced over time upon exposure to elevated temperatures in a light-dependent process. We further demonstrate that by introducing into plastids an expression system based on the bacteriophage T7 RNA polymerase, the temperature-dependent accumulation of GFP increased further and was ~24 times higher than expression driven by the pL/pR promoter alone, reaching ~0.48% of the total soluble protein. In conclusion, our heat-inducible expression system provides a new tool for the external control of plastid (trans) gene expression that is cost-effective and does not depend on chemical inducers.


Asunto(s)
Calor , Plastidios , Regiones Promotoras Genéticas/genética , Transgenes/genética , Expresión Génica , Plastidios/genética , Plastidios/metabolismo
5.
Plant Biotechnol J ; 21(4): 711-725, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36529916

RESUMEN

In plant biotechnology and basic research, chloroplasts have been used as chassis for the expression of various transgenes. However, potential unintended side effects of transgene insertion and high-level transgene expression on the expression of native chloroplast genes are often ignored and have not been studied comprehensively. Here, we examined expression of the chloroplast genome at both the transcriptional and translational levels in five transplastomic tobacco (Nicotiana tabacum) lines carrying the identical aadA resistance marker cassette in diverse genomic positions. Although none of the lines exhibits a pronounced visible phenotype, the analysis of three lines that contain the aadA insertion in different locations within the petL-petG-psaJ-rpl33-rps18 transcription unit demonstrates that transcriptional read-through from the aadA resistance marker is unavoidable, and regularly causes overexpression of downstream sense-oriented chloroplast genes at the transcriptional and translational levels. Investigation of additional lines that harbour the aadA intergenically and outside of chloroplast transcription units revealed that expression of the resistance marker can also cause antisense effects by interference with transcription/transcript accumulation and/or translation of downstream antisense-oriented genes. In addition, we provide evidence for a previously suggested role of genomically encoded tRNAs in chloroplast transcription termination and/or transcript processing. Together, our data uncover principles of neighbouring effects of chloroplast transgenes and suggest general strategies for the choice of transgene insertion sites and expression elements to minimize unintended consequences of transgene expression on the transcription and translation of native chloroplast genes.


Asunto(s)
Genes del Cloroplasto , Genoma del Cloroplasto , Transgenes , Cloroplastos/genética , Transcripción Genética , Genoma del Cloroplasto/genética , Nicotiana/genética
6.
New Phytol ; 237(4): 1363-1373, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36328788

RESUMEN

Spider mites are serious pests and have evolved significant resistance to many chemical pesticides, thus making their control challenging. Several insect pests can be combated by plastid-mediated RNA interference (PM-RNAi), but whether PM-RNAi can be utilized to control noninsect pests is unknown. Here, we show that three species of spider mites (Tetranychus evansi, Tetranychus truncatus, and Tetranychus cinnabarinus) take up plastid RNA upon feeding. We generated transplastomic tomato plants expressing double-stranded RNA (dsRNA) targeted against a conserved region of the spider mite ß-Actin mRNA. Transplastomic plants exhibited high levels of resistance to all three spider mite species, as evidenced by increased mortality and suppression of target gene expression. Notably, transplastomic plants induced a more robust RNAi response, caused higher mortality, and were overall better protected from spider mites than dsRNA-expressing nuclear transgenic plants. Our data demonstrate the potential of PM-RNAi as an efficient pest control measure for spider mites and extend the application range of the technology to noninsect pests.


Asunto(s)
Solanum lycopersicum , Tetranychidae , Animales , ARN Bicatenario , Tetranychidae/genética , Solanum lycopersicum/genética , Interferencia de ARN , Plantas Modificadas Genéticamente
7.
J Integr Plant Biol ; 65(4): 1003-1011, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36382860

RESUMEN

RNA interference (RNAi) has emerged as a powerful technology for pest management. Previously, we have shown that plastid-mediated RNAi (PM-RNAi) can be utilized to control the Colorado potato beetle, an insect pest in the Chrysomelidae family; however, whether this technology is suitable for controlling pests in the Coccinellidae remained unknown. The coccinellid 28-spotted potato ladybird (Henosepilachna vigintioctopunctata; HV) is a serious pest of solanaceous crops. In this study, we identified three efficient target genes (ß-Actin, SRP54, and SNAP) for RNAi using in vitro double-stranded RNAs (dsRNAs) fed to HV, and found that dsRNAs targeting ß-Actin messenger RNA (dsACT) induced more potent RNAi than those targeting the other two genes. We next generated transplastomic and nuclear transgenic potato (Solanum tuberosum) plants expressing HV dsACT. Long dsACT stably accumulated to up to 0.7% of the total cellular RNA in the transplastomic plants, at least three orders of magnitude higher than in the nuclear transgenic plants. Notably, the transplastomic plants also exhibited a significantly stronger resistance to HV, killing all larvae within 6 d. Our data demonstrate the potential of PM-RNAi as an efficient pest control measure for HV, extending the application range of this technology to Coccinellidae pests.


Asunto(s)
Escarabajos , Solanum tuberosum , Animales , ARN Bicatenario/genética , Solanum tuberosum/genética , Actinas , Escarabajos/genética , Larva , Interferencia de ARN , Plastidios/genética
8.
Plant Cell Environ ; 45(6): 1930-1941, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35312082

RESUMEN

Plant-mediated RNA interference (RNAi) has emerged as a promising technology for pest control through expression of double-stranded RNAs (dsRNAs) targeted against essential insect genes. However, little is known about the underlying molecular mechanisms and whether long dsRNA or short interfering RNAs (siRNAs) are the effective triggers of the RNAi response. Here we generated transplastomic and nuclear transgenic tobacco plants expressing dsRNA against the Helicoverpa armigera ATPaseH gene. We showed that expression of long dsRNA of HaATPaseH was at least three orders of magnitude higher in transplastomic plants than in transgenic plants. HaATPaseH-derived siRNAs are absent from transplastomic plants, while they are abundant in transgenic plants. Feeding transgenic plants to H. armigera larvae reduced gene expression of HaATPaseH and delayed growth. Surprisingly, no effect of transplastomic plants on insect growth was observed, despite efficient dsRNA expression in plastids. Furthermore, we found that dsRNA ingested by H. armigera feeding on transplastomic plants was rapidly degraded in the intestinal fluid. In contrast, siRNAs are relatively stable in the digestive system. These results suggest that plant-derived siRNAs may be more effective triggers of RNAi in Lepidoptera than dsRNAs, which will aid the optimization of the strategies for plant-mediated RNAi to pest control.


Asunto(s)
Mariposas Nocturnas , ARN Bicatenario , Animales , Insectos , Mariposas Nocturnas/genética , Plantas Modificadas Genéticamente/metabolismo , Interferencia de ARN , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN de Planta/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
9.
Transgenic Res ; 31(3): 351-368, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35416604

RESUMEN

Cytochrome P450 monooxygenases (CYPs) are important tools for regio- and stereoselective oxidation of target molecules or engineering of metabolic pathways. Functional heterologous expression of eukaryotic CYPs is often problematic due to their dependency on the specific redox partner and the necessity of correct association with the membranes for displaying enzymatic activity. Plant hosts offer advantages of accessibility of reducing partners and a choice of membranes to insert heterologous CYPs. For the evaluation of plant systems for efficient CYP expression, we established transplastomic plants and hairy root cultures of Nicotiana tabacum carrying the gene encoding human CYP2D6 with broad substrate specificity. The levels of CYP2D6 transcript accumulation and enzymatic activity were estimated and compared with the data of CYP2D6 transient expression in N. benthamiana. The relative level of CYP2D6 transcripts in transplastomic plants was 2-3 orders of magnitude higher of that observed after constitutive or transient expression from the nucleus. CYP2D6 expressed in chloroplasts converted exogenous synthetic substrate loratadine without the need for co-expression of the cognate CYP reductase. The loratadine conversion rate in transplastomic plants was comparable to that in N. benthamiana plants transiently expressing a chloroplast targeted CYP2D6 from the nucleus, but was lower than the value reported for transiently expressed CYP2D6 with the native endoplasmic reticulum signal-anchor sequence. Hairy roots showed the lowest substrate conversion rate, but demonstrated the ability to release the product into the culture medium. The obtained results illustrate the potential of plant-based expression systems for exploiting the enzymatic activities of eukaryotic CYPs with broad substrate specificities.


Asunto(s)
Citocromo P-450 CYP2D6 , Nicotiana , Biotransformación , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Humanos , Loratadina/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
10.
Plant J ; 103(6): 2318-2329, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32497322

RESUMEN

We designed a dicistronic plastid marker system that relies on the plastid's ability to translate polycistronic mRNAs. The identification of transplastomic clones is based on selection for antibiotic resistance encoded in the first open reading frame (ORF) and accumulation of the reporter gene product in tobacco chloroplasts encoded in the second ORF. The antibiotic resistance gene may encode spectinomycin or kanamycin resistance based on the expression of aadA or neo genes, respectively. The reporter gene used in the study is the green fluorescent protein (GFP). The mRNA level depends on the 5'-untranslated region of the first ORF. The protein output depends on the strengths of the ribosome binding, and is proportional with the level of translatable mRNA. Because the dicistronic mRNA is not processed, we could show that protein output from the second ORF is independent from the first ORF. High-level GFP accumulation from the second ORF facilitates identification of transplastomic events under ultraviolet light. Expression of multiple proteins from an unprocessed mRNA is an experimental design that enables predictable protein output from polycistronic mRNAs, expanding the toolkit of plant synthetic biology.


Asunto(s)
Cloroplastos/metabolismo , Sistemas de Lectura Abierta , Operón/genética , Biosíntesis de Proteínas , Regiones no Traducidas 5'/genética , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo
11.
J Phycol ; 57(2): 569-576, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33174215

RESUMEN

The purpose of this study was to establish a plastid transformation system for expressing recombinant proteins in Nannochloropsis gaditana. On the basis of the sequenced plastid genome, the homologous flanking region, 16S-trnI/trnA-23S, and the endogenous regulatory fragments containing the psbA promoter, rbcL promoter, rbcL terminator, and psbA terminator were amplified from N. gaditana as elements of a plastid transformation vector. Then, the herbicide-resistant gene (bar) was used as a selectable marker, regulated by the psbA promoter and rbcL terminator. Finally, two codon-optimized antimicrobial peptide-coding genes linked by endogenous ribosome binding site (RBS) in a polycistron were inserted into the constructed vector under the regulation of the rbcL promoter and psbA terminator. After microparticle bombardment, the positive clones were detected using polymerase chain reaction (PCR), and Southern and Western blotting were used to assess the co-expression of the two antimicrobial peptides from the plastid. Nannochloropsis gaditana showed the potential to express recombinant proteins for biotechnological applications, for example, for the development of oral vaccines in aquaculture.


Asunto(s)
Plastidios , Estramenopilos , Péptidos , Plantas , Plastidios/genética , Proteínas Recombinantes , Estramenopilos/genética
12.
Planta ; 249(6): 1963-1975, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30900084

RESUMEN

MAIN CONCLUSION: Plastid genome engineering is an effective method to generate drought-resistant potato plants accumulating glycine betaine in plastids. Glycine betaine (GB) plays an important role under abiotic stress, and its accumulation in chloroplasts is more effective on stress tolerance than that in cytosol of transgenic plants. Here, we report that the codA gene from Arthrobacter globiformis, which encoded choline oxidase to catalyze the conversion of choline to GB, was successfully introduced into potato (Solanum tuberosum) plastid genome by plastid genetic engineering. Two independent plastid-transformed lines were isolated and confirmed as homoplasmic via Southern-blot analysis, in which the mRNA level of codA was much higher in leaves than in tubers. GB accumulated in similar levels in both leaves and tubers of codA-transplastomic potato plants (referred to as PC plants). The GB content was moderately increased in PC plants, and compartmentation of GB in plastids conferred considerably higher tolerance to drought stress compared to wild-type (WT) plants. Higher levels of relative water content and chlorophyll content under drought stress were detected in the leaves of PC plants compared to WT plants. Moreover, PC plants presented a significantly higher photosynthetic performance as well as antioxidant enzyme activities during drought stress. These results suggested that biosynthesis of GB by chloroplast engineering was an effective method to increase drought tolerance.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Arthrobacter/enzimología , Betaína/metabolismo , Solanum tuberosum/enzimología , Oxidorreductasas de Alcohol/genética , Arthrobacter/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cloroplastos/enzimología , Cloroplastos/genética , Sequías , Ingeniería Genética , Fotosíntesis , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Plastidios/enzimología , Plastidios/genética , Solanum tuberosum/genética , Solanum tuberosum/fisiología , Estrés Fisiológico
13.
Plant Mol Biol ; 97(4-5): 357-370, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29948657

RESUMEN

KEY MESSAGE: The potent anti-HIV microbicide griffithsin was expressed to high levels in tobacco chloroplasts, enabling efficient purification from both fresh and dried biomass, thus providing storable material for inexpensive production and scale-up on demand. The global HIV epidemic continues to grow, with 1.8 million new infections occurring per year. In the absence of a cure and an AIDS vaccine, there is a pressing need to prevent new infections in order to curb the disease. Topical microbicides that block viral entry into human cells can potentially prevent HIV infection. The antiviral lectin griffithsin has been identified as a highly potent inhibitor of HIV entry into human cells. Here we have explored the possibility to use transplastomic plants as an inexpensive production platform for griffithsin. We show that griffithsin accumulates in stably transformed tobacco chloroplasts to up to 5% of the total soluble protein of the plant. Griffithsin can be easily purified from leaf material and shows similarly high virus neutralization activity as griffithsin protein recombinantly expressed in bacteria. We also show that dried tobacco provides a storable source material for griffithsin purification, thus enabling quick scale-up of production on demand.


Asunto(s)
Fármacos Anti-VIH/metabolismo , Inhibidores de Fusión de VIH/metabolismo , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Nicotiana/metabolismo , Lectinas de Plantas/metabolismo , Fármacos Anti-VIH/aislamiento & purificación , Cloroplastos/genética , Cloroplastos/metabolismo , Genoma del Cloroplasto/genética , Inhibidores de Fusión de VIH/aislamiento & purificación , Infecciones por VIH/virología , Humanos , Agricultura Molecular , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Lectinas de Plantas/genética , Lectinas de Plantas/aislamiento & purificación , Nicotiana/genética
14.
Biochem Biophys Res Commun ; 503(4): 2376-2379, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-29966651

RESUMEN

Rice is one of the most important cereal crops and its biotechnology has been pursued to meet the food demand of ever-growing global population. Rice plastid transformation has been a great challenge to achieve homoplastomic plants due to its low efficiency of regeneration. In this experiment, Japonica rice line 19 was chosen to be the receptor for plastid transformation. A vector harboring smGFP gene was constructed and transferred into rice plastid genome by bombardment. The resistant callus was obtained after long-lasting multiple selections and proved to be in homoplastomic status by molecular testing. The plantlet was regenerated from homoplastomic callus and grown to seeding stage. This is the first case so far to achieve the homoplastomic rice and will be helpful to transform plastid genome of monocotyledonous crops with recalcitrant nature.


Asunto(s)
Oryza/genética , Plantas Modificadas Genéticamente/genética , Plastidios/genética , Transformación Genética , Cloroplastos/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Oryza/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo
15.
Planta ; 248(2): 465-476, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29777363

RESUMEN

MAIN CONCLUSION: Plastid-based MNEI protein mutants retain the structure, stability and sweetness of their bacterial counterparts, confirming the attractiveness of the plastid transformation technology for high-yield production of recombinant proteins. The prevalence of obesity and diabetes has dramatically increased the industrial demand for the development and use of alternatives to sugar and traditional sweeteners. Sweet proteins, such as MNEI, a single chain derivative of monellin, are the most promising candidates for industrial applications. In this work, we describe the use of tobacco chloroplasts as a stable plant expression platform to produce three MNEI protein mutants with improved taste profile and stability. All plant-based proteins were correctly expressed in tobacco chloroplasts, purified and subjected to in-depth chemical and sensory analyses. Recombinant MNEI mutants showed a protein yield ranging from 5% to more than 50% of total soluble proteins, which, to date, represents the highest accumulation level of MNEI mutants in plants. Comparative analyses demonstrated the high similarity, in terms of structure, stability and function, of the proteins produced in plant chloroplasts and bacteria. The high yield and the extreme sweetness perceived for the plant-derived proteins prove that plastid transformation technology is a safe, stable and cost-effective production platform for low-calorie sweeteners, with an estimated production of up to 25-30 mg of pure protein/plant.


Asunto(s)
Nicotiana/metabolismo , Edulcorantes/metabolismo , Cloroplastos/metabolismo , Expresión Génica , Vectores Genéticos/genética , Proteínas Mutantes , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Edulcorantes/aislamiento & purificación , Gusto , Nicotiana/genética , Transformación Genética
16.
Plant Mol Biol ; 95(1-2): 99-109, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28762129

RESUMEN

KEY MESSAGE: Expression of the bacterial nitroreductase gene, nfsI, in tobacco plastids conferred the ability to detoxify TNT. The toxic pollutant 2,4,6-trinitrotoluene (TNT) is recalcitrant to degradation in the environment. Phytoremediation is a potentially low cost remediation technique that could be applied to soil contaminated with TNT; however, progress is hindered by the phytotoxicity of this compound. Previous studies have demonstrated that plants transformed with the bacterial nitroreductase gene, nfsI have increased ability to tolerate and detoxify TNT. It has been proposed that plants engineered to express nfsI could be used to remediate TNT on military ranges, but this could require steps to mitigate transgene flow to wild populations. To address this, we have developed nfsI transplastomic tobacco (Nicotiana tabacum L.) to reduce pollen-borne transgene flow. Here we have shown that when grown on solid or liquid media, the transplastomic tobacco expressing nfsI were significantly more tolerant to TNT, produced increased biomass and removed more TNT from the media than untransformed plants. Additionally, transplastomic plants expressing nfsI regenerated with high efficiency when grown on medium containing TNT, suggesting that nfsI and TNT could together be used to provide a selectable screen for plastid transformation.


Asunto(s)
Bacterias/enzimología , Nicotiana/genética , Nitrorreductasas/metabolismo , Plastidios/genética , Trinitrotolueno/metabolismo , Biodegradación Ambiental/efectos de los fármacos , Vectores Genéticos/metabolismo , Plantas Modificadas Genéticamente , Regeneración/efectos de los fármacos , Nicotiana/efectos de los fármacos , Nicotiana/crecimiento & desarrollo , Transformación Genética , Trinitrotolueno/toxicidad
17.
Plant Mol Biol ; 93(3): 269-281, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27858324

RESUMEN

KEY MESSAGE: A new selectable marker gene for stable transformation of the plastid genome was developed that is similarly efficient as the aadA, and produces no background of spontaneous resistance mutants. More than 25 years after its development for Chlamydomonas and tobacco, the transformation of the chloroplast genome still represents a challenging technology that is available only in a handful of species. The vast majority of chloroplast transformation experiments conducted thus far have relied on a single selectable marker gene, the spectinomycin resistance gene aadA. Although a few alternative markers have been reported, the aadA has remained unrivalled in efficiency and is, therefore, nearly exclusively used. The development of new marker genes for plastid transformation is of crucial importance to all efforts towards extending the species range of the technology as well as to those applications in basic research, biotechnology and synthetic biology that involve the multistep engineering of plastid genomes. Here, we have tested a bifunctional resistance gene for its suitability as a selectable marker for chloroplast transformation. The bacterial enzyme aminoglycoside acetyltransferase(6')-Ie/aminoglycoside phosphotransferase(2″)-Ia possesses an N-terminal acetyltransferase domain and a C-terminal phosphotransferase domain that can act synergistically and detoxify aminoglycoside antibiotics highly efficiently. We report that, in combination with selection for resistance to the aminoglycoside tobramycin, the aac(6')-Ie/aph(2″)-Ia gene represents an efficient marker for plastid transformation in that it produces similar numbers of transplastomic lines as the spectinomycin resistance gene aadA. Importantly, no spontaneous antibiotic resistance mutants appear under tobramycin selection.


Asunto(s)
Acetiltransferasas/metabolismo , Kanamicina Quinasa/metabolismo , Plastidios/genética , Tobramicina/farmacología , Transformación Genética/efectos de los fármacos , Aminoglicósidos/farmacología , Antibacterianos/farmacología , Genes de Plantas , Marcadores Genéticos , Plantas Modificadas Genéticamente , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Transgenes
18.
Plant Biotechnol J ; 14(11): 2158-2167, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27133096

RESUMEN

Despite a strong interest in microalgal oil production, our understanding of the biosynthetic pathways that produce algal lipids and the genes involved in the biosynthetic processes remains incomplete. Here, we report that Chlamydomonas reinhardtii Cre09.g398289 encodes a plastid-targeted 2-lysophosphatidic acid acyltransferase (CrLPAAT1) that acylates the sn-2 position of a 2-lysophosphatidic acid to form phosphatidic acid, the first common precursor of membrane and storage lipids. In vitro enzyme assays showed that CrLPAAT1 prefers 16:0-CoA to 18:1-CoA as an acyl donor. Fluorescent protein-tagged CrLPAAT1 was localized to the plastid membrane in C. reinhardtii cells. Furthermore, expression of CrLPAAT1 in plastids led to a > 20% increase in oil content under nitrogen-deficient conditions. Taken together, these results demonstrate that CrLPAAT1 is an authentic plastid-targeted LPAAT in C. reinhardtii, and that it may be used as a molecular tool to genetically increase oil content in microalgae.


Asunto(s)
Aciltransferasas/genética , Chlamydomonas/enzimología , Microalgas/química , Microalgas/genética , Plastidios/enzimología , Microalgas/metabolismo , Aceites de Plantas/metabolismo
19.
Physiol Mol Biol Plants ; 22(4): 575-581, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27924130

RESUMEN

In the present investigation we report stable plastid transformation in Scoparia dulcis L., a versatile medicinal herb via particle gun method. The vector KNTc, harbouring aadA as a selectable marker and egfp as a reporter gene which were under the control of synthetic promoter pNG1014a, targets inverted repeats, trnR/trnN of the plastid genome. By use of this heterologous vector, recovery of transplastomic lines with suitable selection protocol have been successfully established with overall efficiency of two transgenic lines for 25 bombarded leaf explants. PCR and Southern blot analysis demonstrated stable integration of foreign gene into the target sequences. The results represent a significant advancement of the plastid transformation technology in medicinal plants, which relevantly implements a change over in enhancing and regulating of certain metabolic pathways.

20.
Plant J ; 80(6): 1131-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25280363

RESUMEN

The widespread use of herbicides and antibiotics for selection of transgenic plants has not been very successful with regard to commercialization and public acceptance. Hence, alternative selection systems are required. In this study, we describe the use of ipt, the bacterial gene encoding the enzyme isopentenyl transferase from Agrobacterium tumefaciens, as a positive selectable marker for plastid transformation. A comparison between the traditional spectinomycin-based aadA selection system and the ipt selection system demonstrated that selection of transplastomic plants on medium lacking cytokinin was as effective as selection on medium containing spectinomycin. Proof of principle was demonstrated by transformation of the kasIII gene encoding 3-ketoacyl acyl carrier protein synthase III into tobacco plastids. Transplastomic tobacco plants were readily obtained using the ipt selection system, and were phenotypically normal despite over-expression of isopentenyl transferase. Over-expression of KASIII resulted in a significant increase in 16:0 fatty acid levels, and a significant decrease in the levels of 18:0 and 18:1 fatty acids. Our study demonstrates use of a novel positive plastid transformation system that may be used for selection of transplastomic plants without affecting the expression of transgenes within the integrated vector cassette or the resulting activity of the encoded protein. This system has the potential to be applied to monocots, which are typically not amenable to traditional antibiotic-based selection systems, and may be used in combination with a negative selectable marker as part of a two-step selection system to obtain homoplasmic plant lines.


Asunto(s)
Citocininas/metabolismo , Ácidos Grasos/metabolismo , Nicotiana/metabolismo , Espectinomicina/farmacología , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Expresión Génica , Vectores Genéticos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plastidios/metabolismo , Nicotiana/genética , Transformación Genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA