Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 229(1): 444-459, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32745288

RESUMEN

Polycarpic perennials maintain vegetative growth after flowering. PERPETUAL FLOWERING 1 (PEP1), the orthologue of FLOWERING LOCUS C (FLC) in Arabis alpina regulates flowering and contributes to polycarpy in a vernalisation-dependent pathway. pep1 mutants do not require vernalisation to flower and have reduced return to vegetative growth as all of their axillary branches become reproductive. To identify additional genes that regulate flowering and contribute to perennial traits we performed an enhancer screen of pep1. Using mapping-by-sequencing, we cloned a mutant (enhancer of pep1-055, eop055), performed transcriptome analysis and physiologically characterised the role it plays on perennial traits in an introgression line carrying the eop055 mutation and a functional PEP1 wild-type allele. eop055 flowers earlier than pep1 and carries a lesion in the A. alpina orthologue of the APETALA2 (AP2)-like gene, TARGET OF EAT2 (AaTOE2). AaTOE2 is a floral repressor and acts upstream of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 5 (AaSPL5). In the wild-type background, which requires cold treatment to flower, AaTOE2 regulates the age-dependent response to vernalisation. In addition, AaTOE2 ensures the maintenance of vegetative growth by delaying axillary meristem initiation and repressing flowering of axillary buds before and during cold exposure. We conclude that AaTOE2 is instrumental in fine tuning different developmental traits in the perennial life cycle of A. alpina.


Asunto(s)
Proteínas de Arabidopsis , Arabis , Proteínas de Arabidopsis/genética , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Am J Bot ; 106(4): 604-610, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30985929

RESUMEN

PREMISE OF THE STUDY: A trade-off between fertility and offspring viability underpins plant reproductive response to sub-optimal environmental conditions. Senescence involves internal resource limitation, and it is a sub-optimal body condition. We tested if senescence affects age-specific fertility and seed viability (quality) in indeterminate annuals. METHODS: Fertility in individual pods on the monopodial indeterminate inflorescence of Arabidopsis thaliana and its big-seeded relative Brassica nigra was quantified. The reproductive phase was divided into three phases: (1) early-senescence (initial flowers) (2) mid-senescence and (3) late-senescence (wilting leaves). Seed-viability probability as a function of pod position on the inflorescence (a proxy for parent's age) and seed position within pod was verified by germination tests in Brassica and then analysed using a binomial logistic regression model. KEY RESULTS: Age-specific fertility increased gradually, peaked, and then declined significantly during senescence in Arabidopsis and Brassica. Acropetal size distribution of rosette leaves was similar to that of pods (age-specific fertility) in Arabidopsis. Seeds positioned closest to stigma tended to be heavier and more viable than others in highly fertile pods, characteristic of mid-senescence phase in Brassica. Pod position (parent's age) was a significant predictor of seed-viability probability or seed quality, which improved in old and senescing Brassica. CONCLUSIONS: High viability probability of seeds produced in low-fertility pods during late-senescence phase suggests weakening of maternal control over seed-size optimization (bigger, fewer, and better seeds) in internally resource-depleted older parent plants. Proximity to stigma can increase seed quality. The unexpected increase in fertility and seed viability during early-senescence phase is likely due to highly conserved developmental constraints on leaf and pod phenotype. Indeterminate annuals can shed light on fertility, offspring quality and senescence relationships in all plants that reproduce sexually and indeterminately.


Asunto(s)
Arabidopsis/fisiología , Planta de la Mostaza/fisiología , Semillas/fisiología , Envejecimiento , Fertilidad
3.
Trends Plant Sci ; 27(1): 56-68, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34561180

RESUMEN

Perennial life cycles enable plants to have remarkably long lifespans, as exemplified by trees that can live for thousands of years. For this, they require sophisticated regulatory networks that sense environmental changes and initiate adaptive responses in their growth patterns. Recent research has gradually elucidated fundamental mechanisms underlying the perennial life cycle. Intriguingly, several conserved components of the floral transition pathway in annuals such as Arabidopsis thaliana also participate in these regulatory mechanisms underpinning perenniality. Here, we provide an overview of perennials' physiological features and summarise their recently discovered molecular foundations. We also highlight the importance of deepening our understanding of perenniality in the development of perennial grain crops, which are promising elements of future sustainable agriculture.


Asunto(s)
Arabidopsis , Agricultura , Arabidopsis/genética , Productos Agrícolas , Grano Comestible , Árboles
4.
AoB Plants ; 14(6): plac052, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36439406

RESUMEN

Spatial segregation of cytotypes reduces the negative effect of frequency-dependent mating on the fitness of minority cytotype(s) and thus allows its establishment and coexistence with the majority cytotype in mixed-ploidy populations. Despite its evolutionary importance, the stability of spatial segregation is largely unknown. Furthermore, closely related sympatric cytotypes that differ in their life histories might exhibit contrasting spatial dynamics over time. We studied the temporal stability of spatial structure at a secondary contact zone of co-occurring monocarpic diploids and polycarpic tetraploids of Centaurea stoebe, whose tetraploid cytotype has undergone a rapid range expansion in Europe and became invasive in North America. Eleven years after the initial screening, we re-assessed the microspatial distribution of diploids and tetraploids and their affinities to varying vegetation-cover density in three mixed-ploidy populations in Central Europe. We found that overall, spatial patterns and frequencies of both cytotypes in all sites were very similar over time, with one exception. At one site, in one previously purely 2x patch, diploids completely disappeared due to intensive succession by shrubby vegetation. The remaining spatial patterns, however, showed the same cytotype clumping and higher frequency of 2x despite subtle changes in vegetation-cover densities. In contrast to the expected expansion of polycarpic tetraploids having higher colonization ability when compared to diploids, the tetraploids remained confined to their former microsites and showed no spatial expansion. Spatial patterns of coexisting diploids and tetraploids, which exhibit contrasting life histories, did not change over more than a decade. Such temporal stability is likely caused by relatively stable habitat conditions and very limited seed dispersal. Our results thus imply that in the absence of a disturbance regime connected with frequent human- or animal-mediated seed dispersal, spatial patterns may be very stable over time, thus contributing to the long-term coexistence of cytotypes.

5.
AoB Plants ; 10(4): ply038, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30018757

RESUMEN

Fragmentation of natural habitats generally has negative effects on the reproductive success of many plant species; however, little is known about epiphytic plants. We assessed the impact of forest fragmentation on plant-pollinator interactions and female reproductive success in two epiphytic Tillandsia species with contrasting life history strategies (polycarpic and monocarpic) in Chamela, Jalisco, Mexico, over three consecutive years. Hummingbirds were the major pollinators of both species and pollinator visitation rates were similar between habitat conditions. In contrast, the composition and frequency of floral visitors significantly varied between habitat conditions in polycarpic and self-incompatible T. intermedia but not in monocarpic self-compatible T. makoyana. There were no differences between continuous and fragmented habitats in fruit set in either species, but T. makoyana had a lower seed set in fragmented than in continuous forests. In contrast, T. intermedia had similar seed set in both forest conditions. These results indicate that pollinators were effective under both fragmented and continuous habitats, possibly because the major pollinators are hummingbird species capable of moving across open spaces and human-modified habitats. However, the lower seed set of T. makoyana under fragmented conditions suggests that the amount and quality of pollen deposited onto stigmas may differ between habitat conditions. Alternatively, changes in resource availability may also cause reductions in seed production in fragmented habitats. This study adds to the limited information on the effects of habitat fragmentation on the reproductive success of epiphytic plants, showing that even related congeneric species may exhibit different responses to human disturbance. Plant reproductive systems, along with changes in pollinator communities associated with habitat fragmentation, may have yet undocumented consequences on gene flow, levels of inbreeding and progeny quality of dry forest tillandsias.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA