Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 359: 120947, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718599

RESUMEN

This article presents ways of recovering waste in the form of anaerobically digested and dried sewage sludge (average humidity approx. 6 wt%) by carbonization at various temperatures in the range of 400-900 °C. The resulting products, biochars, are investigated in terms of yield, surface properties and Raman spectra analysis. The sorption capacity of biochars differs depending on the carbonization temperature. The experimental amount of adsorbed CO2 slowly increases with the carbonization temperature from 0.212 mmol/g at 400 °C to the highest value of 0.415 mmol/g, which is achieved at 900 °C by slow carbonization at a rate of 10 °C/min. Additionally, there is a strong positive dependence of the adsorption capacity on the micropore volume. Higher carbonization temperatures support the powerful formation of micropores and improve their sorption capacity.


Asunto(s)
Carbón Orgánico , Aguas del Alcantarillado , Temperatura , Aguas del Alcantarillado/química , Adsorción , Carbón Orgánico/química
2.
J Environ Manage ; 336: 117617, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36967689

RESUMEN

The construction of an engineered cover layer over landfills is a common method applied to reduce the emission of hazardous gases into the atmosphere. Landfill gas pressures can reach 50 kPa or even higher in some cases, thus posing a serious threat to nearby properties and human safety. As such, the evaluation of gas breakthrough pressure and gas permeability in a landfill cover layer is of great necessity. In this study, the loess soil that is often applied as a cover layer in landfills in northwestern China was used to conduct gas breakthrough, gas permeability, and mercury intrusion porosimetry (MIP) tests. Resultantly, the smaller the capillary tube diameter, the higher the capillary force, and the more significant the capillary effect. Gas breakthrough could be attained with no difficulty, provided that the capillary effect was minimal or approached zero. A good fit between the experimental gas breakthrough pressure-intrinsic permeability relationship and a logarithmic equation was found. The mechanical effect blew up the gas flow channel. In the worst-case scenario, the mechanical effect could lead to the overall failure of a loess cover layer in a landfill. A new gas flow channel was formed between the rubber membrane and the loess specimen as a result of the interfacial effect. Although both the mechanical and interfacial effects can elevate the gas emission rate, the latter did not play a role in the improvement of the gas permeability; therefore, misleading interference took place in the evaluation of the gas permeability, and an overall failure of the loess cover layer. To tackle this problem, the point at which the large- and small-effective stress asymptotes cross on the volumetric deformation-Peff diagram may be applied to give early warning signals of the potential overall failure of the loess cover layer in landfills in northwestern China.


Asunto(s)
Contaminantes Atmosféricos , Eliminación de Residuos , Humanos , Eliminación de Residuos/métodos , Gases/análisis , Instalaciones de Eliminación de Residuos , Suelo , Permeabilidad , Metano/análisis , Contaminantes Atmosféricos/análisis
3.
AAPS PharmSciTech ; 19(2): 912-922, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29063377

RESUMEN

The permeability of a powder bed reflects its particle size distribution, shape, packing, porosity, cohesivity, and tensile strength in a manner relevant to powder fluidization. The relationship between the permeability and the performance of carrier-based dry powder inhalation (DPI) mixtures has, however, aroused controversy. The current study sought to gain new insights into the relationship and to explore its potential applications. We studied eight lactose materials as DPI carriers. The carriers covered a broad permeability range of 0.42-13.53 D and moreover differed in particle size distribution, particle shape, crystal form, and/or porosity. We evaluated the performance of inhalation mixtures of each of these carriers and fluticasone propionate after aerosolization from an Aerolizer®, a model turbulent-shear inhaler, at a flow rate of 60 L/min. Starting from the high permeability side, the inhalation mixture performance increased as the carrier permeability decreased until optimum performance was reached at permeability of ~ 3.2 D. Increased resistance to air flow strengthens aerodynamic dispersion forces. The inhalation mixture performance then decreased as the carrier permeability further decreased. Very high resistance to air flow restricts powder dispersion. The permeability accounted for effects of carrier size, shape, and macroporosity on the performance. We confirmed the relationship by analysis of two literature permeability-performance datasets, representing measurements that differ from ours in terms of carrier grades, drug, technique used to determine permeability, turbulent-shear inhaler, and/or aerosolization flow rate. Permeability provides useful information that can aid development of DPI mixtures for turbulent-shear inhalers. A practical guidance is provided.


Asunto(s)
Portadores de Fármacos/metabolismo , Inhaladores de Polvo Seco/métodos , Lactosa/metabolismo , Administración por Inhalación , Aerosoles/química , Aerosoles/metabolismo , Portadores de Fármacos/química , Fluticasona/química , Fluticasona/metabolismo , Lactosa/química , Tamaño de la Partícula , Permeabilidad , Porosidad , Polvos
4.
Biochim Biophys Acta Gen Subj ; 1861(6): 1521-1529, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28130156

RESUMEN

BACKGROUND: Kidney stone analysis techniques are well-established in the field of materials characterization and provide information for the chemical composition and structure of a sample. Nanomedicine, on the other hand, is a field with an increasing rate of scientific research, a big budget and increasingly developing market. The key scientific question is if there is a possibility for the development of a nanomedicine to treat kidney stones. MAJOR CONCLUSIONS: The main calculi characterization techniques such as X-ray Diffraction and Fourier Transform Infrared Spectroscopy can provide information about the composition of a kidney stone but not for its nanostructure. On the other hand, Small Angle X-ray Scattering and Nitrogen Porosimetry can show the nanostructural parameters of the calculi. The combination of the previously described parameters can be used for the development of nano-drugs for the treatment of urolithiasis, while no such nano-drugs exist yet. GENERAL SIGNIFICANCE: In this study, we focus on the most well-known techniques for kidney stone analysis, the urolithiasis management and the search for possible nanomedicine for the treatment of kidney stone disease. We combine the results from five different analysis techniques in order to represent a three dimensional model and we propose a hypothetical nano-drug with gold nanoparticles. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.


Asunto(s)
Descubrimiento de Drogas/métodos , Cálculos Renales/química , Cálculos Renales/terapia , Litotripsia por Láser/métodos , Nanomedicina/métodos , Nanopartículas , Nefrolitiasis/terapia , Agentes Urológicos/uso terapéutico , Humanos , Cálculos Renales/diagnóstico , Nefrolitiasis/diagnóstico , Porosidad , Dispersión del Ángulo Pequeño , Difracción de Rayos X
5.
J Sep Sci ; 39(23): 4492-4501, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27709789

RESUMEN

Poly(styrene-co-divinylbenzene) monolithic stationary phases with two different domain sizes were synthesized by a thermally initiated free-radical copolymerization in capillary columns. The morphology was investigated at the meso- and macroscopic level using complementary physical characterization techniques aiming at better understanding the effect of column structure on separation performance. Varying the porogenic solvent ratio yielded materials with a mode pore size of 200 nm and 1.5 µm, respectively. Subsequently, nano-liquid chromatography experiments were performed on 200 µm id × 200 mm columns using unretained markers, linking structure inhomogeneity to eddy dispersion. Although small-domain-size monoliths feature a relatively narrow macropore-size distribution, their homogeneity is compromised by the presence of a small number of large macropores, which induces a significant eddy-dispersion contribution to band broadening. The small-domain size monolith also has a relatively steep mass-transfer term, compared to a monolith containing larger globules and macropores. Structural inhomogeneity was also studied at the mesoscopic level using gas-adsorption techniques combined with the non-local-density-function-theory. This model allows to accurately determine the mesopore properties in the dry state. The styrene-based monolith with small domain size has a distinctive trimodal mesopore distribution with pores of 5, 15, and 25 nm, whereas the monolith with larger feature sizes only contains mesopores around 5 nm in size.

6.
J Anal Appl Pyrolysis ; 121: 62-66, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27695151

RESUMEN

The effect of pyrolysis rate on the properties of alginic acid-derived carbonaceous materials, termed Starbon®, was investigated. Thermal Gravimetry-IR was used to prepare porous carbons up to 800 °C at several rates and highlighted increased CO2 production at higher pyrolysis rates. N2 porosimetry of the resultant carbons shows how pyrolysis rate affects both the mesopore structure and thus surface area and surface energy. Surface capacity of these carbons was analysed by methylene blue dye adsorption. In general, as the rate of pyrolysis increased, the mesopore content and adsorbent capacity decreased. It is considered here that the rapid production of volatiles at these higher rates causes structural collapse of the non-templated pore network. The work here demonstrates that pyrolysis rate is a key variable which needs to be controlled to maximise the textural properties of Starbon® required for adsorption applications.

7.
MethodsX ; 13: 102882, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39185460

RESUMEN

The porosity of hollow fiber membranes is an important property in the design of processes implementing membrane contactors as it is directly related to the effective surface available for mass transfer. Nevertheless, measuring the porosity requires most of the time complex experimental setup and some of the existing methods are questionable when applied to polymeric membrane materials. In this work, we adapted a method originally proposed to estimate the porosity of flat membranes, in order to estimate the porosity of hollow fiber membranes.•Some hydrophobic hollow fibers are put in contact with a non-wetting solvent inside a pycnometer. The mass of the system is measured.•The process is repeated using a wetting solvent.•The porosity is deduced from the difference between the weighing data.

8.
Microsc Res Tech ; 87(6): 1335-1347, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38362795

RESUMEN

In recent years, the potential of porous soft materials in various device technologies has increased in importance due to applications in fields, such as wearable electronics, medicine, and transient devices. However, understanding the 3-dimensional architecture of porous soft materials at the microscale remains a challenge. Herein, we present a method to structurally analyze soft materials using Focused Ion Beam - Scanning Electron Microscopy (FIB-SEM) tomography. Two materials, polymethyl methacrylate (PMMA) membrane and pine wood veneer were chosen as test-cases. FIB-SEM was successfully used to reconstruct the true topography of these materials in 3D. Structural and physical properties were subsequently deduced from the rendered 3D models. The methodology used segmentation, coupled with optimized thresholding, image processing, and reconstruction protocols. The 3D models generated pore size distribution, pore inter-connectivity, tortuosity, thickness, and curvature data. It was shown that FIB-SEM tomography provides both an informative and visual depiction of structure. To evaluate and validate the FIB-SEM reconstructions, porous properties were generated from the physical property analysis techniques, gas adsorption analysis using Brunauer-Emmett-Teller (BET) surface area analysis and mercury intrusion porosimetry (MIP) analysis. In general, the data obtained from the FIB-SEM reconstructions was well-matched with the physical data. RESEARCH HIGHLIGHTS: Porous specimens of both synthetic and biological nature, a poly(methyl methacrylate) membrane and a pine veneer respectively, are reconstructed via FIB-SEM tomography without resin-embedding. Different thresholding and reconstruction methods are explored whereby shadowing artifacts are present with the aid of free open-source software. Reconstruction data is compared to physical data: MIP, gas adsorption isotherms which are analyzed via BET and Barrett-Joyner-Halenda (BJH) analysis to yield a full picture of the materials.

9.
Materials (Basel) ; 16(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37110038

RESUMEN

This review focuses on disordered, or amorphous, porous heterogeneous catalysts, especially those in the forms of pellets and monoliths. It considers the structural characterisation and representation of the void space of these porous media. It discusses the latest developments in the determination of key void space descriptors, such as porosity, pore size, and tortuosity. In particular, it discusses the contributions that can be made by various imaging modalities in both direct and indirect characterisations and their limitations. The second part of the review considers the various types of representations of the void space of porous catalysts. It was found that these come in three main types, which are dependent on the level of idealisation of the representation and the final purpose of the model. It was found that the limitations on the resolution and field of view for direct imaging methods mean that hybrid methods, combined with indirect porosimetry methods that can bridge the many length scales of structural heterogeneity and provide more statistically representative parameters, deliver the best basis for model construction for understanding mass transport in highly heterogeneous media.

10.
Materials (Basel) ; 16(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37763406

RESUMEN

The present work reports the results of a systematic study on the evolution of the morphological properties of porous carbons derived from coffee waste using a one-pot potassium-hydroxide-assisted process at temperatures in the range of 400-900 °C. Raw materials and obtained carbons were studied by TG, DTG, SEM and nitrogen adsorption porosimetry. The decomposition temperature ranges for hemicellulose, cellulose and lignin as the main component of the feedstock have been established. It is shown that the proposed method for the thermochemical treatment of coffee waste makes it possible to obtain activated carbon with a controllable pore size distribution and a high specific surface area (up to 1050 m2/g). A comparative study of the evolution of the distribution of pore size, pore area and pore volume has been carried out based on the BJH and NL-DFT (slit-like pores approximation) methods. The fractal dimension of the obtained carbons has been calculated by Frenkel-Halsey-Hill method for single-layer and multilayer adsorptions.

11.
Chem Asian J ; 18(21): e202300699, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37713072

RESUMEN

Crystalline Zr-fum-MOF (MOF-801) thin films of high quality are prepared on glass and silicon substrates by direct growth under solvothermal conditions. The synthesis is described in detail and the influence of different synthesis parameters such as temperature, precursor concentration, and the substrate type on the quality of the coatings is illustrated. Zr-fum-MOF thin films are characterized in terms of crystallinity, porosity, and homogeneity. Dense films of optical quality are obtained. The sorption behavior of the thin films is studied with various adsorptives. It can be easily monitored by measuring the transmission of the films in gas flows of different compositions. This simple transmission measurement at only one wavelength allows a very fast evaluation of the adsorption properties of thin films as compared to traditional sorption methods. The sorption behavior of the thin films is compared with the sorption properties of Zr-fum-MOF powder samples.

12.
Chemosphere ; 328: 138445, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36963584

RESUMEN

To mitigate the sudden increase in the production of waste engineering slurry, predominantly composed of Kaolinite, this study investigated the flocculation and dewatering of Kaolin slurry treated with single- and dual-polymer flocculants. The influence of the flocculant type and dosage, under single- and dual-dose conditions, on slurry's sedimentation and the filtration characteristics, were thoroughly discussed. The results reveal that the adsorption bridging of the polymeric flocculant, resulting from hydrogen bonds, exerts a more significant effect than electrical neutralization on forming a large floc. Under single-dose conditions, nonionic polyacrylamides (NPAMs) with the strongest adsorption bridging leads to biggest flocs and the maximum settling rate of 21.55 mm/s. Under the dual-dose conditions of polymeric aluminium chloride (PAC) and PAM, the size of the slurry's floc decreases with an increase in PAC dosage. Nevertheless, the filtration performance of the slurry improves, with the lowest SRF value of the flocculated slurry being 1.58 × 1011 m/kg as 3‰ PAC and 3‰ NPAM is dosed. The improvement is explained by the micro-pore distribution of sludge. According to Mercury intrusion porosimetry (MIP) test, the slurry treated with the optimal dosage of dual-polymer flocculant exhibits the greatest sludge pore size and connected porosity (with a maximum value of 20.99%). Furthermore, the study discusses and compares the flocculation mechanism of single- and dual-polymer flocculants. The obtained results provide guidance for selecting appropriate flocculants for dewatering inorganic slurries, using different dewatering methods, such as gravitational thickening or filter pressing.


Asunto(s)
Polímeros , Aguas del Alcantarillado , Polímeros/química , Aguas del Alcantarillado/química , Caolín , Floculación , Filtración , Cloruro de Aluminio
13.
Materials (Basel) ; 16(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38068004

RESUMEN

Various designs of furnaces for melting alloys are used in the foundry industry. Regardless of their design, they have one common detail, which is the lining of their interiors with refractory materials. This component in the design of a metal-melting furnace has a very important task-to protect the rest of the furnace assemblies from thermal and mechanical damage. Continuous technical progress and the quality requirements of casting production produce increasingly higher demands for refractory materials in connection with their development as well. The article presents the results of an innovative method of vibratory compaction of refractory material (high-alumina aluminosilicate) using reduced pressure. The analysis presents a comparative study of two methods used for forming refractory materials, i.e., the application of the mentioned innovative method and the classical (standard) method of compaction by vibration only. The effects of the introduced modification in the manufacture of ceramic shapes were evaluated by means of the material's resistance to thermal shock, linear expansion, and dimensional change due to firing, apparent density, open porosity, and apparent specific gravity, determination of total pore volume and pore size distribution by mercury porosimetry, and slag resistance. The tests performed indicate that the procedure of lowering the pressure during the vibratory compaction of the refractory material creates a more homogeneous structure with a smaller number and size of pores. This makes it possible to improve most of the parameters that determine the quality of the refractories used for the linings of the foundry furnace.

14.
Nanomaterials (Basel) ; 13(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37242067

RESUMEN

Laboratory-scale analysis of natural rocks provides petrophysical properties such as density, porosity, pore diameter/pore-throat diameter distribution, and fluid accessibility, in addition to the size and shape of framework grains and their contact relationship with the rock matrix. Different types of laboratory approaches for petrophysical characterization involve the use of a range of sample sizes. While the sample sizes selected should aim to be representative of the rock body, there are inherent limitations imposed by the analytical principles and holding capacities of the different experimental apparatuses, with many instruments only able to accept samples at the µm-mm scale. Therefore, a total of nine (three limestones, three shales, two sandstones, and one dolomite) samples were collected from Texas to fill the knowledge gap of the sample size effect on the resultant petrophysical characteristics. The sample sizes ranged from 3 cm cubes to <75 µm particles. Using a combination of petrographic microscopy, helium expansion pycnometry, water immersion porosimetry, mercury intrusion porosimetry, and (ultra-) small-angle X-ray scattering, the impact of sample size on the petrophysical properties of these samples was systematically investigated here. The results suggest that the sample size effect is influenced by both pore structure changes during crushing and sample size-dependent fluid-to-pore connectivity.

15.
Adv Mater ; 34(27): e2201502, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35603497

RESUMEN

Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called "BET surface identification" (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible.


Asunto(s)
Reproducibilidad de los Resultados , Adsorción , Porosidad
16.
Materials (Basel) ; 15(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35407683

RESUMEN

Alterations of fluid phase transitions in porous materials are conventionally employed for the characterization of mesoporous solids. In the first approximation, this may be based on the application of the Kelvin equation for gas-liquid and the Gibbs-Thomson equation for solid-liquid phase equilibria for obtaining pore size distributions. Herein, we provide a comparative analysis of different phase coexistences measured in mesoporous silica solids with different pore sizes and morphology. Instead of comparing the resulting pore size distributions, we rather compare the transitions directly by using a common coordinate for varying the experiment's thermodynamic parameters based on the two equations mentioned. Both phase transitions in these coordinates produce comparable results for mesoporous solids of relatively large pore sizes. In contrast, marked differences are found for materials with smaller pore sizes. This illuminates the fact that, with reducing confinement sizes, thermodynamic fluctuations become increasingly important and different for different equilibria considered. In addition, we show that in the coordinate used for analysis, mercury intrusion matches perfectly with desorption and freezing transitions.

17.
Materials (Basel) ; 15(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35208083

RESUMEN

Air permeability measurements according to the Hagen-Poiseuille equation, Scanning Electron Microscopy (SEM) and mercury intrusion porosimetry (MIP) tests were conducted on samples of cementitious mortar at different curing times to study the correlation between the increased crystallization and their microstructure. The mortar samples were prepared with a commercial fast-setting premix containing calcium silicates and quartz. The average permeability coefficient (K) was 2.96 × 10-15 m2 after 3 days and decreased to 3.07 × 10-17 m2 after about one month. The continuous C-S-H nucleation in the capillary pores of the cement mortar changes their shape and improves the mortar's impermeability. The SEM images showed the development of crystals that refine the pore size distribution of the cement paste, with more of the smallest pores, and fewer of the largest, as demonstrated by the MIP measurements. Adding a superabsorbent polyacrylate (SA-PA) in the amount of 0.5% wt of dry powder, without adding any extra water, makes a mortar less fluid but not faster-setting. Twenty-four hours after mixing and casting, it is still plastic and, with time, the pore size distribution differs from that of standard mortar. Over time in air, permeability remains high, but in water it could be low due to swelling of SA-PA residues.

18.
Materials (Basel) ; 15(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36431424

RESUMEN

In this study, the possibility of using mixing water containing O2 and O3 micro-nano bubbles (M-NBs) in concrete technology was investigated. In particular, the effect of micro-nano bubbles on the durability and frost resistance of concrete was analyzed. Concretes with two types of micro-nano bubbles were studied. The physical properties of both the modified concretes and the reference concrete were determined, i.e., specific and apparent density, porosity, weight absorption and coefficient of water absorption. Mechanical parameters based on compressive and flexural strength were tested after 14 and 28 days of curing. Concrete durability was determined on the basis of frost resistance and resistance to salt crystallization. The pore distribution in the cement matrix was determined based on porosimetry studies. The use of water with micro-nano bubbles of O2 and O3, among others, contributed to a reduction in the water absorption coefficient from 42.7% to 52.3%, in comparison to the reference concrete. The strength characterizing the concrete with O3 increased by 61% after 28 days, and the frost resistance after 150 F-T cycles increased by 2.4 times. Resistance to salt crystallization improved by 11% when water with O3 was used.

19.
Materials (Basel) ; 15(13)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35806624

RESUMEN

Investigation on the pore-fracture features and crack propagation behavior of coal is necessary to prevent coal mine disasters. The pore structure features of coal samples taken from high gas seam were obtained by mercury injection porosimetry (MIP) and gas adsorption methods. The process of deformation and failure for coal samples under three-point bending conditions were obtained. The results demonstrate that the adsorption pores with diameter less than 100 nm are the most developed and their surfaces are the roughest (the average surface fractal dimension Ds is 2.933). The surface of micro-cracks is smoother (Ds is 2.481), which is conducive to gas seepage. It may be the explanation for that 14-3# coal seam is a high gas seam, while there was almost no gas outburst accident so far. At the initial stage of crack propagation, the main crack on the coal sample expanded along the direction of the natural cracks. In the process of crack propagation, the surface fractal dimension of the main crack increased, suggesting that the bending degree of the main crack enhanced. The brittle characteristics of coal samples can be reflected by the ratio of the dissipated energy to the accumulated energy.

20.
Nanomaterials (Basel) ; 11(5)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062927

RESUMEN

A set of three commercial zeolites (13X, 5A, and 4A) of two distinct shapes have been characterized: (i) pure zeolite powders and (ii) extruded spherical beads composed of pure zeolite powders and an unknown amount of binder used during their preparation process. The coupling of gas porosimetry experiments using argon at 87 K and CO2 at 273 K allowed determining both the amount of the binder and its effect on adsorption properties. It was evidenced that the beads contain approximately 25 wt% of binder. Moreover, from CO2 adsorption experiments at 273 K, it could be inferred that the binder present in both 13X and 5A zeolites does not interact with the probe molecule. However, for the 4A zeolite, pore filling pressures were shifted and strong interaction with CO2 was observed leading to irreversible adsorption of the probe. These results have been compared to XRD, IR spectroscopy, and ICP-AES analysis. The effect of the binder in shaped zeolite bodies can thus have a crucial impact on applications in adsorption and catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA