RESUMEN
Kirsten rat sarcoma virus (KRAS) gene mutation is common in colorectal cancer (CRC) and is often predictive of treatment failure and poor prognosis. To understand the mechanism, we compared the transcriptome of CRC patients with wild-type and mutant KRAS and found that KRAS mutation is associated with the overexpression of a secreted serine protease, kallikrein-related peptidase 10 (KLK10). Moreover, using in vitro and in vivo models, we found that KLK10 overexpression favors the rapid growth and liver metastasis of KRAS mutant CRC and can also impair the efficacy of KRAS inhibitors, leading to drug resistance and poor survival. Further functional assays revealed that the oncogenic role of KLK10 is mediated by protease-activated receptor 1 (PAR1). KLK10 cleaves and activates PAR1, which further activates 3-phosphoinositide-dependent kinase 1 (PDK1)-AKT oncogenic pathway. Notably, suppressing PAR1-PDK1-AKT cascade via KLK10 knockdown can effectively inhibit CRC progression and improve the sensitivity to KRAS inhibitor, providing a promising therapeutic strategy. Taken together, our study showed that KLK10 promotes the progression of KRAS mutant CRC via activating PAR1-PDK1-AKT signaling pathway. These findings expanded our knowledge of CRC development, especially in the setting of KRAS mutation, and also provided novel targets for clinical intervention.
Asunto(s)
Neoplasias Colorrectales , Receptor PAR-1 , Humanos , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Calicreínas/genética , Calicreínas/metabolismo , Mutación/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Transducción de Señal , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismoRESUMEN
BACKGROUND: Endothelial CLICs (chloride intracellular channel proteins) CLIC1 and CLIC4 are required for the GPCRs (G-protein-coupled receptors) S1PR1 (sphingosine-1-phosphate receptor 1) and S1PR3 to activate the small GTPases Rac1 (Ras-related C3 botulinum toxin substrate 1) and RhoA (Ras homolog family member A). To determine whether CLIC1 and CLIC4 function in additional endothelial GPCR pathways, we evaluated CLIC function in thrombin signaling via the thrombin-regulated PAR1 (protease-activated receptor 1) and downstream effector RhoA. METHODS: We assessed the ability of CLIC1 and CLIC4 to relocalize to cell membranes in response to thrombin in human umbilical vein endothelial cells (HUVEC). We examined CLIC1 and CLIC4 function in HUVEC by knocking down expression of each CLIC protein and compared thrombin-mediated RhoA or Rac1 activation, ERM (ezrin/radixin/moesin) phosphorylation, and endothelial barrier modulation in control and CLIC knockdown HUVEC. We generated a conditional murine allele of Clic4 and examined PAR1-mediated lung microvascular permeability and retinal angiogenesis in mice with endothelial-specific loss of Clic4. RESULTS: Thrombin promoted relocalization of CLIC4, but not CLIC1, to HUVEC membranes. Knockdown of CLIC4 in HUVEC reduced thrombin-mediated RhoA activation, ERM phosphorylation, and endothelial barrier disruption. Knockdown of CLIC1 did not reduce thrombin-mediated RhoA activity but prolonged the RhoA and endothelial barrier response to thrombin. Endothelial-specific deletion of Clic4 in mice reduced lung edema and microvascular permeability induced by PAR1 activating peptide. CONCLUSIONS: CLIC4 is a critical effector of endothelial PAR1 signaling and is required to regulate RhoA-mediated endothelial barrier disruption in cultured endothelial cells and murine lung endothelium. CLIC1 was not critical for thrombin-mediated barrier disruption but contributed to the barrier recovery phase after thrombin treatment.
Asunto(s)
Receptor PAR-1 , Proteína de Unión al GTP rhoA , Humanos , Ratones , Animales , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Trombina/farmacología , Trombina/metabolismo , Endotelio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Cultivadas , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Proteínas Mitocondriales/metabolismoRESUMEN
Rationale: Chronic thromboembolic pulmonary hypertension (CTEPH) is a sequela of acute pulmonary embolism (PE) in which the PE remodels into a chronic scar in the pulmonary arteries. This results in vascular obstruction, pulmonary microvasculopathy, and pulmonary hypertension. Objectives: Our current understanding of CTEPH pathobiology is primarily derived from cell-based studies limited by the use of specific cell markers or phenotypic modulation in cell culture. Therefore, our main objective was to identify the multiple cell types that constitute CTEPH thrombusy and to study their dysfunction. Methods: Here we used single-cell RNA sequencing of tissue removed at the time of pulmonary endarterectomy surgery from five patients to identify the multiple cell types. Using in vitro assays, we analyzed differences in phenotype between CTEPH thrombus and healthy pulmonary vascular cells. We studied potential therapeutic targets in cells isolated from CTEPH thrombus. Measurements and Main Results: Single-cell RNA sequencing identified multiple cell types, including macrophages, T cells, and smooth muscle cells (SMCs), that constitute CTEPH thrombus. Notably, multiple macrophage subclusters were identified but broadly split into two categories, with the larger group characterized by an upregulation of inflammatory signaling predicted to promote pulmonary vascular remodeling. CD4+ and CD8+ T cells were identified and likely contribute to chronic inflammation in CTEPH. SMCs were a heterogeneous population, with a cluster of myofibroblasts that express markers of fibrosis and are predicted to arise from other SMC clusters based on pseudotime analysis. Additionally, cultured endothelial, smooth muscle, and myofibroblast cells isolated from CTEPH fibrothrombotic material have distinct phenotypes from control cells with regard to angiogenic potential and rates of proliferation and apoptosis. Last, our analysis identified PAR1 (protease-activated receptor 1) as a potential therapeutic target that links thrombosis to chronic PE in CTEPH, with PAR1 inhibition decreasing SMC and myofibroblast proliferation and migration. Conclusions: These findings suggest a model for CTEPH similar to atherosclerosis, with chronic inflammation promoted by macrophages and T cells driving vascular remodeling through SMC modulation, and suggest new approaches for pharmacologically targeting this disease.
Asunto(s)
Hipertensión Pulmonar , Embolia Pulmonar , Trombosis , Humanos , Hipertensión Pulmonar/metabolismo , Remodelación Vascular , Linfocitos T CD8-positivos/metabolismo , Receptor PAR-1/metabolismo , Embolia Pulmonar/complicaciones , Embolia Pulmonar/cirugía , Arteria Pulmonar/metabolismo , Miocitos del Músculo Liso/metabolismo , Inflamación/metabolismo , Análisis de la Célula Individual , Enfermedad CrónicaRESUMEN
Patients with first-diagnosed atrial fibrillation (FDAF) exhibit major adverse cardiovascular events (MACEs) during follow-up. Preclinical models have demonstrated that thrombo-inflammation mediates adverse cardiac remodeling and atherothrombotic events. We have hypothesized that thrombin activity (FIIa) links coagulation with inflammation and cardiac fibrosis/dysfunction. Surrogate markers of the thrombo-inflammatory response in plasma have not been characterized in FDAF. In this prospective longitudinal study, patients presenting with FDAF (n = 80), and 20 matched controls, were included. FIIa generation and activity in plasma were increased in the patients with early AF compared to the patients with chronic cardiovascular disease without AF (controls; p < 0.0001). This increase was accompanied by elevated biomarkers (ELISA) of platelet and endothelial activation in plasma. Pro-inflammatory peripheral immune cells (TNF-α+ or IL-6+) that expressed FIIa-activated protease-activated receptor 1 (PAR1) (flow cytometry) circulated more frequently in patients with FDAF compared to the controls (p < 0.0001). FIIa activity correlated with cardiac fibrosis (collagen turnover) and cardiac dysfunction (NT-pro ANP/NT-pro BNP) surrogate markers. FIIa activity in plasma was higher in patients with FDAF who experienced MACE. Signaling via FIIa might be a presumed link between the coagulation system (tissue factor-FXa/FIIa-PAR1 axis), inflammation, and pro-fibrotic pathways (thrombo-inflammation) in FDAF.
Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/diagnóstico , Estudios Longitudinales , Estudios Prospectivos , Receptor PAR-1 , Biomarcadores , FibrosisRESUMEN
This study aims to investigate the mechanism of Xueshuantong Injection(XST) on pulmonary fibrosis induced by bleomycin(BLM) in rats based on the coagulation cascade pathway. Sixty SD rats were randomly divided into sham surgery group,model group, pirfenidone(PFD, 50 mg·kg~(-1)) group, and 27, 54, and 81 mg·kg~(-1) XST groups. The rat model of pulmonary fibrosis was established by intratracheal injection of BLM(5 mg·kg~(-1)). After 24 hours, the administration groups were given corresponding drugs, while the sham surgery group and model group were given equal volumes of saline. On the 28th day, samples were collected,and the imaging and collagen fiber changes in the lungs of rats were observed. Immunofluorescence(IF) method was used to detect the expression level of alpha-smooth muscle actin(α-SMA), collagen â (Col-â ), E-cadherin(E-cad), and vimentin(Vim). Western blot was used to determine the protein expression of α-SMA, Col-â , Vim, and E-cad. Enzyme-linked immunosorbent assay(ELISA)was used to detect the levels of prothrombin fragment(F1 + 2), thrombin-antithrombin complex(TAT), soluble fibrin monomer complex(SFMC), and rat fibrinogen degradation products(FDP) in rat lung tissue. Finally, the mRNA and protein levels of protease activated receptor 1(PAR-1) were detected by RT-qPCR, western blot, and IF. Compared with the model group, the scanning of the lungs of rats receiving XST treatment also exhibited patchy and non-homogeneous shadows, but these shadows were less dense than those in the model group. At the same time, there was a significant decrease in Col-â fibers in the lungs of rats, and XST could inhibit epithelial-mesenchymal transition(EMT) and downregulate α-SMA and Col-â protein expression. In the aspect of the coagulation system, administration of 81 mg·kg~(-1) XST significantly reduced the levels of SFMC and FDP. Meanwhile, 81 mg·kg~(-1) XST significantly downregulated the mRNA and protein levels of PAR-1. XST has an anti-pulmonary fibrosis effect in rats, and its mechanism may be related to the downregulation of PAR-1 to rebalance the coagulation cascade pathway.
Asunto(s)
Bleomicina , Medicamentos Herbarios Chinos , Fibrosis Pulmonar , Ratas Sprague-Dawley , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/genética , Bleomicina/efectos adversos , Ratas , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Masculino , Coagulación Sanguínea/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Humanos , Actinas/metabolismo , Actinas/genética , Cadherinas/genética , Cadherinas/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Vimentina/metabolismo , Vimentina/genética , InyeccionesRESUMEN
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with a 5-year survival rate of 6% following a diagnosis, and novel therapeutic modalities are needed. Protease-activated receptor 1 (PAR1) is abundantly overexpressed by both tumor cells and multiple stroma cell subsets in the tumor microenvironment (TME), thereby offering a suitable immunotherapy target. METHODS: A chimeric antigen receptor (CAR) strategy was applied to target PAR1 using a human anti-PAR1 scFv antibody fused to the transmembrane region with two co-stimulatory intracellular signaling domains of cluster of differentiation 28 (CD28) and CD137 (4-1BB), added to CD3ζ in tandem. RESULTS: The engineered PAR1CAR-T cells eliminated PAR1 overexpression and transforming growth factor (TGF)-ß-mediated PAR1-upregulated cancer cells by approximately 80% in vitro. The adoptive transfer of PAR1CAR-T cells was persistently enhanced and induced the specific regression of established MIA PaCa-2 cancer cells by > 80% in xenograft models. Accordingly, proinflammatory cytokines/chemokines increased in CAR-T-cell-treated mouse sera, whereas Ki67 expression in tumors decreased. Furthermore, the targeted elimination of PAR1-expressing tumors reduced matrix metalloproteinase 1 (MMP1) levels, suggesting that the blocking of the PAR1/MMP1 pathway constitutes a new therapeutic option for PDAC treatment. CONCLUSIONS: Third-generation PAR1CAR-T cells have antitumor activity in the TME, providing innovative CAR-T-cell immunotherapy against PDAC.
Asunto(s)
Neoplasias Pancreáticas , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Receptor PAR-1/genética , Metaloproteinasa 1 de la Matriz , Neoplasias Pancreáticas/terapia , Microambiente Tumoral , Neoplasias PancreáticasRESUMEN
The present study was designed to check the serum levels of protease-activated receptor (PAR-1) in patients during different phases of dengue severity. Moreover, a correlation between serum PAR-1 levels and hematological parameters, inflammatory cytokine levels, and liver functional changes was also determined. Based on the World Health Organization criteria, the study population was divided into: nonsevere dengue fever (DF; n = 30), severe dengue hemorrhagic fever (DHF; n = 19), and severe dengue shock syndrome (DSS; n = 11). The platelet count (PLT) and hematocrit (HCT) were analyzed using an automated hematology analyzer and liver function enzymes aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphate (ALP), bilirubin were checked by auto-analyzer using diagnostic kits. Moreover, the levels of inflammatory mediators C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-17 (IL-17), and PAR-1 were determined using respective ELISA kits. The HCT levels were elevated and platelet count decreased significantly during dengue complications (DHF and DSS) compared to the DF patients, while the levels of liver functional biomarkers AST, ALT, ALP, and bilirubin remained elevated in DHF and DSS groups than in the corresponding DF group. Similarly, the inflammatory cytokine levels of CRP, TNF-α, IL-6, and IL-17 in DHF and DSS subjects were markedly increased when observed against DF subjects. Notably, the PAR-1 levels were significantly elevated in DHF and DSS groups than in the DF group and positively correlated with changes in HCT levels, inflammatory biomarkers, and liver enzymes. Our findings conclude that PAR-1 levels persistently increased with the severity of the dengue infection and are strongly associated with various clinical manifestations. Thus, PAR-1 levels can be used as a diagnostic marker for assessing dengue severity.
Asunto(s)
Dengue , Dengue Grave , Humanos , Interleucina-17 , Factor de Necrosis Tumoral alfa , Interleucina-6 , Citocinas , Biomarcadores , Bilirrubina , Alanina Transaminasa , Aspartato Aminotransferasas , Proteína C-Reactiva , InflamaciónRESUMEN
Neutrophils extensively infiltrate maternal blood vessels in preeclampsia. This could explain why multiple organs are affected in this enigmatic disorder. Lipid peroxides produced by the placenta are probably the first factors that activate neutrophils as they circulate through the intervillous space, but then a second factor specific to pregnancy comes into play, protease-activated receptor 1. The only time neutrophils express protease-activated receptor 1 is during pregnancy. This means that neutrophils can be activated by a mechanism specific to pregnancy, that is, by proteases. Two proteases that are elevated in preeclampsia and activate protease-activated receptor 1 are matrix metalloproteinase-1 and neutrophil elastase. There is an 8-fold increase in vascular protease-activated receptor 1 expression in women with preeclampsia, and protease-activated receptor 1 is also expressed on the placenta, a pregnancy-specific tissue. The question arises if the pregnancy-specific expression of protease-activated receptor 1 is essential to the pathophysiology of preeclampsia. Protease activation of protease-activated receptor 1 in neutrophils of women with normal pregnancies causes activation of RhoA kinase. RhoA kinase phosphorylates nuclear factor-kappa B causing its translocation from the cytosol into the nucleus, increasing the expression of inflammatory genes. This signaling pathway is blocked by inhibition of either protease-activated receptor 1 or RhoA kinase activity. In contrast, neutrophils obtained from preeclamptic women are already activated, with nuclear factor-kappa B localized in the nucleus. Surprisingly, inhibition of either protease-activated receptor 1 or RhoA kinase results in an efflux of nuclear factor-kappa B from the nucleus back into the cytoplasm. Cyclooxygenase-2 seems to be a downstream mediator between protease-activated receptor 1 and RhoA kinase because aspirin inhibits the nuclear translocation of nuclear factor-kappa B and inhibits neutrophil production of superoxide, thromboxane, and tumor necrosis factor alpha. Currently, low-dose aspirin is the standard of care to prevent preeclampsia in high-risk women. Generally, the actions of low-dose aspirin are attributed to selective inhibition of maternal platelet thromboxane production. However, a recent study showed that beneficial effects extend to the placenta, where aspirin corrected the imbalance of increased thromboxane and reduced prostacyclin and oxidative stress. Selective inhibition of placental thromboxane is possible because thromboxane and prostacyclin are compartmentalized. Thromboxane is produced by trophoblast cells and prostacyclin by endothelial cells, so as aspirin crosses the placenta, its levels decline, sparing prostacyclin. Placental oxidative stress is attenuated because cyclooxygenase-2 inhibition decreases the generation of reactive oxygen species to decrease the formation of isoprostanes. The clinical manifestations of preeclampsia can be explained by protease activation of protease-activated receptor 1 in different tissues. In neutrophils, it can account for their activation and inflammatory response. In vascular tissue, protease-activated receptor 1 activation leads to enhanced vascular reactivity to angiotensin II to cause hypertension. In the placenta, it leads to oxidative stress, increased soluble fms-like tyrosine kinase, and thromboxane production. Activation of protease-activated receptor 1 on endothelial cells causes contraction, leading to edema and proteinuria, and activation on platelets leads to coagulation abnormalities. As proteases that activate protease-activated receptor 1 are elevated in the circulation of women with preeclampsia, consideration should be given to the inhibition of protease-activated receptor 1 as a treatment. Recently, The Food and Drug Administration (FDA) approved a protease-activated receptor 1 inhibitor, creating an opportunity to test whether protease-activated receptor 1 inhibition can prevent and/or treat preeclampsia, but a standard dose of aspirin might be just as effective by blocking its downstream actions.
Asunto(s)
Preeclampsia/metabolismo , Preeclampsia/prevención & control , Receptor PAR-1/metabolismo , Aspirina/administración & dosificación , Femenino , Fibrinolíticos/administración & dosificación , Humanos , Infiltración Neutrófila/fisiología , Placenta/metabolismo , Preeclampsia/fisiopatología , EmbarazoRESUMEN
Accurate diagnosis of cancer cells in early stages plays an important role in reliable therapeutic strategies. In this study, we aimed to develop fluorescence-conjugated polymer carrying nanocapsules (NCs) which is highly selective for myeloma cancer cells. To gain specific targeting properties, NCs, XT5 molecules (a benzamide derivative) which shows high affinity properties against protease-activated receptor-1 (PAR1), that overexpressed in myeloma cancer cells, was used. For this purpose, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000]-carboxylic acid (DSPE-PEG2000-COOH) molecules, as a main encapsulation material, was conjugated to XT5 molecules due to esterification reaction using N,N'-dicyclohexylcarbodiimide as a coupling agent. The synthesized DSPE-PEG2000-COO-XT5 was characterized by using FT-IR and1H NMR spectroscopies and results indicated that XT5 molecules were successfully conjugated to DSPE-PEG2000-COOH. Poly(fluorene-alt-benzothiadiazole) (PFBT) conjugated polymer (CP) was encapsulated with DSPE-PEG2000-COO-XT5 due to dissolving in tetrahydrofuran and ultra-sonication in an aqueous solution, respectively. The morphological properties, UV-vis absorbance, and emission properties of obtainedCPencapsulatedDSPE-PEG2000-COO-XT5(CPDP-XT5) NCs was determined by utilizing scanning electron microscopy, UV-vis spectroscopy, and fluorescent spectroscopy, respectively. Cytotoxicity properties of CPDP-XT5 was evaluated by performing MTT assay on RPMI 8226 myeloma cell lines. Cell viability results confirmed that XT5 molecules were successfully conjugated to DSPE-PEG2000-COOH. Specific targeting properties of CPDP-XT5 NCs and XT5-free NCs (CPDP NCs) were investigated on RPMI 8226 myeloma cell lines by utilizing fluorescent microscopy and results indicated that CPDP-XT5 NCs shows significantly high affinity in comparison to CPDP NCs against the cells. Homology modeling and molecular docking properties of XT5 molecules were evaluated and simulation results confirmed our results.
Asunto(s)
Mieloma Múltiple , Nanocápsulas , Cápsulas , Humanos , Micelas , Simulación del Acoplamiento Molecular , Mieloma Múltiple/tratamiento farmacológico , Polietilenglicoles/química , Polímeros/química , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Neutrophils, which extensively infiltrate maternal systemic blood vessels in preeclampsia, express protease-activated receptor 1 (PAR-1) but only during pregnancy. Neutrophils are generally considered to be non-specific in their response, but the pregnancy-specific expression of PAR-1 could result in a gene expression profile unique to pregnancy, which could help explain why the maternal inflammatory response in preeclampsia is systemic rather than localized. We sought to determine if gene expression of pregnancy neutrophils would differ if stimulated by a protease versus bacterial lipopolysaccharide (LPS). We isolated neutrophils from normal pregnant women at 30 weeks' gestation and cultured them with elastase or LPS. We used elastase because it is a protease elevated in women with preeclampsia, and it activates pregnancy neutrophils via PAR-1. RNA was isolated from the neutrophils for sequencing of the transcriptomes. We discovered many differences in the gene expression profiles. For example, exposure to elastase resulted in three times more uniquely expressed genes than LPS, and the number of significantly differentially upregulated and downregulated genes was greater for elastase. Analysis of canonical pathways revealed similarities for innate immunity but also differences. LPS treatment enriched more pathways, but elastase activated more genes in each pathway. Elastase treatment enriched the MAPK signaling pathway, whereas LPS did not. This is significant because MAPK is a key mediator of transcriptional responses. These findings indicate that protease stimulation of pregnancy neutrophils results in a different profile than stimulation with LPS, which may help explain why the sterile inflammatory response of preeclampsia is systemic and unique to pregnancy.
Asunto(s)
Lipopolisacáridos , Neutrófilos , Péptido Hidrolasas , Preeclampsia , Femenino , Expresión Génica , Humanos , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Neutrófilos/metabolismo , Elastasa Pancreática/metabolismo , Elastasa Pancreática/farmacología , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/farmacología , Preeclampsia/metabolismo , Embarazo/metabolismo , Embarazo/fisiología , Receptor PAR-1/metabolismoRESUMEN
Platelet and coagulation activation are highly reciprocal processes driven by multi-molecular interactions. Activated platelets secrete several coagulation factors and expose phosphatidylserine, which supports the activation of coagulation factor proteins. On the other hand, the coagulation cascade generates known ligands for platelet receptors, such as thrombin and fibrin. Coagulation factor (F)Xa, (F)XIIIa and activated protein C (APC) can also bind to platelets, but the functional consequences are unclear. Here, we investigated the effects of the activated (anti)coagulation factors on platelets, other than thrombin. Multicolor flow cytometry and aggregation experiments revealed that the 'supernatant of (hirudin-treated) coagulated plasma' (SCP) enhanced CRP-XL-induced platelet responses, i.e., integrin αIIbß3 activation, P-selectin exposure and aggregate formation. We demonstrated that FXIIIa in combination with APC enhanced platelet activation in solution, and separately immobilized FXIIIa and APC resulted in platelet spreading. Platelet activation by FXIIIa was inhibited by molecular blockade of glycoprotein VI (GPVI) or Syk kinase. In contrast, platelet spreading on immobilized APC was inhibited by PAR1 blockade. Immobilized, but not soluble, FXIIIa and APC also enhanced in vitro adhesion and aggregation under flow. In conclusion, in coagulation, factors other than thrombin or fibrin can induce platelet activation via GPVI and PAR receptors.
Asunto(s)
Selectina-P , Glicoproteínas de Membrana Plaquetaria , Plaquetas/metabolismo , Factor XIIIa/metabolismo , Fibrina/metabolismo , Hirudinas/metabolismo , Hirudinas/farmacología , Selectina-P/metabolismo , Fosfatidilserinas/metabolismo , Activación Plaquetaria , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Proteína C/metabolismo , Receptor PAR-1/metabolismo , Quinasa Syk/metabolismo , Trombina/metabolismo , Trombina/farmacologíaRESUMEN
Neutrophils expressing cyclooxygenase-2 (COX-2) extensively infiltrate maternal blood vessels in preeclampsia, associated with vascular inflammation. Because pregnancy neutrophils also express protease-activated receptor 1 (PAR-1, F2R thrombin receptor), which they do not in non-pregnant subjects, they can be activated by proteases. We tested the hypothesis that aspirin at a dose sufficient to inhibit COX-2 would reduce inflammatory responses in preeclampsia neutrophils. Neutrophils were isolated from normal pregnant and preeclamptic women at approximately 30 weeks' gestation. Normal pregnancy neutrophils were treated with elastase, a protease elevated in preeclampsia, or elastase plus aspirin to inhibit COX-2, or elastase plus pinane thromboxane, a biologically active structural analog of thromboxane and a thromboxane synthase inhibitor. Preeclamptic pregnancy neutrophils were treated with the same doses of aspirin or pinane thromboxane. Confocal microscopy with immunofluorescence staining was used to determine the cellular localization of the p65 subunit of nuclear factor-kappa B (NF-κB) and media concentrations of thromboxane were measured to evaluate the inflammatory response. In untreated neutrophils of normal pregnant women, p65 was localized to the cytosol. Upon stimulation with elastase, p65 translocated from the cytosol to the nucleus coincident with increased thromboxane production. When neutrophils were co-treated with aspirin or pinane thromboxane, elastase was not able to cause nuclear translocation of p65 or increase thromboxane. In untreated neutrophils of preeclamptic women, the p65 subunit was present in the nucleus and thromboxane production was elevated, but when preeclamptic neutrophils were treated with aspirin or pinane thromboxane, p65 was cleared from the nucleus and returned to the cytosol along with decreased thromboxane production. These findings suggest that COX-2 is a downstream mediator of PAR-1 and demonstrate that PAR-1- mediated inflammation can be inhibited by aspirin. Given the extensive and ubiquitous expression of PAR-1 and COX-2 in preeclamptic women, consideration should be given to treating women with preeclampsia using a dose of aspirin sufficient to inhibit COX-2.
Asunto(s)
Aspirina , Preeclampsia , Receptor PAR-1 , Femenino , Humanos , Embarazo/efectos de los fármacos , Aspirina/farmacología , Aspirina/uso terapéutico , Aspirina/metabolismo , Monoterpenos Bicíclicos , Ciclooxigenasa 2/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Péptido Hidrolasas/metabolismo , Preeclampsia/tratamiento farmacológico , Preeclampsia/metabolismo , Receptor PAR-1/efectos de los fármacos , Receptor PAR-1/metabolismo , Tromboxanos/metabolismoRESUMEN
BACKGROUND: Inflammation is a prominent clinical manifestation in type 2 diabetes mellitus (T2DM) patients, often associated with insulin resistance, metabolic dysregulation, and other complications. AIM OF THE STUDY: The present study has been designed to check the serum levels of PAR-1 and correlate with various clinical manifestations and inflammatory cytokines levels in type 2 diabetic subjects. MATERIAL AND METHODS: The study population was divided into two groups, healthy volunteers (n = 15): normal glycated hemoglobin (HbA1c) (4.26 ± 0.55) and type 2 diabetic subjects (n = 30): HbA1c levels (7.80 ± 2.41). The serum levels of PAR-1 (ELISA method) were studied in both groups and correlated with demographic parameters age, weight, body mass index (BMI), and conventional inflammation biomarkers like C-reactive protein (CRP), interleukin 6 (IL-6), interleukin 8 (IL-8), and tumour necrosis factor-alpha (TNF-α). RESULTS: The demographic variables including the body weight (77.38 ± 10.00 vs. controls 55.26 ± 6.99), BMI (29.39 ± 3.61 vs. controls 25.25 ± 4.01), glycemic index HbA1c (7.80 ± 2.41 vs. controls 4.26 ± 0.55) were found to be statistically increased in T2DM subjects than the healthy control group. The levels of various inflammatory biomarkers and PAR-1 were significantly elevated in T2DM groups in comparison to healthy volunteers. The univariate and multivariate regression analysis revealed that elevated PAR-1 levels positively correlated with increased body weight, BMI, HbA1c, and inflammatory cytokines. CONCLUSION: Our findings indicate that the elevated serum PAR-1 levels serve as an independent predictor of inflammation in T2DM subjects and might have prognostic value for determining T2DM progression.
Asunto(s)
Diabetes Mellitus Tipo 2 , Receptor PAR-1 , Factor de Necrosis Tumoral alfa , Biomarcadores , Glucemia/metabolismo , Peso Corporal , Proteína C-Reactiva/análisis , Citocinas , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Hemoglobina Glucada/análisis , Hemoglobina Glucada/metabolismo , Humanos , Inflamación/complicaciones , Inflamación/diagnóstico , Interleucina-6 , Interleucina-8 , Receptor PAR-1/sangreRESUMEN
Excessive activation of the thrombin receptor, protease activated receptor 1 (PAR1) is implicated in diverse neuropathologies from neurodegenerative conditions to neurotrauma. PAR1 knockout mice show improved outcomes after experimental spinal cord injury (SCI), however information regarding the underpinning cellular and molecular mechanisms is lacking. Here we demonstrate that genetic blockade of PAR1 in female mice results in improvements in sensorimotor co-ordination after thoracic spinal cord lateral compression injury. We document improved neuron preservation with increases in Synapsin-1 presynaptic proteins and GAP43, a growth cone marker, after a 30 days recovery period. These improvements were coupled to signs of enhanced myelin resiliency and repair, including increases in the number of mature oligodendrocytes, their progenitors and the abundance of myelin basic protein. These significant increases in substrates for neural recovery were accompanied by reduced astrocyte (Serp1) and microglial/monocyte (CD68 and iNOS) pro-inflammatory markers, with coordinate increases in astrocyte (S100A10 and Emp1) and microglial (Arg1) markers reflective of pro-repair activities. Complementary astrocyte-neuron co-culture bioassays suggest astrocytes with PAR1 loss-of-function promote both neuron survival and neurite outgrowth. Additionally, the pro-neurite outgrowth effects of switching off astrocyte PAR1 were blocked by inhibiting TrkB, the high affinity receptor for brain derived neurotrophic factor. Altogether, these studies demonstrate unique modulatory roles for PAR1 in regulating glial-neuron interactions, including the capacity for neurotrophic factor signaling, and underscore its position at neurobiological intersections critical for the response of the CNS to injury and the capacity for regenerative repair and restoration of function.
Asunto(s)
Receptor PAR-1 , Traumatismos de la Médula Espinal , Animales , Astrocitos/metabolismo , Femenino , Ratones , Neuronas/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismoRESUMEN
It is not yet clear whether cellular junctions between splenic sinus endothelial cells are open or closed. In order to clarify this, immunolocalization of thrombomodulin (TM), endothelial protein C receptor (EPCR), protease-activated receptor 1 (PAR1), sphingosine 1-phosphate receptor 1 (S1P1), ß-catenin phosphorylated at Try142 (ß-catenin Y142) and ß-catenin phosphorylated at Try654 (ß-catenin Y654), which are related proteins that regulate dissociation and association of the adherens junctions of endothelial cells, are examined in rats using laser microscopy and electron microscopy. TM, EPCR, PAR1 and S1P1 were colocalized in the entire circumference of the endothelial cells, as well as in the caveolar membranes and junctional membranes of adjacent endothelial cells. These molecules may protect the adherens junctions of the endothelial cells. On the other hand, ß-catenin Y142 and ß-catenin Y 654 colocalized with α-catenin and ß-catenin, respectively and in addition, ß-catenin Y142 and ß-catenin Y 654 were localized in the vicinity of the adherens junctions of the endothelial cells from immunogold electron microcopy. The adherens junctions are considered to be partially dissociated at the site where ß-catenin Y142 and ß-catenin Y 654 are localized. Thus, the system that protects the adherens junctions and the system that dissociates them may concurrently coexist in the endothelial cells and dissociation and association of the adherens junctions may be constantly repeated at the cell boundary of the endothelial cells.
Asunto(s)
Uniones Adherentes/metabolismo , Células Endoteliales/metabolismo , Inmunohistoquímica/métodos , Bazo/citología , Animales , Humanos , Masculino , Ratas , Ratas WistarRESUMEN
Sarsasapogenin (Sar), a natural steroidal compound, shows neuroprotection, cognition-enhancement, antiinflammation, antithrombosis effects, and so on. However, whether Sar has ameliorative effects on diabetes-associated cognitive impairment remains unknown. In this study, we found that Sar ameliorated diabetes-associated memory impairment in streptozotocin-induced diabetic rats, evidenced by increased numbers of crossing platform and percentage of time spent in the target quadrant in Morris water maze tests, and suppressed the nucleotide-binding domain and leucine-rich repeat containing protein 1 (NLRP1) inflammasome in hippocampus and cerebral cortex. Furthermore, Sar inhibited advanced glycation end-products and its receptor (AGEs/RAGE) axis and suppressed up-regulation of thrombin receptor protease-activated receptor 1 (PAR-1) in cerebral cortex. On the other hand, Sar mitigated high glucose-induced neuronal damages, NLRP1 inflammasome activation, and PAR-1 up-regulation in high glucose-cultured SH-SY5Y cells, but did not affect thrombin activity. Moreover, the effects of Sar were similar to those of a selective PAR-1 antagonist vorapaxar. Further studies indicated that activation of the NLRP1 inflammasome and NF-κB mediated the effect of PAR-1 up-regulation in high glucose condition by using PAR-1 knockdown assay. In summary, this study demonstrated that Sar prevented memory impairment caused by diabetes, which was achieved through suppressing neuroinflammation from activated NLRP1 inflammasome and NF-κB regulated by cerebral PAR-1. HIGHLIGHTS: Sarsasapogenin ameliorated memory impairment caused by diabetes in rats. Sarsasapogenin mitigated neuronal damages and neuroinflammation by down-regulating cerebral PAR-1. The NLRP1 inflammasome and NF-κB signaling mediated the pro-inflammatory effects of PAR-1. Sarsasapogenin was a pleiotropic neuroprotective agent and memory enhancer in diabetic rodents.
Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , Espirostanos/farmacología , Animales , Línea Celular , Regulación hacia Abajo , Hipocampo/efectos de los fármacos , Humanos , Inflamasomas/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , FN-kappa B/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Transducción de Señal/efectos de los fármacos , EstreptozocinaRESUMEN
Neutrophils are activated and extensively infiltrate blood vessels in preeclamptic women. To identify genes that contribute to neutrophil activation and infiltration, we analyzed the transcriptomes of circulating neutrophils from normal pregnant and preeclamptic women. Neutrophils were collected at 30 weeks' gestation and RNA and DNA were isolated for RNA sequencing and 5-hydroxy-methylcytosine (5-hmC) sequencing as an index of dynamic changes in neutrophil DNA methylation. Women with normal pregnancy who went on to develop mild preeclampsia at term had the most uniquely expressed genes (697) with 325 gene ontology pathways upregulated, many related to neutrophil activation and function. Women with severe preeclampsia who delivered prematurely had few pathways up- or downregulated. Cluster analysis revealed that gene expression in women with severe preeclampsia was an inverse mirror image of gene expression in normal pregnancy, while gene expression in women who developed mild preeclampsia was remarkably different from both. DNA methylation marks, key regulators of gene expression, are removed by the action of ten-eleven translocation (TET) enzymes, which oxidize 5-methylcytosines (5mCs), resulting in locus-specific reversal of DNA methylation. DNA sequencing for 5-hmC revealed no differences among the three groups. Genome-wide DNA methylation revealed extremely low levels in circulating neutrophils suggesting they are de-methylated. Collectively, these data demonstrate that neutrophil gene expression profiles can distinguish different preeclampsia phenotypes, and in the case of mild preeclampsia, alterations in gene expression occur well before clinical symptoms emerge. These findings serve as a foundation for further evaluation of neutrophil transcriptomes as biomarkers of preeclampsia phenotypes. Changes in DNA methylation in circulating neutrophils do not appear to mediate differential patterns of gene expression in either mild or severe preeclampsia.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Neutrófilos/metabolismo , Preeclampsia/inmunología , Adulto , Estudios de Casos y Controles , Metilación de ADN , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Activación Neutrófila , Preeclampsia/metabolismo , Embarazo , Tercer Trimestre del Embarazo/metabolismo , Adulto JovenRESUMEN
The role of PAR-1 expression and activation was described in epithelial cells from the central and distal airways of COPD patients using an ex vivo/in vitro model. PAR-1 immunoreactivity was studied in epithelial cells from surgical specimens of the central and distal airways of COPD patients and healthy control (HC). Furthermore, PAR-1 expression and activation were measured in both the human bronchial epithelial cell line (16HBE) and normal human bronchial epithelial cells (NHBEs) exposed to cigarette smoke extract (CSE) (10%) or thrombin. Finally, cell proliferation, apoptosis, and IL-8 release were detected in stimulated NHBEs. We identified higher levels of PAR-1 expression/activation in epithelial cells from the central airways of COPD patients than in HC. Active PAR-1 increased in epithelial cells from central and distal airways of COPD, with higher levels in COPD smokers (correlated with pack-years) than in COPD ex-smokers. 16HBE and NHBEs exposed to CSE or thrombin showed increased levels of active PAR-1 (localized in the cytoplasm) than baseline conditions, while NHBEs treated with thrombin or CSE showed increased levels of IL-8 proteins, with an additional effect when used in combination. Smoking habits generate the upregulation of PAR-1 expression/activation in airway epithelial cells, and promoting IL-8 release might affect the recruitment of infiltrating cells in the airways of COPD patients.
Asunto(s)
Expresión Génica , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Mucosa Respiratoria/metabolismo , Apoptosis/genética , Biomarcadores , Estudios de Casos y Controles , Línea Celular , Proliferación Celular , Susceptibilidad a Enfermedades , Células Epiteliales/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Interleucina-8/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/patología , Fumar/efectos adversosRESUMEN
The road to low-dose aspirin therapy for the prevention of preeclampsia began in the 1980s with the discovery that there was increased thromboxane and decreased prostacyclin production in placentas of preeclamptic women. At the time, low-dose aspirin therapy was being used to prevent recurrent myocardial infarction and other thrombotic events based on its ability to selectively inhibit thromboxane synthesis without affecting prostacyclin synthesis. With the discovery that thromboxane was increased in preeclamptic women, it was reasonable to evaluate whether low-dose aspirin would be effective for preeclampsia prevention. The first clinical trials were very promising, but then two large multi-center trials dampened enthusiasm until meta-analysis studies showed aspirin was effective, but with caveats. Low-dose aspirin was most effective when started <16 weeks of gestation and at doses >100 mg/day. It was effective in reducing preterm preeclampsia, but not term preeclampsia, and patient compliance and patient weight were important variables. Despite the effectiveness of low-dose aspirin therapy in correcting the placental imbalance between thromboxane and prostacyclin and reducing oxidative stress, some aspirin-treated women still develop preeclampsia. Alterations in placental sphingolipids and hydroxyeicosatetraenoic acids not affected by aspirin, but with biologic actions that could cause preeclampsia, may explain treatment failures. Consideration should be given to aspirin's effect on neutrophils and pregnancy-specific expression of protease-activated receptor 1, as well as additional mechanisms of action to prevent preeclampsia.
Asunto(s)
Aspirina/administración & dosificación , Placenta/efectos de los fármacos , Placenta/metabolismo , Preeclampsia/metabolismo , Preeclampsia/prevención & control , Animales , Biomarcadores , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Expresión Génica , Humanos , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Leucocitos/metabolismo , Leucocitos/patología , Placenta/patología , Preeclampsia/etiología , Embarazo , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismoRESUMEN
All physiological events in living organisms originated as specific chemical/biochemical signals on the cell surface and transmitted into the cytoplasm. This signal is translated within milliseconds-hours to a specific and unique order required to maintain optimum performance and homeostasis of living organisms. Examples of daily biological functions include neuronal communication and neurotransmission in the process of learning and memory, secretion (hormones, sweat, and saliva), muscle contraction, cellular growth, differentiation and migration during wound healing, and immunity to fight infections. Among the different transducers for such life-dependent signals is the large family of G protein-coupled receptors (GPCRs). GPCRs constitute roughly 800 genes, corresponding to 2% of the human genome. While GPCRs control a plethora of pathophysiological disorders, only approximately one-third of GPCR families have been deorphanized and characterized. Recent drug data show that around 40% of the recommended drugs available in the market target mainly GPCRs. In this review, we presented how such system signals, either through G protein or via other players, independent of G protein, function within the biological system. We also discussed drugs in the market or clinical trials targeting mainly GPCRs in various diseases, including cancer.