RESUMEN
The Atacama Large Millimeter Array has allowed a detailed observation of molecules in protoplanetary disks, which can evolve toward solar systems like our own. While CO, [Formula: see text], HCO, and [Formula: see text] are often abundant species in the cold zones of the disk, [Formula: see text] or [Formula: see text] are only found in a few regions, and more-complex organic molecules are not observed. We simulate, experimentally, ice processing in disks under realistic conditions, that is, layered ices irradiated by soft X-rays. X-ray emission from young solar-type stars is thousands of times brighter than that of today's sun. The ice mantle is composed of a [Formula: see text]:[Formula: see text]:[Formula: see text] mixture, covered by a layer made of [Formula: see text] and CO. The photoproducts found desorbing from both ice layers to the gas phase during the irradiation converge with those detected in higher abundances in the gas phase of protoplanetary disks, providing important insights on the nonthermal processes that drive the chemistry in these objects.
RESUMEN
We present high-contrast H-band polarized intensity images of the transitional disk around the young solar-like star LkCa 15. By utilizing Subaru/HiCIAO for polarimetric differential imaging, the angular resolution and the inner working angle reach 0.07 and r = 0â³.1, respectively. We obtained a clearly resolved gap (width â² 27 au) at ~48 au from the central star. This gap is consistent with images reported in previous studies. We also confirmed the existence of a bright inner disk with a misaligned position angle of 13° ±4° with respect to that of the outer disk, i.e., the inner disk is possibly warped. The large gap and the warped inner disk both point to the existence of a multiple planetary system with a mass of â² 1 M Jup.
RESUMEN
A deep understanding of the origin of life requires the physical, chemical, and biological study of prebiotic systems and the comprehension of the mechanisms underlying their evolutionary steps. In this context, great attention is paid to the class of interstellar molecules known as "Complex Organic Molecules" (COMs), considered as possible precursors of prebiotic species. Although COMs have already been detected in different astrophysical environments (such as interstellar clouds, protostars, and protoplanetary disks) and in comets, the physical-chemical mechanisms underlying their formation are not yet fully understood. In this framework, a unique contribution comes from laboratory experiments specifically designed to mimic the conditions found in space. We present a review of experimental studies on the formation and evolution of COMs in the solid state, i.e., within ices of astrophysical interest, devoting special attention to the in situ detection and analysis techniques commonly used in laboratory astrochemistry. We discuss their main strengths and weaknesses and provide a perspective view on novel techniques, which may help in overcoming the current experimental challenges.
RESUMEN
We have performed a survey for new members of the Ophiuchus cloud complex using high-precision astrometry from the second data release of Gaia, proper motions measured with multi-epoch images from the Spitzer Space Telescope, and color-magnitude diagrams constructed with photometry from various sources. Through spectroscopy of candidates selected with those data, we have identified 155 new young stars. Based on available measurements of kinematics, we classify 102, 47, and six of those stars as members of Ophiuchus, Upper Sco, and other populations in Sco-Cen, respectively. We have also assessed the membership of all other stars in the vicinity of Ophiuchus that have spectroscopic evidence of youth from previous studies, arriving at a catalog of 373 adopted members of the cloud complex. For those adopted members, we have compiled mid-IR photometry from Spitzer and the Wide-field Infrared Survey Explorer and have used mid-IR colors to identify and classify circumstellar disks. We find that 210 of the members show evidence of disks, including 48 disks that are in advanced stages of evolution. Finally, we have estimated the relative median ages of the populations near the Ophiuchus clouds and the surrounding Upper Sco association using absolute K-band magnitudes (M K ) based on Gaia parallaxes. If we adopt an age 10 Myr for Upper Sco, then the relative values of M K imply median ages of ~ 2 Myr for L1689 and embedded stars in L1688, 3-4 Myr for low-extinction stars near L1688, and ~ 6 Myr for the group containing ρ Oph.
RESUMEN
We have conducted a study of star formation in the outer Galaxy from 65°< l < 265°in the region observed by the GLIMPSE360 program. This Spitzer warm mission program mapped the plane of the outer Milky Way with IRAC at 3.6 and 4.5 µm. We combine the IRAC, Wide-field Infrared Survey Explorer (WISE), and Two Micron All Sky Survey catalogs and our previous results from another outer Galaxy survey and identify a total of 47,338 young stellar objects (YSOs) across the field spanning >180° in Galactic longitude. Using the DBSCAN method on the combined catalog, we identify 618 clusters or aggregations of YSOs having five or more members. We identify 10,476 class I, 29,604 class II, and 7325 anemic class II/class III YSOs. The ratio of YSOs identified as members of clusters was 25,528/47,338, or 54%. We found that 100 of the clusters identified have previously measured distances in the WISE H II survey. We used these distances in our spectral energy distribution (SED) fitting of the YSOs in these clusters, of which 96 had YSOs with <3σ fits. We used the derived masses from the SED model fits to estimate the initial mass function (IMF) in the inner and outer Galaxy clusters; dividing the clusters by galactocentric distances, the slopes were Γ = 1.87 ± 0.31 above 3 M âµ for R Gal < 11.5 kpc and Γ = 1.15 ± 0.24 above 3 M âµ for R Gal > 11.5 kpc. The slope of the combined IMF was found to be Γ = 1.92 ± 0.42 above 3 M âµ. These values are consistent with each other within the uncertainties and with literature values in the inner Galaxy high-mass star formation regions. The slopes are likely also consistent with a universal Salpeter IMF.
RESUMEN
Circumstellar dust analogues can be studied experimentally to determine their col- lisional behavior and their optical properties. These results affect simulations of circumstellar disks in various, substantial ways: Collision results determine how dust aggregates grow and how their aerodynamic properties change with time. This determines how solids move throughout the disk, how they accumulate, and how planetesimals might be formed. The optical properties determine the observational signature of these effects and allow us to constrain the spatial distribution of dust in disks, the sizes of the aggregates, as well as the temperature and optical depth of the dust emission. In this contribution, it is discussed how theoretical models and their predictions depend on laboratory results and what we learned about disks from high spatial resolution radio interferometry.
RESUMEN
AB Aur is a Herbig Ae star hosting a well-known transitional disk. Because of its proximity and low inclination angle, it is an excellent object to study planet formation. Our goal is to investigate the chemistry and dynamics of the molecular gas component in the AB Aur disk, and its relation with the prominent horseshoe shape observed in continuum mm emission. We used the NOEMA interferometer to map with high angular resolution the J = 3-2 lines of HCO+ and HCN. By combining both, we can gain insight into the AB Aur disk structure. Chemical segregation is observed in the AB Aur disk: HCO+ shows intense emission toward the star position, at least one bright molecular bridge within the dust cavity, and ring-like emission at larger radii, while HCN is only detected in an annular ring that is coincident with the dust ring and presents an intense peak close to the dust trap. We use HCO+ to investigate the gas dynamics inside the cavity. The observed bright HCO+ bridge connects the compact central source with the outer dusty ring. This bridge can be interpreted as an accretion flow from the outer ring to the inner disk/jet system proving gas accretion through the cavity.
RESUMEN
Whole rock Δ17O and nucleosynthetic isotopic variations for chromium, titanium, nickel, and molybdenum in meteorites define two isotopically distinct populations: carbonaceous chondrites (CCs) and some achondrites, pallasites, and irons in one and all other chondrites and differentiated meteorites in the other. Since differentiated bodies accreted 1-3 Myr before the chondrites, the isotopic dichotomy cannot be attributed to temporal variations in the disk. Instead, the two populations were most likely separated in space, plausibly by proto-Jupiter. Formation of CCs outside Jupiter could account for their characteristic chemical and isotopic composition. The abundance of refractory inclusions in CCs can be explained if they were ejected by disk winds from near the Sun to the disk periphery where they spiraled inward due to gas drag. Once proto-Jupiter reached 10-20 M â, its external pressure bump could have prevented millimeter- and centimeter-sized particles from reaching the inner disk. This scenario would account for the enrichment in CCs of refractory inclusions, refractory elements, and water. Chondrules in CCs show wide ranges in Δ17O as they formed in the presence of abundant 16O-rich refractory grains and 16O-poor ice particles. Chondrules in other chondrites (ordinary, E, R, and K groups) show relatively uniform, near-zero Δ17O values as refractory inclusions and ice were much less abundant in the inner solar system. The two populations were plausibly mixed together by the Grand Tack when Jupiter and Saturn migrated inward emptying and then repopulating the asteroid belt with roughly equal masses of planetesimals from inside and outside Jupiter's orbit (S- and C-type asteroids).
RESUMEN
AIMS: This paper investigates how the far-IR water ice features can be used to infer properties of disks around T Tauri stars and the water ice thermal history. We explore the power of future observations with SOFIA/HIRMES and SPICA's proposed far-IR instrument SAFARI. METHODS: A series of detailed radiative transfer disk models around a representative T Tauri star are used to investigate how the far-IR water ice features at 45 and 63 µm change with key disk properties: disk size, grain sizes, disk dust mass, dust settling, and ice thickness. In addition, a series of models is devised to calculate the water ice emission features from warmup, direct deposit and cooldown scenarios of the water ice in disks. RESULTS: Photodesorption from icy grains in disk surfaces weakens the mid-IR water ice features by factors 4-5. The far-IR water ice emission features originate from small grains at the surface snow line in disks at distance of 10-100 au. Unless this reservoir is missing in disks (e.g. transitional disks with large cavities), the feature strength is not changing. Grains larger than 10 µm do not contribute to the features. Grain settling (using turbulent description) is affecting the strength of the ice features by at most 15%. The strength of the ice feature scales with the disk dust mass and water ice fraction on the grains, but saturates for dust masses larger than 10-4 Mâ and for ice mantles that increase the dust mass by more than 50%. The various thermal histories of water ice leave an imprint on the shape of the features (crystalline/amorphous) as well as on the peak strength and position of the 45 µm feature. SOFIA/HIRMES can only detect crystalline ice features much stronger than simulated in our standard T Tauri disk model in deep exposures (1 hr). SPICA/SAFARI can detect the typical ice features in our standard T Tauri disk model in short exposures (10 min). CONCLUSIONS: The sensitivity of SPICA/SAFARI will allow the detailed study of the 45 and 63 µm water ice feature in unbiased surveys of T Tauri stars in nearby star forming regions and an estimate of the mass of their ice reservoir. The water ice emission features carry an imprint of the thermal history of the ice and thus can distinguish between various formation and transport scenarios. Amorphous ice at 45 µm that has a much broader and flatter peak could be detected in deep surveys if the underlying continuum can be well characterized and the baseline stability of SAFARI is better than a few percent.
RESUMEN
CONTEXT: Infrared and (sub-)mm observations of disks around T Tauri and Herbig Ae/Be stars point to a chemical differentiation between both types of disks, with a lower detection rate of molecules in disks around hotter stars. AIMS: To investigate the underlying causes of the chemical differentiation indicated by observations we perform a comparative study of the chemistry of T Tauri and Herbig Ae/Be disks. This is one of the first studies to compare chemistry in the outer regions of these two types of disks. METHODS: We developed a model to compute the chemical composition of a generic protoplanetary disk, with particular attention to the photochemistry, and applied it to a T Tauri and a Herbig Ae/Be disk. We compiled cross sections and computed photodissociation and photoionization rates at each location in the disk by solving the FUV radiative transfer in a 1+1D approach using the Meudon PDR code and adopting observed stellar spectra. RESULTS: The warmer disk temperatures and higher ultraviolet flux of Herbig stars compared to T Tauri stars induce some differences in the disk chemistry. In the hot inner regions, H2O, and simple organic molecules like C2H2, HCN, and CH4 are predicted to be very abundant in T Tauri disks and even more in Herbig Ae/Be disks, in contrast with infrared observations that find a much lower detection rate of water and simple organics toward disks around hotter stars. In the outer regions, the model indicates that the molecules typically observed in disks, like HCN, CN, C2H, H2CO, CS, SO, and HCO+, do not have drastic abundance differences between T Tauri and Herbig Ae disks. Some species produced under the action of photochemistry, like C2H and CN, are predicted to have slightly lower abundances around Herbig Ae stars due to a narrowing of the photochemically active layer. Observations indeed suggest that these radicals are somewhat less abundant in Herbig Ae disks, although in any case the inferred abundance differences are small, of a factor of a few at most. A clear chemical differentiation between both types of disks concerns ices. Owing to the warmer temperatures of Herbig Ae disks, one expects snowlines lying farther away from the star and a lower mass of ices compared to T Tauri disks. CONCLUSIONS: The global chemical behavior of T Tauri and Herbig Ae/Be disks is quite similar. The main differences are driven by the warmer temperatures of the latter, which result in a larger reservoir or water and simple organics in the inner regions and a lower mass of ices in the outer disk.
RESUMEN
CONTEXT: Protoplanetary disks undergo substantial mass-loss by photoevaporation, a mechanism which is crucial to their dynamical evolution. However, the processes regulating the gas energetics have not been well constrained by observations so far. AIMS: We aim at studying the processes involved in disk photoevaporation when it is driven by far-UV photons (i.e. 6 < E < 13.6 eV). METHODS: We present a unique Herschel survey and new ALMA observations of four externally-illuminated photoevaporating disks (a.k.a. proplyds). For the analysis of these data, we developed a 1D model of the photodissociation region (PDR) of a proplyd, based on the Meudon PDR code and we computed the far infrared line emission. RESULTS: With this model, we successfully reproduce most of the observations and derive key physical parameters, i.e. densities at the disk surface of about 106 cm-3 and local gas temperatures of about 1000 K. Our modelling suggests that all studied disks are found in a transitional regime resulting from the interplay between several heating and cooling processes that we identify. These differ from those dominating in classical PDRs i.e. grain photo-electric effect and cooling by [OI] and [CII] FIR lines. This specific energetic regime is associated to an equilibrium dynamical point of the photoevaporation flow: the mass-loss rate is self-regulated to keep the envelope column density at a value that maintains the temperature at the disk surface around 1000 K. From the physical parameters derived from our best-fit models, we estimate mass-loss rates - of the order of 10-7 Mâ/yr - that are in agreement with earlier spectroscopic observation of ionised gas tracers. This holds only if we assume photoevaporation in the supercritical regime where the evaporation flow is launched from the disk surface at sound speed. CONCLUSIONS: We have identified the energetic regime regulating FUV-photoevaporation in proplyds. This regime could be implemented into models of the dynamical evolution of protoplanetary disks.
RESUMEN
One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0".58×0".78 ≈ 80×110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.
RESUMEN
CONTEXT: Transitional disks are structures of dust and gas around young stars with large inner cavities in which planet formation may occur. Lopsided dust distributions are observed in the dust continuum emission at millimeter wavelengths. These asymmetrical structures can be explained as being the result of an enhanced gas density vortex where the dust is trapped, potentially promoting the rapid growth to the planetesimal scale. AIMS: AB Aur hosts a transitional disk with a clear horseshoe morphology which strongly suggests the presence of a dust trap. Our goal is to investigate its formation and the possible effects on the gas chemistry. METHODS: We used the NOEMA (NOrthern Extended Millimeter Array) interferometer to image the 1mm continuum dust emission and the 13CO J=2 â1, C18OJ=2 â1, SO J=56 â45, and H2CO J=303 â202 rotational lines. RESULTS: Line integrated intensity ratio images are built to investigate the chemical changes within the disk. The I(H2CO J=303 â202)/I(C18O J=2â1) ratio is fairly constant along the disk with values of ~0.15±0.05. On the contrary, the I(SO J=56 â45)/I(C18O J=2 â1) and I(SO J=56 â45)/I(H2CO J=303 â202) ratios present a clear northeast-southwest gradient (a factor of 3-6) with the minimum towards the dust trap. This gradient cannot be explained by a local change in the excitation conditions but by a decrease in the SO abundance. Gas densities up to ~109 cm-3 are expected in the disk midplane and two-three times larger in the high pressure vortex. We have used a single point (n,T) chemical model to investigate the lifetime of gaseous CO, H2CO, and SO in the dust trap. Our model shows that for densities >107 cm-3, the SO molecules are depleted (directly frozen, or converted into SO2 and then frozen out) in less than 0.1 Myr. The lower SO abundance towards the dust trap could indicate that a larger fraction of the gas is in a high density environment. CONCLUSIONS: Gas dynamics, grain growth and gas chemistry are coupled in the planet formation process. We detect a chemical signature of the presence of a dust trap in a transitional disk. Because of the strong dependence of SO abundance on the gas density, the sulfur chemistry can be used as a chemical diagnostic to detect the birthsites of future planets. However, the large uncertainties inherent to chemical models and the limited knowledge of the disk's physical structure and initial conditions are important drawbacks.
RESUMEN
Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts.
RESUMEN
Many aspects of planet formation are controlled by the amount of gas remaining in the natal protoplanetary disks (PPDs). Infrared observations show that PPDs undergo a transition stage at several megayears, during which gas densities are reduced. Our Solar System would have experienced such a stage. However, there is currently no data that provides insight into this crucial time in our PPD's evolution. We show that the Isheyevo meteorite contains the first definitive evidence for a transition disk stage in our Solar System. Isheyevo belongs to a class of metal-rich meteorites whose components have been dated at almost 5 Myr after formation of Ca, Al-rich inclusions, and exhibits unique sedimentary layers that imply formation through gentle sedimentation. We show that such layering can occur via the gentle sweep-up of material found in the impact plume resulting from the collision of two planetesimals. Such sweep-up requires gas densities consistent with observed transition disks (10-12-10-11 g cm-3). As such, Isheyevo presents the first evidence of our own transition disk and provides new constraints on the evolution of our solar nebula.