Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.130
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(40): e2402557, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38845022

RESUMEN

Perovskite materials, particularly FAPbI3, have emerged as promising candidates for solar energy conversion applications. However, these materials are plagued by well-known defects and suboptimal film quality. Enhancing crystallinity and minimizing defect density are therefore essential steps in the development of high-performance perovskite solar cells. In this study, 1H-Pyrazole-1-carboximidamide hydrochloride (PCH) is introduced into FAPbI3 perovskite films. The molecular structure of PCH features a pyrazole ring bonded to formamidine (FA). The FA moiety of PCH facilitated the incorporation of this additive into the film lattice, while the negatively charged pyrazole ring effectively passivated positively charged iodine vacancies. The presence of PCH led to the fabrication of an FAPbI3 device with improved crystallinity, a smoother surface, and reduced defect density, resulting in enhanced Voc and fill factor. A record power conversion efficiency of 24.62% is achieved, along with exceptional stability under prolonged air exposure and thermal stress. The findings highlight the efficacy of PCH as a novel additive for the development of high-performance perovskite solar cells.

2.
Chembiochem ; : e202400414, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39368114

RESUMEN

This study reports the synthesis of a new series of pyrazole-isoxazolines, at very good yields, from the cyclocondensation reaction of pyrazole-enaminones with hydroxylamine hydrochloride. Dehydration of the pyrazole-isoxazolines furnished another new series of the respective pyrazole-isoxazoles, at excellent yields. Both series of the obtained compounds were screened for antimycobacterial activity, and compounds 4f and 5c showed significant inhibition of bacterial growth with a time- and concentration-dependent bactericidal effect. Cytotoxicity tests in VERO cell line did not indicate toxicity of compounds 4f and 5c regarding cellular prediction, NO production or dsDNA release. However, both compounds were associated with an increase in total ROS levels, providing induction of oxidative stress, but without compromising cellular targets. These results highlight compounds 4f and 5c as promising candidates for antimycobacterial treatment with a favorable safety profile.

3.
Chembiochem ; 25(3): e202300653, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38095754

RESUMEN

In the realm of cancer therapy and treatment of bacterial infection, photothermal therapy (PTT) stands out as a potential strategy. The challenge, however, is to create photothermal agents that can perform both imaging and PTT, a so-called theranostic agent. Photothermal agents that absorb and emit in the near-infrared region (750-900 nm) have recently received a lot of attention due to the extensive penetration of NIR light in biological tissues. In this study, we combined pyrazole with aza-BODIPY (PY-AZB) to develop a novel photothermal agent. PY-AZB demonstrated great photostability with a photothermal conversion efficiency (PCE) of up to 33 %. Additionally, PY-AZB can permeate cancer cells at a fast accumulation rate in less than 6 hours, according to the confocal images. Furthermore, in vitro photothermal therapy results showed that PY-AZB effectively eliminated cancer cells by up to 70 %. Interestingly, PY-AZB exhibited antibacterial activities against both gram-negative bacteria, Escherichia coli 780, and gram-positive bacteria, Staphylococcus aureus 1466. The results exhibit a satisfactory bactericidal effect against bacteria, with a killing efficiency of up to 100 % upon laser irradiation. As a result, PY-AZB may provide a viable option for photothermal treatment.


Asunto(s)
Neoplasias , Fotoquimioterapia , Fototerapia , Compuestos de Boro/farmacología , Compuestos de Boro/uso terapéutico , Escherichia coli , Bacterias , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Neoplasias/tratamiento farmacológico
4.
Chemistry ; 30(15): e202303575, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38095099

RESUMEN

Hexakis(4-trimethylsilylpyrazol-1-yl)ethane was synthesized by the oxidative dimerization of tris(4-trimethylsilylpyrazol-1-yl)methane. Single-crystal X-ray structural analysis of hexakis(4-trimethylsilylpyrazol-1-yl)ethane showed that the ethane C-C bond (1.623(4) Å) is shorter than that in hexaphenylethane (1.67(3) Å). In solution, hexakis(4-trimethylsilylpyrazol-1-yl)ethane existed as a single species, contrastive that conventional hexaphenylethanes can keep the central C-C bond only by the aid of additional bridges between the two triarylmethyl units. Theoretical calculations indicated that the tris(pyrazol-1-yl)methyl radical, which is anticipated to be under equilibrium with hexakis(pyrazol-1-yl)ethane, is less stable than trityl radicals due to lack of delocalization of the radicals. Furthermore, introduction of pyrazole groups allowed additional bridging between the two triarylmethyl moieties through metal coordination to the adjacent N atoms: hexakis(4-trimethylsilylpyrazol-1-yl)ethane exhibited unique coordination to three Ag atoms affording a hexaarylethane analog bearing three N-Ag-N bridges.

5.
Chemistry ; 30(36): e202401105, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38655822

RESUMEN

This report detailed the synthesis of multi-substituted pyrazoles through the acceptorless dehydrogenative coupling (ADC) reaction catalyzed by a well-defined manganese(I)-pincer complex. Symmetrically substituted pyrazoles were synthesized by reacting 1,3-diols with hydrazines. Unsymmetrically substituted pyrazoles were selectively made via the ADC of primary alcohols with methyl hydrazones. Water and hydrogen are liberated as the green byproducts. The endurance of these methodologies has been presented by producing 30 substrates with varied functionalities. Model reactions were scaled up to demonstrate practicability. The reaction rate and order were measured to transparent the involvement of the reagents during catalysis. Control experiments elucidated the plausible reaction mechanisms.

6.
Chem Rec ; 24(7): e202300347, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38984727

RESUMEN

The medicinal chemistry of ferrocene has gained its momentum after the discovery of biological activities of ferrocifen and ferroquine. These ferrocenyl drugs have been designed by replacing the aromatic moiety of the organic drugs, tamoxifen and chloroquine respectively, with a ferrocenyl unit. The promising biological activities of these ferrocenyl drugs have paved a path to explore the medicinal applications of several ferrocenyl conjugates. In these conjugates, the ferrocenyl moiety has played a vital role in enhancing or imparting the anticancer activity to the molecule. The ferrocenyl conjugates induce the cytotoxicity by generating reactive oxygen species and thereby damaging the DNA. In medicinal chemistry, the five membered nitrogen heterocycles (azoles) play a significant role due to their rigid ring structure and hydrogen bonding ability with the biomolecules. Several potent drug candidates with azole groups have been in use as chemotherapeutics. Considering the importance of ferrocenyl moiety and azole groups, several ferrocenyl azole conjugates have been synthesized and screened for their biological activities. Hence, in the view of a wide scope in the development of potent drugs based on ferrocenyl azole conjugates, herein we present the details of synthesis and the anticancer activities of ferrocenyl compounds bearing azole groups such as imidazole, triazoles, thiazole and isoxazoles.


Asunto(s)
Antineoplásicos , Azoles , Compuestos Ferrosos , Compuestos Heterocíclicos , Metalocenos , Azoles/química , Azoles/farmacología , Azoles/síntesis química , Compuestos Ferrosos/química , Compuestos Ferrosos/farmacología , Compuestos Ferrosos/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Humanos , Metalocenos/química , Metalocenos/farmacología , Metalocenos/síntesis química , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/síntesis química
7.
Bioorg Med Chem Lett ; 113: 129960, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39265894

RESUMEN

We report the design, synthesis, and validation of carboxamide-based pyrazole and isoxazole conjugates with a multifaceted activity against Breast Cancer Cell Line MDA-MB-231. The study established that amongst the series, N-(3,5-bis(trifluoromethyl)benzyl)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazole-5-carboxamide (5g) exhibits the highest potency in inhibiting Breast Cancer Cell Line MDA-MB-231 with an IC50 value of 15.08 ± 0.04 µM. The MDA-MB-231 cells, upon treatment with compound 5g, exhibited characteristic apoptotic specific activities such as nuclear fragmentation, phosphatidylserine translocation to the outer plasma membrane, release of lactate dehydrogenase (LDH), and upregulation of caspase 3 and caspase 9 activities. Also, the modulation of pro and antiapoptotic proteins in 5g treated MDA-MB-231 cells was revealed by membrane array analysis. More importantly, the combination of paclitaxel and compound 5g has exhibited improved activity by several folds via their synergistic effects.

8.
Bioorg Med Chem Lett ; 108: 129813, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38788964

RESUMEN

Succinate dehydrogenase inhibitors are essential fungicides used in agriculture. To explore new pyrazole-carboxamides with high fungicidal activity, a series of N-substitutedphenyl-3-di/trifluoromethyl-1-methyl-1H-pyrazole-4-carboxamides bearing a branched alkyl ether moiety were designed and synthesized. The in vitro bioassay indicated that some target compounds displayed appreciable fungicidal activity. For example, compounds 5d and 5e showed high efficacy against S. sclerotiorum with EC50 values of 3.26 and 1.52 µg/mL respectively, and also exhibited excellent efficacy against R. solani with EC50 values of 0.27 and 0.06 µg/mL respectively, which were comparable or superior to penflufen. The further in vivo bioassay on cucumber leaves demonstrated that 5e provided strong protective activity of 94.3 % against S. sclerotiorum at 100 µg/mL, comparable to penflufen (99.1 %). Cytotoxicity assessment against human renal cell lines (239A cell) revealed that 5e had low cytotoxicity within the median effective concentrations. Docking study of 5e with succinate dehydrogenase illustrated that R-5e formed one hydrogen bond and two π-π stacking interactions with amino acid residues of target enzyme, while S-5e formed only one π-π stacking interaction with amino acid residue. This study provides a valuable reference for the design of new succinate dehydrogenase inhibitor.


Asunto(s)
Fungicidas Industriales , Simulación del Acoplamiento Molecular , Pirazoles , Succinato Deshidrogenasa , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Humanos , Relación Estructura-Actividad , Fungicidas Industriales/farmacología , Fungicidas Industriales/síntesis química , Fungicidas Industriales/química , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Ascomicetos/efectos de los fármacos , Amidas/química , Amidas/farmacología , Amidas/síntesis química , Relación Dosis-Respuesta a Droga , Éteres/química , Éteres/farmacología , Éteres/síntesis química , Rhizoctonia
9.
Bioorg Med Chem ; 102: 117679, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38461555

RESUMEN

Trichomoniasis, a prevalent sexually transmitted infection (STI) caused by the protozoan Trichomonas vaginalis, has gained increased significance globally. Its relevance has grown in recent years due to its association with a heightened risk of acquiring and transmitting the human immunodeficiency virus (HIV) and other STIs. In addition, many publications have revealed a potential link between trichomoniasis and certain cancers. Metronidazole (MTZ), a nitroimidazole compound developed over 50 years ago, remains the first-choice drug for treatment. However, reports of genotoxicity and side effects underscore the necessity for new compounds to address this pressing global health concern. In this study, we synthesized ten pyrazole-nitroimidazoles 1(a-j) and 4-nitro-1-(hydroxyethyl)-1H-imidazole 2, an analog of metronidazole (MTZ), and assessed their trichomonacidal and cytotoxic effects. All compounds 1(a-j) and 2 exhibited IC50 values ≤ 20 µM and ≤ 41 µM, after 24 h and 48 h, respectively. Compounds 1d (IC50 5.3 µM), 1e (IC50 4.8 µM), and 1i (IC50 5.2 µM) exhibited potencies equivalent to MTZ (IC50 4.9 µM), the reference drug, after 24 h. Notably, compound 1i showed high anti-trichomonas activity after 24 h (IC50 5.2 µM) and 48 h (IC50 2.1 µM). Additionally, all compounds demonstrated either non-cytotoxic to HeLa cells (CC50 > 100 µM) or low cytotoxicity (CC50 between 69 and 100 µM). These findings suggest that pyrazole-nitroimidazole derivatives represent a promising heterocyclic system, serving as a potential lead for further optimization in trichomoniasis chemotherapy.


Asunto(s)
Antiprotozoarios , Nitroimidazoles , Tricomoniasis , Trichomonas vaginalis , Humanos , Nitroimidazoles/farmacología , Metronidazol/farmacología , Células HeLa , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Tricomoniasis/tratamiento farmacológico , Pirazoles/farmacología , Pirazoles/uso terapéutico
10.
Bioorg Med Chem ; 108: 117787, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838580

RESUMEN

19 derivatives of 1-benzyl-3-arylpyrazole-5-carboxamides (H1-H19) and 5 derivatives of 1-benzyl-5-arylpyrazole-3-carboxamides (J1-J5) have been designed and synthesized as potential negative allosteric modulators (NAMs) for the ß2-adrenergic receptor (ß2AR). The new pyrazole derivatives were screened on the classic G-protein dependent signaling pathway at ß2AR. The majority of 1-benzyl-3-aryl-pyrazole-5-carboxamide derivatives show more potent allosteric antagonistic activity against ß2AR than Cmpd-15, the first reported ß2AR NAM. However, the 1-benzyl-5-arylpyrazole-3-carboxamide derivatives exhibit very poor or even no allosteric antagonistic activity for ß2AR. Furthermore, the active pyrazole derivatives have relative better drug-like profiles than Cmpd-15. Taken together, we discovered a series of derivatives of 1-benzyl-3-arylpyrazole-5-carboxamides as a novel scaffold of ß2AR NAM.


Asunto(s)
Receptores Adrenérgicos beta 2 , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/química , Regulación Alostérica/efectos de los fármacos , Humanos , Relación Estructura-Actividad , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Estructura Molecular , Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Antagonistas de Receptores Adrenérgicos beta 2/química , Antagonistas de Receptores Adrenérgicos beta 2/síntesis química
11.
J Fluoresc ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639858

RESUMEN

Two fluorescent probes, Y1-2 were synthesized from 2-acetonaphthone, 4-acetylbiphenyl, and phenyl hydrazine by Vilsmeier-Haack reaction and Knoevenagel condensation. Their recognition efficacies for N2H4 were tested by UV-visible absorption spectroscopy and fluorescence emission spectroscopy. The recognition mechanism were studies by density-functional theory calculations, and the effect of pH on N2H4 recognition was also studied. The results showed that the probe Y1-2 has high selectivity and a low detection limit for N2H4, and the recognition of N2H4 can be accomplished at physiological pH. The probes have had obvious aggregation-induced luminescence effect, large Stokes shift, high sensitivity, and can be successfully applied to live cell imaging.

12.
J Biochem Mol Toxicol ; 38(4): e23704, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588035

RESUMEN

A series of novel pyrazole-dicarboxamides were synthesized from pyrazole-3,4-dicarboxylic acid chloride and various primary and secondary sulfonamides. The structures of the new compounds were confirmed by FT-IR, 1H-NMR, 13C-NMR, and HRMS. Then the inhibition effects of newly synthesized molecules on human erythrocyte hCA I and hCA II isoenzymes were investigated. Ki values of the compounds were in the range of 0.024-0.496 µM for hCA I and 0.006-5.441 µM for hCA II. Compounds 7a and 7i showed nanomolar level of inhibition of hCA II, and these compounds exhibited high selectivity for this isoenzyme. Molecular docking studies were performed between the most active compounds 7a, 7b, 7i, and the reference inhibitor AAZ and the hCAI and hCAII to investigate the binding mechanisms between the compounds and the isozymes. These compounds showed better interactions than the AAZ. ADMET and drug-likeness analyses for the compounds have shown that the compounds can be used pharmacologically in living organisms.


Asunto(s)
Anhidrasa Carbónica I , Inhibidores de Anhidrasa Carbónica , Humanos , Inhibidores de Anhidrasa Carbónica/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Anhidrasa Carbónica II , Espectroscopía Infrarroja por Transformada de Fourier , Pirazoles/química , Sulfonamidas/química , Isoenzimas , Sulfanilamida
13.
Bioorg Chem ; 153: 107825, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39317036

RESUMEN

In the present work, a new series of ethyl pyrazole-containing compounds with side sulphonamide moiety was designed and synthesized. The new derivatives were divided into four groups based on the linker between the sulphonamide and pyridine ring attached to position 4 of the pyrazole ring and the substitution on the phenyl ring at position 3 of the same ring. The linker could be ethyl or propyl linkers. The phenyl ring is substituted with a methoxy group or hydroxyl group at position 3. The aim compounds were tested for their JNK1, JNK2, JNK3, and BRAF(V600E) activities. Compounds 23b, 23c, and 23d showed the highest activity with nanomolar IC50s. The most potent compound over JNK1 was 23d with an IC502 nM. While compound 23c was the most potent over JNK2 with an IC5057 nM. Finally, compound 23b was the most potent over JNK2 and BRAF(V600E) with IC50s of125 nM and 98 nM, respectively. After obtaining kinase inhibitory activity, the compounds were submitted to NCI to test their activity over different cell lines. Compound 23b showed the highest activity over most tested cell lines. In the second part of the present study, the final target compounds were tested for their anti-inflammatory effect. The anti-inflammatory effect of the new final compounds was performed by measuring their ability to inhibit inducible nitric oxide release and prostaglandin E2 production inhibition. Compound 23c showed the highest activity regarding nitric oxide release with IC50 0.63 µM, while compound 21d had the highest activity regarding prostaglandin E2 production with IC50 0.52 µM. The effect of the most potent compounds was tested by western blot against iNOS, COX-1, and COX-2.

14.
Bioorg Chem ; 152: 107722, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39213796

RESUMEN

This study reports the Design Hypothesis of a novel series of 1,3-diphenyl pyrazole-thiosemicarbazone as novel tyrosinase inhibitors (TYRI). The designed compounds were prepared and their TYRI activity and mechanisms were studied. The results showed that the selected compounds exhibited potent tyrosinase inhibitory activities greater than that of kojic acid (KA). Lead candidates, denoted as 6g and 6n, with a para-hydroxyphenyl group attached to the 3-position of the pyrazole ring demonstrated IC50 values of 2.09 and 3.18 µM, respectively. The potency of these compounds was approximately 5-8 times higher than that of KA. The in vitro melanin content of 6g or 6n-treated melanoma cells resulted in significant efficacy in melanin reduction. The DPPH assay result revealed that the tyrosinase inhibition mechanism for these derivatives was independent of a redox effect and corresponded to the interaction with tyrosinase. According to the Lineweaver-Burk plot, the most potent compounds, 6g and 6n, exhibit a mixed type of inhibition, primarily noncompetitive inhibition. In silico molecular docking studies were employed to determine the binding mode and explore the Design Hypothesis in detail. The results suggested that these compounds could be considered promising leads for the further development of novel inhibitors to treat disorders related to tyrosinase.


Asunto(s)
Antioxidantes , Inhibidores Enzimáticos , Melaninas , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa , Pirazoles , Tiosemicarbazonas , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Relación Estructura-Actividad , Melaninas/metabolismo , Melaninas/antagonistas & inhibidores , Cinética , Estructura Molecular , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Relación Dosis-Respuesta a Droga , Humanos , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/farmacología , Picratos/antagonistas & inhibidores , Animales , Línea Celular Tumoral
15.
Bioorg Chem ; 150: 107601, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991489

RESUMEN

A set of novels 2-thiohydantoin derivatives were synthesized and enaminone function was discussed at position 5 using DMFDMA catalyst which result in formation of pyrazole, isoxazole, benzoxazepine by using reagents such as hydrazine, hydroxylamine and 2-aminothiophenol. These newly synthesized compounds were evaluated for their antioxidant and antiproliferative activity. In vitro studies on the effect of 2-thiohydantoin on scavenging 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) confirmed the free radical scavenging and antioxidant activity of 2-thiohydantoin. The synthesized compounds show significant antioxidant activity. The in vitro antitumor activity of 2-thiohydantoin on MCF7 (breast) and PC3 cells (prostate) was evaluated using MTT assay. Some of the synthesized compounds show significant to moderate antiproliferative properties compared to reference drug erlotinib. Among all, compound 4a exhibit potent antitumor properties against MCF7 and PC3 cancer cell lines with IC50 = 2.53 ± 0.09 /ml & with IC50 = 3.25 ± 0.12 µg/ml respectively and has potent antioxidant activity with IC50 = 10.04 ± 0.49 µg/ml.


Asunto(s)
Antineoplásicos , Antioxidantes , Aromatasa , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB , Simulación del Acoplamiento Molecular , Tiohidantoínas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Tiohidantoínas/farmacología , Tiohidantoínas/química , Tiohidantoínas/síntesis química , Aromatasa/metabolismo , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Catálisis , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/química , Línea Celular Tumoral , Termodinámica , Picratos/antagonistas & inhibidores , Hidrazinas , Tioamidas
16.
Bioorg Chem ; 145: 107244, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428284

RESUMEN

Complications of the worldwide use of non-steroidal anti-inflammatory drugs (NSAIDs) sparked scientists to design novel harmless alternatives as an urgent need. So, a unique hybridization tactic of quinoline/pyrazole/thioamide (4a-c) has been rationalized and synthesized as potential COX-2/15-LOX dual inhibitors, utilizing relevant reported studies on these pharmacophores. Moreover, we extended these preceding hybrids into more varied functionality, bearing crucial thiazole scaffolds(5a-l). All the synthesized hybrids were evaluatedin vitroas COX-2/15-LOX dual inhibitors. Initially, series4a-cexhibited significant potency towards 15-LOX inhibition (IC50 = 5.454-4.509 µM) compared to meclofenamate sodium (IC50 = 3.837 µM). Moreover, they revealed reasonable inhibitory activities against the COX-2 enzyme in comparison to celecoxib.Otherwise, conjugates 5a-ldisclosed marked inhibitory activity against 15-LOX and strong inhibitory to COX-2. In particular, hybrids5d(IC50 = 0.239 µM, SI = 8.95), 5h(IC50 = 0.234 µM, SI = 20.35) and 5l (IC50 = 0.201 µM, SI = 14.42) revealed more potency and selectivity outperforming celecoxib (IC50 = 0.512 µM, SI = 4.28). In addition, the most potentcompounds, 4a, 5d, 5h, and 5l have been elected for further in vivoevaluation and displayed potent inhibition of edema in the carrageenan-induced rat paw edema test that surpassed indomethacin. Further, compounds5d, 5h, and 5l decreased serum inflammatory markers including oxidative biomarkersiNO, and pro-inflammatory mediators cytokines like TNF-α, IL-6, and PGE. Ulcerogenic liability for tested compounds demonstrated obvious gastric mucosal safety. Furthermore, a histopathological study for compound 5l suggested a confirmatory comprehensive safety profile for stomach, kidney, and heart tissues. Docking and drug-likeness studies offered a good convention with the obtained biological investigation.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2 , Quinolinas , Ratas , Animales , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Ciclooxigenasa 2/metabolismo , Celecoxib/uso terapéutico , Ciclooxigenasa 1/metabolismo , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/uso terapéutico , Simulación del Acoplamiento Molecular , Antiinflamatorios no Esteroideos , Quinolinas/farmacología , Quinolinas/uso terapéutico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Relación Estructura-Actividad , Estructura Molecular
17.
Bioorg Chem ; 153: 107779, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39236583

RESUMEN

To facilitate the development of novel agricultural succinate dehydrogenase inhibitor (SDHI) fungicides, we synthesized three series of derivatives by introducing phenyl pyrazole fragments into the structure of pyrazol-4-yl amides. The results of the bioactivity assay showed that most of the target compounds possessed varying degrees of inhibitory activity against the tested fungi. At a concentration of 100 mg/L, the compound B8 exhibited effective protective activity against S. sclerotiorum in vivo. Molecular docking analysis and succinate dehydrogenase (SDH) inhibition assay indicated that B8 was not a potential SDHI. The preliminary antifungal mechanism of studies showed that B8 induced a large amount of reactive oxygen species (ROS) and severe lipid peroxidation damage in S. sclerotiorum mycelium, resulting in mycelial rupture and disruption of the integrity of the cell membrane and leakage of soluble proteins, soluble sugars and nucleic acids. Further transcriptome analysis showed that compound B8 blocked various metabolic pathways by downregulating the differentially expressed genes (DEGs) catalase, disrupting hydrogen peroxide hydrolysis, accelerating membrane oxidative damage, and upregulating neutral ceramidase, accelerating sphingolipid metabolism to disrupt cell membrane structure and cell proliferation and differentiation, potentially accelerating cell death. The above results indicated that the potential target of these dis-pyrazole carboxamide derivatives may be the cell membrane of pathogenic fungi.

18.
Bioorg Chem ; 147: 107372, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653152

RESUMEN

Joining the global demand for the discovery of potent NSAIDs with minimized ulcerogenic effect, new pyrazole clubbed thiazole derivatives 5a-o were designed and synthesized. The new derivatives were initially evaluated for their analgesic activity. Eight compounds 5a, 5c, 5d, 5e, 5f, 5h, 5m, and 5o showed higher activity than Indomethacin (potency = 105-130 % vs. 100 %). Subsequently, they were picked for further evaluation of their anti-inflammatory activity, ulcerogenic liability as well as toxicological studies. Derivatives 5h and 5m showed a potential % edema inhibition after 3 h (79.39 % and 72.12 %, respectively), with a promising safety profile and low ulcer indices (3.80 and 3.20, respectively). The two compounds 5h and 5m were subjected to in vitro COX-1 and COX-2 inhibition assay. The candidate 5h showed nearly equipotent COX-1 inhibition (IC50 = 38.76 nM) compared to the non-selective reference drug Indomethacin (IC50 = 35.72 nM). Compound 5m expressed significant inhibitory activities and a higher COX-2 selectivity index (IC50 = 87.74 nM, SI = 2.05) in comparison with Indomethacin (SI = 0.52), with less selectivity than Celecoxib (SI = 8.31). Simulation docking studies were carried out to gain insights into the binding interaction of compounds 5h and 5m in the vicinity of COX-1 and COX-2 enzymes that illustrated the importance of pyrazole clubbed thiazole core in hydrogen bonding interactions. The thiazole motif of compounds 5h and 5m exhibited a well orientation toward COX-1 Arg120 key residue by hydrogen bonding interactions. Compound 5h revealed an additional arene-cation interaction with Arg120 that could rationalize its superior COX-1 inhibitory activity. Compounds 5h and 5m overlaid the co-crystallized ligand Celecoxib I differently in the active site of COX-2. Compound 5m showed an enhanced accommodation with binding energy of - 6.13 vs. - 1.70 kcal/mol of compounds 5h. The naphthalene ring of compound 5m adopted the Celecoxib I benzene sulfonamide region that is stabilized by hydrogen-arene interactions with the hydrophobic sidechains of the key residues Ser339 and Phe504. Further, the core structure of compound 5m, pyrazole clubbed thiazole, revealed deeper hydrophobic interactions with Ala513, Leu517 and Val509 residues. Finally, a sensitive and accurate UPLC-MS/MS method was developed for the simultaneous estimation of some selected promising pyrazole derivatives in rat plasma. Accordingly, compounds 5h and 5m were suggested to be promising potent analgesic and anti-inflammatory agents with improved safety profiles and a novel COX isozyme modulation activity.


Asunto(s)
Analgésicos , Antiinflamatorios no Esteroideos , Ciclooxigenasa 2 , Edema , Simulación del Acoplamiento Molecular , Tiazoles , Animales , Masculino , Ratones , Ratas , Analgésicos/farmacología , Analgésicos/química , Analgésicos/síntesis química , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/síntesis química , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Inhibidores de la Ciclooxigenasa/química , Inhibidores de la Ciclooxigenasa/síntesis química , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Edema/tratamiento farmacológico , Edema/inducido químicamente , Estructura Molecular , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Relación Estructura-Actividad , Tiazoles/química , Tiazoles/farmacología , Tiazoles/síntesis química
19.
Mol Divers ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150608

RESUMEN

To address the urgent need for new antifungal agents, a collection of novel pyrazole carboxamide derivatives incorporating a benzimidazole group were innovatively designed, synthesized, and evaluated for their efficacy against fungal pathogens. The bioassay results revealed that the EC50 values for the compounds A7 (3-(difluoromethyl)-1-methyl-N-(1-propyl-1H-benzo[d]imidazol-2-yl)-1H-pyrazole-4-carboxamide) and B11 (N-(1-(4-chlorobenzyl)-1H-benzo[d]imidazol-2-yl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide) against B. cinerea were notably low to 0.79 µg/mL and 0.56 µg/mL, respectively, demonstrating the potency comparable to that of the control fungicide boscalid, which has an EC50 value of 0.60 µg/mL. Noteworthy is the fact that in vivo tests demonstrated that A7 and B11 showed superior protective effects on tomatoes and strawberries against B. cinerea infection when juxtaposed with the commercial fungicide carbendazim. The examination through scanning electron microscopy revealed that B11 notably alters the morphology of the fungal mycelium, inducing shrinkage and roughening of the hyphal surfaces. To elucidate the mechanism of action, the study on molecular docking and molecular dynamics simulations was conducted, which suggested that B11 effectively interacts with crucial amino acid residues within the active site of succinate dehydrogenase (SDH). This investigation contributes a novel perspective for the structural design and diversification of potential SDH inhibitors, offering a promising avenue for the development of antifungal therapeutics.

20.
Mol Divers ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869737

RESUMEN

Pyrazoles are unique bioactive molecules with a versatile biological profile and they have gained an important place on pharmaceutical chemistry. Pyrazole compounds containing sulfonamide nuclei also attract attention as carbonic anhydrase (CA) inhibitors. In this study, a library of pyrazole-carboxamides were synthesized and the structures of the synthesized molecules were characterized using FT-IR, 1H-NMR, 13C-NMR and HRMS. Then the inhibition effects of newly synthesized molecules on human erythrocyte hCA I and hCA II isoenzymes were investigated. Ki values of the compounds were in the range of 0.063-3.368 µM for hCA I and 0.007-4.235 µM for hCA II. Molecular docking studies were performed between the most active compounds 6a, 6b and the reference inhibitor, acetazolamide (AAZ) and the hCA I and hCA II receptors to investigate the binding mechanisms between the compounds and the receptors. These compounds showed better interactions than the AAZ. ADMET analyzes were performed for the compounds and it was seen that the compounds did not show AMES toxicity. The stability of the molecular docking results over time was analysed by 50 ns molecular dynamics simulations. Molecular dynamics simulations revealed that 6a and 6b exhibited good stability after docking to the binding sites of hCA I and hCA II receptors, with minor conformational changes and fluctuations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA