Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 711
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(32): e2216532120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523561

RESUMEN

We analyzed transcriptional data from 104 HPV+ (Human papillomavirus) HNSCC (head and neck squamous cell carcinoma) tumors together with two publicly available sources to identify highly robust transcriptional programs (modules) which could be detected consistently despite heterogeneous sequencing and quantification methodologies. Among 22 modules identified, we found a single module that naturally subclassifies HPV+ HNSCC tumors based on a bimodal pattern of gene expression, clusters all atypical features of HPV+ HNSCC biology into a single subclass, and predicts patient outcome in four independent cohorts. The subclass-defining gene set was strongly correlated with Nuclear factor kappa B (NF-κB) target expression. Tumors with high expression of this NF-κB module were rarely associated with activating PIK3CA alterations or viral integration, and also expressed higher levels of HPHPV E2 and had decreased APOBEC mutagenesis. Alternatively, they harbored inactivating alterations of key regulators of NF-κB, TNF receptor associated factor 3 (TRAF3), and cylindromatosis (CYLD), as well as retinoblastoma protein (RB1). HPV+ HNSCC cells in culture with experimental depletion of TRAF3 or CYLD displayed increased expression of the subclass-defining genes, as well as robust radio-sensitization, thus recapitulating both the tumor transcriptional state and improved treatment response observed in patient data. Across all gene sets investigated, methylation to expression correlations were the strongest for the subclass-defining, NF-κB-related genes. Increased tumor-infiltrating CD4+ T cells and increased Estrogen receptors alpha (ERα) expression were identified in NF-κB active tumors. Based on the relatively high rates of cure in HPV+ HNSCC, deintensification of therapy to reduce treatment-related morbidity is being studied at many institutions. Tumor subclassification based on oncogenic subtypes may help guide the selection of therapeutic intensity or modality for patients with HPV+ HNSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia , FN-kappa B/genética , FN-kappa B/metabolismo , Factor 3 Asociado a Receptor de TNF/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/metabolismo , Infecciones por Papillomavirus/genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/radioterapia , Virus del Papiloma Humano , Carcinogénesis , Papillomaviridae/genética , Papillomaviridae/metabolismo
2.
Mol Cancer ; 23(1): 123, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849845

RESUMEN

BACKGROUND: Pediatric-type diffuse high-grade glioma (pHGG) is the most frequent malignant brain tumor in children and can be subclassified into multiple entities. Fusion genes activating the MET receptor tyrosine kinase often occur in infant-type hemispheric glioma (IHG) but also in other pHGG and are associated with devastating morbidity and mortality. METHODS: To identify new treatment options, we established and characterized two novel orthotopic mouse models harboring distinct MET fusions. These included an immunocompetent, murine allograft model and patient-derived orthotopic xenografts (PDOX) from a MET-fusion IHG patient who failed conventional therapy and targeted therapy with cabozantinib. With these models, we analyzed the efficacy and pharmacokinetic properties of three MET inhibitors, capmatinib, crizotinib and cabozantinib, alone or combined with radiotherapy. RESULTS: Capmatinib showed superior brain pharmacokinetic properties and greater in vitro and in vivo efficacy than cabozantinib or crizotinib in both models. The PDOX models recapitulated the poor efficacy of cabozantinib experienced by the patient. In contrast, capmatinib extended survival and induced long-term progression-free survival when combined with radiotherapy in two complementary mouse models. Capmatinib treatment increased radiation-induced DNA double-strand breaks and delayed their repair. CONCLUSIONS: We comprehensively investigated the combination of MET inhibition and radiotherapy as a novel treatment option for MET-driven pHGG. Our seminal preclinical data package includes pharmacokinetic characterization, recapitulation of clinical outcomes, coinciding results from multiple complementing in vivo studies, and insights into molecular mechanism underlying increased efficacy. Taken together, we demonstrate the groundbreaking efficacy of capmatinib and radiation as a highly promising concept for future clinical trials.


Asunto(s)
Neoplasias Encefálicas , Glioma , Proteínas Proto-Oncogénicas c-met , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Humanos , Glioma/patología , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/terapia , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Ratones , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Benzamidas/farmacología , Benzamidas/uso terapéutico , Línea Celular Tumoral , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Femenino , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Crizotinib/farmacología , Crizotinib/uso terapéutico , Modelos Animales de Enfermedad , Niño , Clasificación del Tumor , Anilidas/farmacología , Imidazoles , Triazinas
3.
Mol Cancer ; 23(1): 39, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38378518

RESUMEN

BACKGROUND: Focal adhesion signaling involving receptor tyrosine kinases (RTK) and integrins co-controls cancer cell survival and therapy resistance. However, co-dependencies between these receptors and therapeutically exploitable vulnerabilities remain largely elusive in HPV-negative head and neck squamous cell carcinoma (HNSCC). METHODS: The cytotoxic and radiochemosensitizing potential of targeting 10 RTK and ß1 integrin was determined in up to 20 3D matrix-grown HNSCC cell models followed by drug screening and patient-derived organoid validation. RNA sequencing and protein-based biochemical assays were performed for molecular characterization. Bioinformatically identified transcriptomic signatures were applied to patient cohorts. RESULTS: Fibroblast growth factor receptor (FGFR 1-4) targeting exhibited the strongest cytotoxic and radiosensitizing effects as monotherapy and combined with ß1 integrin inhibition, exceeding the efficacy of the other RTK studied. Pharmacological pan-FGFR inhibition elicited responses ranging from cytotoxicity/radiochemosensitization to resistance/radiation protection. RNA sequence analysis revealed a mesenchymal-to-epithelial transition (MET) in sensitive cell models, whereas resistant cell models exhibited a partial epithelial-to-mesenchymal transition (EMT). Accordingly, inhibition of EMT-associated kinases such as EGFR caused reduced adaptive resistance and enhanced (radio)sensitization to FGFR inhibition cell model- and organoid-dependently. Transferring the EMT-associated transcriptomic profiles to HNSCC patient cohorts not only demonstrated their prognostic value but also provided a conclusive validation of the presence of EGFR-related vulnerabilities that can be strategically exploited for therapeutic interventions. CONCLUSIONS: This study demonstrates that pan-FGFR inhibition elicits a beneficial radiochemosensitizing and a detrimental radioprotective potential in HNSCC cell models. Adaptive EMT-associated resistance appears to be of clinical importance, and we provide effective molecular approaches to exploit this therapeutically.


Asunto(s)
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Integrina beta1/genética , Línea Celular Tumoral , Proteínas Tirosina Quinasas Receptoras/genética , Antineoplásicos/uso terapéutico , Receptores ErbB/metabolismo , Fenotipo , Transición Epitelial-Mesenquimal/genética
4.
Curr Issues Mol Biol ; 46(1): 450-460, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38248330

RESUMEN

Developing strategies for the radiosensitization of cancer cells by the inhibition of genes, which harbor low toxicity to normal cells, will be useful for improving cancer radiotherapy. Here, we focused on a ß-site of amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1; ß-secretase, memapsin-2). By functional inhibition of this peptidase by siRNA, it has also recently been shown that the DNA strand break marker, γH2AX foci, increased, suggesting its involvement in DNA damage response. To investigate this possibility, we knocked down BACE1 with siRNA in cancer cell lines, and sensitization to γ-irradiation was examined by a colony formation assay, γH2AX foci and level analysis, and flow cytometry. BACE1 knockdown resulted in the sensitization of HeLa, MDA-MB-231, U2OS, and SAOS cells to γ-irradiation in a diverse range. BACE1 knockdown showed a weak radiosensitization effect in osteosarcoma U2OS cells, which has a normal p53 function. HeLa and SAOS cells, which harbor p53 dysfunction, exhibited a greater level of radiosensitization. These results suggest that BACE1 may be a potential target for the radiosensitization in particular cancer cells.

5.
Prostate ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219052

RESUMEN

BACKGROUND: Proliferating cell nuclear antigen (PCNA) is essential for DNA replication and repair, cell growth, and survival. PCNA also enhances androgen receptor (AR) signaling in prostate cancer (PC) cells. We identified a PCNA interaction protein (PIP) box at the N-terminal domain of AR and developed a small peptide PCNA inhibitor R9-AR-PIP containing AR PIP-box. We also identified a series of small molecule PCNA inhibitors (PCNA-Is) that bind directly to PCNA and interrupt PCNA functions. The present study investigated the effects of the PCNA inhibitors on the sensitivity of PC cells to X-ray radiation. METHODS: The effects of targeting PCNA on radio sensitivity of PC cells were investigated in four lines of castration-resistant PC (CRPC) cells with different AR expression statuses. The cells were treated with the PCNA inhibitors and X-ray radiation alone or in combination. The effects of the treatment on expression of AR target genes, DNA damage response, DNA damage, homologous recombination repair (HRR), and cytotoxicity were evaluated. RESULTS: We found that the androgen response element (ARE) occupancy of the DNA damage response gene PARP1 by AR is significantly attenuated by PCNA-I1S or R9-AR-PIP combined with X-ray radiation, while X-ray radiation alone does not enhance the ARE occupancy. PCNA-I1S or R9-AR-PIP alone significantly inhibits occupancy of the AR-occupied regions (AROR) in PRKDC and XRCC2 genes. R9-AR-PIP and PCNA-I1S inhibit expression of AR-Vs target gene cyclin A2 and show the additive effects with radiation in AR-positive CRPC cells. Targeting PCNA by PCNA-I1S and R9-AR-PIP downregulates expression of DNA damage response genes EXO1, Rad54L, Rad51, and/or PARP1 and shows the additive effects with radiation as compared with their respective controls in AR-positive CRPC LNCaP-AI, 22Rv1, and R1-D567 cells, but not in AR-negative PC-3 cells. R9-AR-PIP and PCNA-I1S elevate the levels of phospho-DNA-PKcs(S2056) and γH2AX, indicating DNA damage in response to radiation in AR-positive cells. The HRR is significantly attenuated by PCNA inhibitors PCNA-I1S, R9-AR-PIP, and T2AA in all four CRPC cells examined, and inhibited by Enzalutamide (Enz) only in 22RV1 cells. The cytotoxicity induced by X-ray radiation in androgen-dependent LNCaP cells is enhanced by Enz and a lower concentration of R9-AR-PIP in the colony formation assay. R9-AR-PIP at higher concentration reduces the colony formation and has an additive effect with X-ray radiation in all AR expressing cells, regardless of AR-FL and AR-Vs, but does not significantly alter the colony formation in AR-negative PC-3 cells. PCNA-I1S attenuates colony formation and has an additive effect with ionizing radiation in all four CRPC cells, regardless of AR expression status. CONCLUSION: These data provide a strong rationale for the therapy studies using PCNA-I1S or R9-AR-PIP in combination with X-ray radiation against CRPC tumors in preclinical models.

6.
Small ; 20(32): e2310118, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38506599

RESUMEN

The combination of ferroptosis and innovative tumor therapy methods offers another promising answer to the problem of tumors. In order to generate effective ferroptosis in tumor cells, iron-based nanomaterials are commonly utilized to introduce foreign iron as a trigger for ferroptosis. However, this usually necessitates the injection of larger doses of iron into the body. These exogenous iron increases are likely to create concealed concerns for symptoms such as liver damage and allergy. Herein, an iron-free radiosensitizer is introduced, oxygen-vacancy-rich MnO2 nanoflowers (ovs-MnO2), that promotes ferroptosis and modifies the tumor microenvironment to assist radiotherapy. ovs-MnO2 with enriched oxygen vacancies on the surface induces the release of intracellular free iron (Fe2+), which functions as an activator of Fenton reaction and enhances the accumulation of intracellular reactive oxygen species. On the other hand, Fe2+ also triggers the ferroptosis and promotes the accumulation of lipid peroxides. Subsequently, the depletion of glutathione and accumulation of lipid peroxidation in tumor cells leads to the inactivation of glutathione peroxidase 4 (GPX4) and ferroptosis, thereby enhancing the therapeutic efficacy of radiotherapy. The nanoplatform provides a novel strategy for generating novel nanomedicines for ferroptosis-assisted radiotherapy.


Asunto(s)
Ferroptosis , Oxígeno , Especies Reactivas de Oxígeno , Ferroptosis/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Animales , Oxígeno/química , Oxígeno/metabolismo , Línea Celular Tumoral , Compuestos de Manganeso/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/radioterapia , Manganeso/química , Microambiente Tumoral/efectos de los fármacos , Óxidos/química , Ratones , Hierro/química , Hierro/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/química , Fármacos Sensibilizantes a Radiaciones/farmacología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo
7.
Small ; 20(35): e2310865, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38678537

RESUMEN

Photopharmacology, incorporating photoswitches such as azobenezes into drugs, is an emerging therapeutic method to realize spatiotemporal control of pharmacological activity by light. However, most photoswitchable molecules are triggered by UV light with limited tissue penetration, which greatly restricts the in vivo application. Here, this study proves that 131I can trigger the trans-cis photoisomerization of a reported azobenezen incorporating PROTACs (azoPROTAC). With the presence of 50 µCi mL-1 131I, the azoPROTAC can effectively down-regulate BRD4 and c-Myc levels in 4T1 cells at a similar level as it does under light irradiation (405 nm, 60 mW cm-2). What's more, the degradation of BRD4 can further benefit the 131I-based radiotherapy. The in vivo experiment proves that intratumoral co-adminstration of 131I (300 µCi) and azoPROTC (25 mg kg-1) via hydrogel not only successfully induce protein degradation in 4T1 tumor bearing-mice but also efficiently inhibit tumor growth with enhanced radiotherapeutic effect and anti-tumor immunological effect. This is the first time that a radioisotope is successfully used as a trigger in photopharmacology in a mouse model. It believes that this study will benefit photopharmacology in deep tissue.


Asunto(s)
Proteolisis , Animales , Proteolisis/efectos de los fármacos , Línea Celular Tumoral , Ratones , Humanos , Femenino , Proteínas de Ciclo Celular/metabolismo , Ratones Endogámicos BALB C , Radioisótopos de Yodo
8.
Biol Chem ; 405(3): 177-187, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37712609

RESUMEN

Nitro-fatty acids (NFAs) are endogenous lipid mediators capable of post-translational modifications of selected regulatory proteins. Here, we investigated the anti-cancerous effects of nitro-oleic acid (NO2OA) and its combination with gamma irradiation on different cancer cell lines. The effects of NO2OA on cell death, cell cycle distribution, or expression of p21 and cyclin D1 proteins were analyzed in cancer (A-549, HT-29 and FaDu) or normal cell lines (HGF, HFF-1). Dose enhancement ratio at 50 % survival fraction (DERIC50) was calculated for samples pre-treated with NO2OA followed by gamma irradiation. NO2OA suppressed viability and induced apoptotic cell death. These effects were cell line specific but not in general selective for cancer cells. HT-29 cell line exerted higher sensitivity toward NO2OA treatment among cancer cell lines tested: induction of cell cycle arrest in the G2/M phase was associated with an increase in p21 and a decrease in cyclin D1 expression. Pre-treatment of HT-29 cells with NO2OA prior irradiation showed a significantly increased DERIC50, demonstrating radiosensitizing effects. In conclusion, NO2OA exhibited potential for combined chemoradiotherapy. Our results encourage the development of new NFAs with improved features for cancer chemoradiation.


Asunto(s)
Ciclina D1 , Nitrocompuestos , Humanos , Ácidos Oléicos , Ácidos Grasos , Células HT29
9.
Invest New Drugs ; 42(4): 405-417, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880855

RESUMEN

Radioresistance is an inevitable obstacle in the clinical treatment of inoperable patients with non-small cell lung cancer (NSCLC). Combining treatment with radiosensitizers may improve the efficacy of radiotherapy. Previously, the quinoline derivative 10E as new exporter of Nur77 has shown superior antitumor activity in hepatocellular carcinoma. Here, we aimed to investigate the radiosensitizing activity and acting mechanisms of 10E. In vitro, A549 and H460 cells were treated with control, ionizing radiation (IR), 10E, and 10E + IR. Cell viability, apoptosis, and cycle were examined using CCK-8 and flow cytometry assays. Protein expression and localization were examined using western blotting and immunofluorescence. Tumor xenograft models were established to evaluate the radiosensitizing effect of 10E in vivo. 10E significantly inhibited cell proliferation and increased their radiosensitivity while reducing level of p-BCRA1, p-DNA-PKs, and 53BP1 involved in the DNA damage repair pathway, indicating that its radiosensitizing activity is closely associated with repressing DNA damage repair. A549 cells showed low level of Nur77 and a low response to IR but 10E-treated A549 cells showed high level of Nur77 indicating that Nur77 is a core radiosensitivity factor and 10E restores the expression of Nur77. Nur77 and Ku80 extranuclear co-localization in the 10E-treated A549 cells suggested that 10E-modulated Nur77 nuclear exportation inhibits DNA damage repair pathways and increases IR-triggered apoptosis. The combination of 10E and IR significantly inhibits tumor growth in a tumor xenograft model. Our findings suggest that 10E acts as a radiosensitizer and that combining 10E with radiotherapy may be a potential strategy for NSCLC treatment.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Neoplasias Pulmonares , Ratones Desnudos , Quinolinas , Fármacos Sensibilizantes a Radiaciones , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Quinolinas/farmacología , Quinolinas/uso terapéutico , Apoptosis/efectos de los fármacos , Ratones , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Bases de Schiff/farmacología , Bases de Schiff/uso terapéutico , Indoles/farmacología , Indoles/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Tolerancia a Radiación/efectos de los fármacos
10.
Strahlenther Onkol ; 200(6): 535-543, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38453699

RESUMEN

PURPOSE: Vitexin can cooperate with hyperbaric oxygen to sensitize the radiotherapy of glioma by inhibiting the hypoxia-inducible factor (HIF)-1α. However, whether vitexin has a direct radiosensitization and how it affects the HIF-1α expression remain unclear. This study investigated these issues. METHODS: The SU3 cells-inoculated nude mice were divided into control, radiation, and vitexin + radiation groups. The vitexin + radiation-treated mice were intraperitoneally injected with 75 mg/kg vitexin daily for 21 days. On the 3rd, 10th, and 17th days during the vitexin treatment, the radiation-treated mice were locally irradiated with 10 Gy, respectively. In vitro, the microRNA (miR)-17-5p or miR-130b-3p mimics-transfected SU3 cells were used to examine the effects of vitexin plus radiation on expression of miR-17-5p- or miR-130b-3p-induced radioresistance-related pathway proteins. The effects of vitexin on miR-17-5p and miR-130b-3p expression in SU3 cells were also evaluated. RESULTS: Compared with the radiation group, the tumor volume, tumor weight, and expression of HIF-1α, vascular endothelial growth factor, and glucose transporter-1/3 proteins, miR-17-5p, and miR-130b-3p in tumor tissues in the vitexin + radiation group decreased, whereas the expression of phosphatase and tensin homolog (PTEN) protein increased. After treatment of miR-17-5p or miR-130b-3p mimics-transfected SU3 cells with vitexin plus radiation, the PTEN protein expression also increased, the HIF-1α protein expression decreased correspondingly. Moreover, vitexin decreased the miR-17-5p and miR-130b-3p expression in SU3 cells. CONCLUSION: Vitexin can enhance the radiosensitivity of glioma, and its mechanism may partly be related to the attenuation of HIF-1α pathway after lowering the inhibitory effect of miR-17-5p and miR-130b-3p on PTEN.


Asunto(s)
Apigenina , Glioma , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ratones Desnudos , MicroARNs , Fosfohidrolasa PTEN , Tolerancia a Radiación , Animales , MicroARNs/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Apigenina/farmacología , Apigenina/uso terapéutico , Fosfohidrolasa PTEN/genética , Ratones , Glioma/radioterapia , Glioma/patología , Glioma/genética , Glioma/tratamiento farmacológico , Tolerancia a Radiación/efectos de los fármacos , Línea Celular Tumoral , Humanos , Transducción de Señal/efectos de los fármacos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Fármacos Sensibilizantes a Radiaciones/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C
11.
Mol Pharm ; 21(3): 1222-1232, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38364870

RESUMEN

The morbidity and mortality of lung cancer are still the highest among all malignant tumors. Radiotherapy plays an important role in clinical treatment of lung cancer. However, the effect of radiotherapy is not ideal due to the radiation resistance of tumor tissues. Abnormalities in tumor vascular structure and function affect blood perfusion, and oxygen transport is impeded, making tumor microenvironment hypoxic. Tumor hypoxia is the major cause of radiotherapy resistance. By promoting tumor vessel normalization and enhancing vascular transport function, tumor hypoxia can be relieved to reduce radiotherapy resistance and increase tumor radiotherapy sensitivity. In our previous study, a pericytes-targeted tumor necrosis factor alpha (named Z-TNFα) was first constructed and produced by genetically fusing the platelet-derived growth factor receptor ß (PDGFRß)-antagonistic affibody (ZPDGFRß) to the TNFα, and the Z-TNFα induced normalization of tumor vessels and improved the delivery of doxorubicin, enhancing tumor chemotherapy. In this study, the tumor vessel normalization effect of Z-TNFα in lung cancer was further clarified. Moreover, the tumor hypoxia improvement and radiosensitizing effect of Z-TNFα were emphatically explored in vivo. Inspiringly, Z-TNFα specifically accumulated in Lewis lung carcinoma (LLC) tumor graft and relieved tumor hypoxia as well as inhibited HIF-1α expression. As expected, Z-TNFα significantly increased the effect of radiotherapy in mice bearing LLC tumor graft. In conclusion, these results demonstrated that Z-TNFα is also a promising radiosensitizer for lung cancer radiotherapy.


Asunto(s)
Neoplasias Pulmonares , Fármacos Sensibilizantes a Radiaciones , Animales , Ratones , Neoplasias Pulmonares/radioterapia , Factor de Necrosis Tumoral alfa/metabolismo , Línea Celular Tumoral , Doxorrubicina , Microambiente Tumoral
12.
Bioorg Chem ; 143: 107101, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183682

RESUMEN

In part due to the resilience of cellular feedback pathways that develop therapeutic resistance to targeting the EGFR alone, using EGFR inhibitors alone was demonstrated to be unsuccessful in clinical trials. The over-activation of the signal transducer/activator of transcription 3 (STAT3) during the administration of an EGFR inhibitor is expected to play a substantial part in the failure and resistance of EGFR inhibitor treatment. Therein, we proposed a hypothesis that induced STAT3-mediated resistance to EGFR inhibition therapy could be addressed by a dual inhibition of EGFR and STAT3 method. To this end, we tried to discover new thieno[2,3-d]pyrimidine derivatives "5a-o". Results from the screening on A549 and MCF7 cancer cell lines revealed that compounds 5j and 5k showed two-digit nanomolar with appropriate safety towards the WI-38 cell line. The best molecules, 5j and 5k, were subjected to γ-radiation, and their cytotoxic efficacy didn't change after irradiation, demonstrating that not having to use it avoided its side effects. Compounds 5j and 5k demonstrated the highest inhibition when their potency was tested as dual inhibitors on EGFR 67 and 41 nM, respectively, and STAT3 5.52 and 3.34 nM, respectively, proved with in silico molecular docking and dynamic simulation. In light of the results presented above, the capacity of both powerful compounds to alter the cell cycle and initiate the apoptotic process in breast cancer MCF7 cells was investigated. Caspase-8, Bcl-2, Bax and Caspase-9 apoptotic indicators were studied.


Asunto(s)
Antineoplásicos , Receptores ErbB , Factor de Transcripción STAT3 , Humanos , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Relación Estructura-Actividad
13.
Acta Pharmacol Sin ; 45(7): 1506-1519, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38480835

RESUMEN

Combining radiotherapy with Nrf-2 inhibitor holds promise as a potential therapeutic strategy for radioresistant lung cancer. Here, the radiosensitizing efficacy of a synthetic glucocorticoid clobetasol propionate (CP) in A549 human lung cancer cells was evaluated. CP exhibited potent radiosensitization in lung cancer cells via inhibition of Nrf-2 pathway, leading to elevation of oxidative stress. Transcriptomic studies revealed significant modulation of pathways related to ferroptosis, fatty acid and glutathione metabolism. Consistent with these findings, CP treatment followed by radiation exposure showed characteristic features of ferroptosis in terms of mitochondrial swelling, rupture and loss of cristae. Ferroptosis is a form of regulated cell death triggered by iron-dependent ROS accumulation and lipid peroxidation. In combination with radiation, CP showed enhanced iron release, mitochondrial ROS, and lipid peroxidation, indicating ferroptosis induction. Further, iron chelation, inhibition of lipid peroxidation or scavenging mitochondrial ROS prevented CP-mediated radiosensitization. Nrf-2 negatively regulates ferroptosis through upregulation of antioxidant defense and iron homeostasis. Interestingly, Nrf-2 overexpressing A549 cells were refractory to CP-mediated ferroptosis induction and radiosensitization. Thus, this study identified anti-psoriatic drug clobetasol propionate can be repurposed as a promising radiosensitizer for Keap-1 mutant lung cancers.


Asunto(s)
Clobetasol , Ferroptosis , Neoplasias Pulmonares , Mitocondrias , Factor 2 Relacionado con NF-E2 , Especies Reactivas de Oxígeno , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Ferroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Clobetasol/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Células A549 , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
14.
Int J Hyperthermia ; 41(1): 2335201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38583875

RESUMEN

PURPOSE: Radiotherapy (RT) is the primary treatment for prostate cancer (PCa); however, the emergence of castration-resistant prostate cancer (CRPC) often leads to treatment failure and cancer-related deaths. In this study, we aimed to explore the use of microwave hyperthermia (MW-HT) to sensitize PCa to RT and investigate the underlying molecular mechanisms. METHODS: We developed a dedicated MW-HT heating setup, created an in vitro and in vivo MW-HT + RT treatment model for CRPC. We evaluated PC3 cell proliferation using CCK-8, colony experiments, DAPI staining, comet assay and ROS detection method. We also monitored nude mouse models of PCa during treatment, measured tumor weight, and calculated the tumor inhibition rate. Western blotting was used to detect DNA damage repair protein expression in PC3 cells and transplanted tumors. RESULTS: Compared to control, PC3 cell survival and clone formation rates decreased in RT + MW-HT group, demonstrating significant increase in apoptosis, ROS levels, and DNA damage. Lower tumor volumes and weights were observed in treatment groups. Ki-67 expression level was reduced in all treatment groups, with significant decrease in RT + MW-HT groups. The most significant apoptosis induction was confirmed in RT + MW-HT group by TUNEL staining. Protein expression levels of DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways significantly decreased in RT + MW-HT groups. CONCLUSION: MW-HT + RT treatment significantly inhibited DNA damage repair by downregulating DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways, leading to increased ROS levels, aggravate DNA damage, apoptosis, and necrosis in PC3 cells, a well-established model of CRPC.


Asunto(s)
Adenocarcinoma , Hipertermia Inducida , Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Humanos , Masculino , Animales , Ratones , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Células PC-3 , Especies Reactivas de Oxígeno/metabolismo , Microondas , Proteína p53 Supresora de Tumor/metabolismo , Hipertermia Inducida/métodos , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/metabolismo , Reparación del ADN , Apoptosis , Estrés Oxidativo , Hipertermia , Adenocarcinoma/radioterapia , ADN/metabolismo , Línea Celular Tumoral , Proliferación Celular
15.
Biomed Chromatogr ; : e5981, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113411

RESUMEN

Shengmai Jianghuang San (SMJHS) is a traditional Chinese herbal compound reported to inhibit Nasopharyngeal Carcinoma (NPC) progression and enhance radiosensitivity. However, the specific active ingredients and regulatory mechanisms of SMJHS against NPC, particularly under hypoxic conditions, remain unclear. In this study, Sprague-Dawley (SD) rats were gavaged with Shengmai Jianghuang San (SMJHS), and their blood was collected from the abdominal aorta. UHPLC-Q-Exactive orbitrap MS/MS was used to identify the metabolite profiles of SMJHS drug-containing serum. A molecular network of the active compositions in SMJHS targeting NPC was constructed through network pharmacology and molecular docking. The HIF-1α/VEGF pathway was in key positions. The effects of SMJHS on the proliferation, migration, and radiosensitivity of hypoxic NPC cells were assessed by in vitro experiments. NPC cell lines stably overexpressing HIF-1α were established using a lentivirus to investigate the regulation of HIF-1α/VEGF signaling in hypoxic NPC cells by SMJHS. Through a combination of network pharmacological analysis, cellular biofunctional validation, and molecular biochemical experiments, our study found that SMJHS had an anti-proliferative effect on NPC cells cultured under hypoxic conditions, inhibiting their migration and increasing their radiosensitivity. Additionally, SMJHS suppressed the expression of HIF-1α and VEGFA, exhibiting potential as an effective option for improving NPC treatment.

16.
Phytother Res ; 38(2): 464-469, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36897074

RESUMEN

Curcumin has antineoplastic properties and is considered a chemotherapeutic and chemopreventive agent. Curcumin may be associated with radiation therapy (RT) as a radiosensitizer for cancer cells and a radioprotector for normal cells. In principle, it may result in a reduction of RT dosage for the same therapeutic effect on cancer cells, and further reduced damage to normal cells. Though the overall level of evidence is modest, limited to in vivo and in vitro experiences and practically no clinical trials, as the risks of adverse effects are extremely low, it is reasonable to promote the general supplementation with curcumin during RT targeting the reduction of side effects through anti-inflammatory mechanisms.


Asunto(s)
Antineoplásicos , Curcumina , Fármacos Sensibilizantes a Radiaciones , Curcumina/farmacología , Curcumina/uso terapéutico , Antineoplásicos/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico
17.
Int J Mol Sci ; 25(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39273472

RESUMEN

Conventional X-ray therapy (XRT) is commonly applied to suppress cancerous tumors; however, it often inflicts collateral damage to nearby healthy tissue. In order to provide a better conformity of the dose distribution in the irradiated tumor, proton therapy (PT) is increasingly being used to treat solid tumors. Furthermore, radiosensitization with gold nanoparticles (GNPs) has been extensively studied to increase the therapeutic ratio. The mechanism of radiosensitization is assumed to be connected to an enhancement of the absorbed dose due to huge photoelectric cross-sections with gold. Nevertheless, numerous theoretical studies, mostly based on Monte Carlo (MC) simulations, did not provide a consistent and thorough picture of dose enhancement and, therefore, the radiosensitization effect. Radiosensitization by nanoparticles in PT is even less studied than in XRT. Therefore, we investigate the physics picture of GNP-enhanced RT using an MC simulation with Geant4 equipped with the most recent physics models, taking into account a wide range of physics processes relevant for realistic PT and XRT. Namely, we measured dose enhancement factors in the vicinity of GNP, with diameters ranging from 10 nm to 80 nm. The dose enhancement in the vicinity of GNP reaches high values for XRT, while it is very modest for PT. The macroscopic dose enhancement factors for realistic therapeutic GNP concentrations are rather low for all RT scenarios; therefore, other physico-chemical and biological mechanisms should be additionally invoked for an explanation of the radiosensitization effect observed in many experiments.


Asunto(s)
Oro , Nanopartículas del Metal , Método de Montecarlo , Oro/química , Nanopartículas del Metal/química , Humanos , Neoplasias/radioterapia , Neoplasias/tratamiento farmacológico , Dosificación Radioterapéutica , Terapia de Protones/métodos , Fármacos Sensibilizantes a Radiaciones/química , Simulación por Computador , Radioterapia/métodos , Radiometría/métodos
18.
Angew Chem Int Ed Engl ; : e202417027, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375150

RESUMEN

The activation of the stimulator of interferon genes (STING) protein by cyclic dinucleotide metabolites plays a critical role in antitumor immunity. However, synthetic STING agonists like 4-(5,6-dimethoxybenzo[b]thiophen-2-yl)-4-oxobutanoic acid (MSA-2) exhibit suboptimal pharmacokinetics and fail to sustain STING activation in tumors for effective antitumor responses. Here, we report the design of MOF/MSA-2, a bifunctional MSA-2 conjugated nanoscale metal-organic framework (MOF) based on Hf6 secondary building units (SBUs) and hexakis(4'-carboxy[1,1'-biphenyl]-4-yl)benzene bridging ligands, for potent cancer radio-immunotherapy. By leveraging the high-Z properties of the Hf6 SBUs, the MOF enhances the therapeutic effect of X-ray radiation and elicits potent immune stimulation in the tumor microenvironment. MOF/MSA-2 further enhances radiotherapeutic effects of X-rays by enabling sustained STING activation and promoting the infiltration and activation of immune cells in the tumors. MOF/MSA-2 plus low-dose X-ray irradiation elicits strong STING activation and potent tumor regression, and when combined with an immune checkpoint inhibitor, effectively suppresses both primary and distant tumors through systemic immune activation.

19.
Biochem Biophys Res Commun ; 671: 192-199, 2023 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-37302294

RESUMEN

The therapeutic effects and application of radiotherapy are restricted to some extent due to low radiosensitivity of tumor tissues and adverse effects by excess dosage. Current radiosensitizers are confronted with problems in clinical translation because of complicated manufacture technique and high cost. In this research, we have synthesized a radiosensitizer with advantages in low cost and mass production, which could be applied to CT imaging and enhanced radiotherapy in breast cancer, namely Bi-DTPA. It not only enhanced tumor CT imaging which resulted in better therapeutic accuracy, but also realized radiotherapy sensitization by producing massive ROS and inhibit tumor proliferation, providing a sound perspective in the clinical translation of the radiosensitizer.


Asunto(s)
Neoplasias , Fármacos Sensibilizantes a Radiaciones , Humanos , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Tolerancia a Radiación , Neoplasias/tratamiento farmacológico , Ácido Pentético/farmacología , Ácido Pentético/uso terapéutico , Tomografía Computarizada por Rayos X/métodos
20.
Small ; 19(11): e2204238, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36494177

RESUMEN

Over half of cancer patients are subjected to radiotherapy, but owing to the deficient amount of reactive oxygen radicals (ROS) and DNA double-strand breaks (DSBs), a fair number of them suffer from radiotherapy resistance and the subsequent short-term survival opportunity. To overcome it, many successes have been achieved in radiosensitizer discovery using physical strategy and/or biological strategy, but significant challenges remain regarding developing clinically translational radiosensitizers. Herein, a peptide-Au(I) infinite coordination supermolecule termed PAICS is developed that combined both physical and biological radiosensitization and possessed pharmaceutical characteristics including adequate circulatory stability, controllable drug release, tumor-prioritized accumulation, and the favorable body eliminability. As expected, monovalent gold ion endowed this supermolecule with high X-ray absorption and the subsequent radiosensitization. Furthermore, a peptide targeting CRM1, is assembled into the supermolecule, which successfully activates p53 and apoptosis pathway, thereby further sensitizing radiotherapy. As a result, PAICS showed superior ability for radiotherapy sensitization in vivo and maintained a favorable safety profile. Thus, the PAICS reported here will offer a feasible solution to simultaneously overcome both the pharmaceutical obstacles of physical and biological radiosensitizers and will enable the development of a class of nanomedicines for tumor radiotherapy sensitization.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Fármacos Sensibilizantes a Radiaciones , Humanos , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/química , Neoplasias/radioterapia , Neoplasias/tratamiento farmacológico , Péptidos , Preparaciones Farmacéuticas , Oro/química , Nanopartículas del Metal/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA