RESUMEN
Nutrients are vital to life through intertwined sensing, signaling, and metabolic processes. Emerging research focuses on how distinct nutrient signaling networks integrate and coordinate gene expression, metabolism, growth, and survival. We review the multifaceted roles of sugars, nitrate, and phosphate as essential plant nutrients in controlling complex molecular and cellular mechanisms of dynamic signaling networks. Key advances in central sugar and energy signaling mechanisms mediated by the evolutionarily conserved master regulators HEXOKINASE1 (HXK1), TARGET OF RAPAMYCIN (TOR), and SNF1-RELATED PROTEIN KINASE1 (SNRK1) are discussed. Significant progress in primary nitrate sensing, calcium signaling, transcriptome analysis, and root-shoot communication to shape plant biomass and architecture are elaborated. Discoveries on intracellular and extracellular phosphate signaling and the intimate connections with nitrate and sugar signaling are examined. This review highlights the dynamic nutrient, energy, growth, and stress signaling networks that orchestrate systemwide transcriptional, translational, and metabolic reprogramming, modulate growth and developmental programs, and respond to environmental cues.
Asunto(s)
Desarrollo de la Planta , Transducción de Señal , Nutrientes , Desarrollo de la Planta/genética , Plantas/genética , Plantas/metabolismo , Transducción de Señal/genéticaRESUMEN
We report here a simple and global strategy to map out gene functions and target pathways of drugs, toxins, or other small molecules based on "homomer dynamics" protein-fragment complementation assays (hdPCA). hdPCA measures changes in self-association (homomerization) of over 3,500 yeast proteins in yeast grown under different conditions. hdPCA complements genetic interaction measurements while eliminating the confounding effects of gene ablation. We demonstrate that hdPCA accurately predicts the effects of two longevity and health span-affecting drugs, the immunosuppressant rapamycin and the type 2 diabetes drug metformin, on cellular pathways. We also discovered an unsuspected global cellular response to metformin that resembles iron deficiency and includes a change in protein-bound iron levels. This discovery opens a new avenue to investigate molecular mechanisms for the prevention or treatment of diabetes, cancers, and other chronic diseases of aging.
Asunto(s)
Hierro/metabolismo , Metaloproteínas/metabolismo , Metformina/farmacología , Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Prueba de Complementación Genética , Humanos , Metaloproteínas/genética , Saccharomyces cerevisiae/genéticaRESUMEN
The spatial organization of inositol 1,4,5-trisphosphate (IP3)-evoked Ca2+ signals underlies their versatility. Low stimulus intensities evoke Ca2+ puffs, localized Ca2+ signals arising from a few IP3 receptors (IP3Rs) within a cluster tethered beneath the plasma membrane. More intense stimulation evokes global Ca2+ signals. Ca2+ signals propagate regeneratively as the Ca2+ released stimulates more IP3Rs. How is this potentially explosive mechanism constrained to allow local Ca2+ signaling? We developed methods that allow IP3 produced after G-protein coupled receptor (GPCR) activation to be intercepted and replaced by flash photolysis of a caged analog of IP3. We find that phosphatidylinositol 4,5-bisphosphate (PIP2) primes IP3Rs to respond by partially occupying their IP3-binding sites. As GPCRs stimulate IP3 formation, they also deplete PIP2, relieving the priming stimulus. Loss of PIP2 resets IP3R sensitivity and delays the transition from local to global Ca2+ signals. Dual regulation of IP3Rs by PIP2 and IP3 through GPCRs controls the transition from local to global Ca2+ signals.
Asunto(s)
Señalización del Calcio , Calcio , Receptores de Inositol 1,4,5-Trifosfato , Inositol 1,4,5-Trifosfato , Fosfatidilinositol 4,5-Difosfato , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Humanos , Calcio/metabolismo , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Sitios de Unión , Células HEK293 , Membrana Celular/metabolismoRESUMEN
Genome-metabolism interactions enable cell growth. To probe the extent of these interactions and delineate their functional contributions, we quantified the Saccharomyces amino acid metabolome and its response to systematic gene deletion. Over one-third of coding genes, in particular those important for chromatin dynamics, translation, and transport, contribute to biosynthetic metabolism. Specific amino acid signatures characterize genes of similar function. This enabled us to exploit functional metabolomics to connect metabolic regulators to their effectors, as exemplified by TORC1, whose inhibition in exponentially growing cells is shown to match an interruption in endomembrane transport. Providing orthogonal information compared to physical and genetic interaction networks, metabolomic signatures cluster more than half of the so far uncharacterized yeast genes and provide functional annotation for them. A major part of coding genes is therefore participating in gene-metabolism interactions that expose the metabolism regulatory network and enable access to an underexplored space in gene function.
Asunto(s)
Aminoácidos/biosíntesis , Metaboloma , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Aminoácidos/genética , Cromatina/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Metaboloma/genética , Metabolómica/métodos , Familia de Multigenes , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción GenéticaRESUMEN
Metformin has utility in cancer prevention and treatment, though the mechanisms for these effects remain elusive. Through genetic screening in C. elegans, we uncover two metformin response elements: the nuclear pore complex (NPC) and acyl-CoA dehydrogenase family member-10 (ACAD10). We demonstrate that biguanides inhibit growth by inhibiting mitochondrial respiratory capacity, which restrains transit of the RagA-RagC GTPase heterodimer through the NPC. Nuclear exclusion renders RagC incapable of gaining the GDP-bound state necessary to stimulate mTORC1. Biguanide-induced inactivation of mTORC1 subsequently inhibits growth through transcriptional induction of ACAD10. This ancient metformin response pathway is conserved from worms to humans. Both restricted nuclear pore transit and upregulation of ACAD10 are required for biguanides to reduce viability in melanoma and pancreatic cancer cells, and to extend C. elegans lifespan. This pathway provides a unified mechanism by which metformin kills cancer cells and extends lifespan, and illuminates potential cancer targets. PAPERCLIP.
Asunto(s)
Metformina/farmacología , Acil-CoA Deshidrogenasa/genética , Envejecimiento , Animales , Tamaño Corporal , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Humanos , Longevidad , Diana Mecanicista del Complejo 1 de la Rapamicina , Mitocondrias/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Neoplasias/tratamiento farmacológico , Poro Nuclear/metabolismo , Fosforilación Oxidativa , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Abnormal increases in cell size are associated with senescence and cell cycle exit. The mechanisms by which overgrowth primes cells to withdraw from the cell cycle remain unknown. We address this question using CDK4/6 inhibitors, which arrest cells in G0/G1 and are licensed to treat advanced HR+/HER2- breast cancer. We demonstrate that CDK4/6-inhibited cells overgrow during G0/G1, causing p38/p53/p21-dependent cell cycle withdrawal. Cell cycle withdrawal is triggered by biphasic p21 induction. The first p21 wave is caused by osmotic stress, leading to p38- and size-dependent accumulation of p21. CDK4/6 inhibitor washout results in some cells entering S-phase. Overgrown cells experience replication stress, resulting in a second p21 wave that promotes cell cycle withdrawal from G2 or the subsequent G1. We propose that the levels of p21 integrate signals from overgrowth-triggered stresses to determine cell fate. This model explains how hypertrophy can drive senescence and why CDK4/6 inhibitors have long-lasting effects in patients.
Asunto(s)
Proteína p53 Supresora de Tumor , Humanos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Ciclo Celular , División Celular , Proteína p53 Supresora de Tumor/genética , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismoRESUMEN
Arthritis typically involves recurrence and progressive worsening at specific predilection sites, but the checkpoints between remission and persistence remain unknown. Here, we defined the molecular and cellular mechanisms of this inflammation-mediated tissue priming. Re-exposure to inflammatory stimuli caused aggravated arthritis in rodent models. Tissue priming developed locally and independently of adaptive immunity. Repeatedly stimulated primed synovial fibroblasts (SFs) exhibited enhanced metabolic activity inducing functional changes with intensified migration, invasiveness and osteoclastogenesis. Meanwhile, human SF from patients with established arthritis displayed a similar primed phenotype. Transcriptomic and epigenomic analyses as well as genetic and pharmacological targeting demonstrated that inflammatory tissue priming relies on intracellular complement C3- and C3a receptor-activation and downstream mammalian target of rapamycin- and hypoxia-inducible factor 1α-mediated metabolic SF invigoration that prevents activation-induced senescence, enhances NLRP3 inflammasome activity, and in consequence sensitizes tissue for inflammation. Our study suggests possibilities for therapeutic intervention abrogating tissue priming without immunosuppression.
Asunto(s)
Proteínas del Sistema Complemento/inmunología , Fibroblastos/inmunología , Inflamación/inmunología , Membrana Sinovial/inmunología , Inmunidad Adaptativa/inmunología , Animales , Artritis Reumatoide/inmunología , Línea Celular , Perros , Humanos , Mediadores de Inflamación/inmunología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratas Wistar , Transducción de Señal/inmunologíaRESUMEN
Antigen-specific CD8+ T cells in chronic viral infections and tumors functionally deteriorate, a process known as exhaustion. Exhausted T cells are sustained by precursors of exhausted (Tpex) cells that self-renew while continuously generating exhausted effector (Tex) cells. However, it remains unknown how Tpex cells maintain their functionality. Here, we demonstrate that Tpex cells sustained mitochondrial fitness, including high spare respiratory capacity, while Tex cells deteriorated metabolically over time. Tpex cells showed early suppression of mTOR kinase signaling but retained the ability to activate this pathway in response to antigen receptor signals. Early transient mTOR inhibition improved long-term T cell responses and checkpoint inhibition. Transforming growth factor-ß repressed mTOR signaling in exhausted T cells and was a critical determinant of Tpex cell metabolism and function. Overall, we demonstrate that the preservation of cellular metabolism allows Tpex cells to retain long-term functionality to sustain T cell responses during chronic infection.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Metabolismo Energético/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Transducción de Señal/inmunologíaRESUMEN
The activation of cap-dependent translation in eukaryotes requires multisite, hierarchical phosphorylation of 4E-BP by the 1 MDa kinase mammalian target of rapamycin complex 1 (mTORC1). To resolve the mechanism of this hierarchical phosphorylation at the atomic level, we monitored by NMR spectroscopy the interaction of intrinsically disordered 4E binding protein isoform 1 (4E-BP1) with the mTORC1 subunit regulatory-associated protein of mTOR (Raptor). The N-terminal RAIP motif and the C-terminal TOR signaling (TOS) motif of 4E-BP1 bind separate sites in Raptor, resulting in avidity-based tethering of 4E-BP1. This tethering orients the flexible central region of 4E-BP1 toward the mTORC1 kinase site for phosphorylation. The structural constraints imposed by the two tethering interactions, combined with phosphorylation-induced conformational switching of 4E-BP1, explain the hierarchy of 4E-BP1 phosphorylation by mTORC1. Furthermore, we demonstrate that mTORC1 recognizes both free and eIF4E-bound 4E-BP1, allowing rapid phosphorylation of the entire 4E-BP1 pool and efficient activation of translation. Finally, our findings provide a mechanistic explanation for the differential rapamycin sensitivity of the 4E-BP1 phosphorylation sites.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas de Ciclo Celular/química , Factor 4E Eucariótico de Iniciación/química , Diana Mecanicista del Complejo 1 de la Rapamicina/química , Proteína Reguladora Asociada a mTOR/química , Serina-Treonina Quinasas TOR/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaetomium/química , Chaetomium/genética , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Moleculares , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Transducción de Señal , Homología Estructural de Proteína , Especificidad por Sustrato , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Cells communicate with their environment via surface proteins and secreted factors. Unconventional protein secretion (UPS) is an evolutionarily conserved process, via which distinct cargo proteins are secreted upon stress. Most UPS types depend upon the Golgi-associated GRASP55 protein. However, its regulation and biological role remain poorly understood. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) directly phosphorylates GRASP55 to maintain its Golgi localization, thus revealing a physiological role for mTORC1 at this organelle. Stimuli that inhibit mTORC1 cause GRASP55 dephosphorylation and relocalization to UPS compartments. Through multiple, unbiased, proteomic analyses, we identify numerous cargoes that follow this unconventional secretory route to reshape the cellular secretome and surfactome. Using MMP2 secretion as a proxy for UPS, we provide important insights on its regulation and physiological role. Collectively, our findings reveal the mTORC1-GRASP55 signaling hub as the integration point in stress signaling upstream of UPS and as a key coordinator of the cellular adaptation to stress.
Asunto(s)
Proteínas de la Matriz de Golgi/genética , Proteoma/genética , Proteómica , Estrés Fisiológico/genética , Matriz Extracelular/genética , Aparato de Golgi/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas de la Membrana/genética , Transporte de Proteínas/genética , Transducción de Señal/genéticaRESUMEN
The conserved Gcn2 protein kinase mediates cellular adaptations to amino acid limitation through translational control of gene expression that is exclusively executed by phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α). Using quantitative phosphoproteomics, however, we discovered that Gcn2 targets auxiliary effectors to modulate translation. Accordingly, Gcn2 also phosphorylates the ß-subunit of the trimeric eIF2 G protein complex to promote its association with eIF5, which prevents spontaneous nucleotide exchange on eIF2 and thereby restricts the recycling of the initiator methionyl-tRNA-bound eIF2-GDP ternary complex in amino-acid-starved cells. This mechanism contributes to the inhibition of translation initiation in parallel to the sequestration of the nucleotide exchange factor eIF2B by phosphorylated eIF2α. Gcn2 further phosphorylates Gcn20 to antagonize, in an inhibitory feedback loop, the formation of the Gcn2-stimulatory Gcn1-Gcn20 complex. Thus, Gcn2 plays a substantially more intricate role in controlling translation initiation than hitherto appreciated.
Asunto(s)
Aminoácidos/deficiencia , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Retroalimentación Fisiológica , Regulación Fúngica de la Expresión Génica , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
The physiological role of immune cells in the regulation of postprandial glucose metabolism has not been fully elucidated. We have found that adipose tissue macrophages produce interleukin-10 (IL-10) upon feeding, which suppresses hepatic glucose production in cooperation with insulin. Both elevated insulin and gut-microbiome-derived lipopolysaccharide in response to feeding are required for IL-10 production via the Akt/mammalian target of rapamycin (mTOR) pathway. Indeed, myeloid-specific knockout of the insulin receptor or bone marrow transplantation of mutant TLR4 marrow cells results in increased expression of gluconeogenic genes and impaired glucose tolerance. Furthermore, myeloid-specific Akt1 and Akt2 knockout results in similar phenotypes that are rescued by additional knockout of TSC2, an inhibitor of mTOR. In obesity, IL-10 production is impaired due to insulin resistance in macrophages, whereas adenovirus-mediated expression of IL-10 ameliorates postprandial hyperglycemia. Thus, the orchestrated response of the endogenous hormone and gut environment to feeding is a key regulator of postprandial glycemia.
Asunto(s)
Tejido Adiposo/efectos de los fármacos , Hiperglucemia/patología , Insulina/farmacología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Tejido Adiposo/metabolismo , Animales , Glucemia/análisis , Gluconeogénesis/genética , Hiperglucemia/etiología , Hiperglucemia/metabolismo , Hipoglucemiantes/farmacología , Resistencia a la Insulina , Interleucina-10/fisiología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Periodo Posprandial , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/fisiologíaRESUMEN
Extra-axial cavernous hemangiomas (ECHs) are complex vascular lesions mainly found in the spine and cavernous sinus. Their removal poses significant risk due to their vascularity and diffuse nature, and their genetic underpinnings remain incompletely understood. Our approach involved genetic analyses on 31 tissue samples of ECHs employing whole-exome sequencing and targeted deep sequencing. We explored downstream signaling pathways, gene expression changes, and resultant phenotypic shifts induced by these mutations, both in vitro and in vivo. In our cohort, 77.4% of samples had somatic missense variants in GNA14, GNAQ, or GJA4. Transcriptomic analysis highlighted significant pathway upregulation, with the GNAQ c.626A>G (p.Gln209Arg) mutation elevating PI3K-AKT-mTOR and angiogenesis-related pathways, while GNA14 c.614A>T (p.Gln205Leu) mutation led to MAPK and angiogenesis-related pathway upregulation. Using a mouse xenograft model, we observed enlarged vessels from these mutations. Additionally, we initiated rapamycin treatment in a 14-year-old individual harboring the GNAQ c.626A>G (p.Gln209Arg) variant, resulting in gradual regression of cutaneous cavernous hemangiomas and improved motor strength, with minimal side effects. Understanding these mutations and their pathways provides a foundation for developing therapies for ECHs resistant to current therapies. Indeed, the administration of rapamycin in an individual within this study highlights the promise of targeted treatments in treating these complex lesions.
Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Subunidades alfa de la Proteína de Unión al GTP , Humanos , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Animales , Ratones , Femenino , Masculino , Subunidades alfa de la Proteína de Unión al GTP/genética , Mutación , Adulto , Persona de Mediana Edad , Transducción de Señal , Hemangioma Cavernoso/genética , Hemangioma Cavernoso/patología , Adolescente , Secuenciación del Exoma , Sirolimus/farmacología , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genéticaRESUMEN
The eukaryotic TORC1 kinase is a homeostatic controller of growth that integrates nutritional cues and mediates signals primarily from the surface of lysosomes or vacuoles. Amino acids activate TORC1 via the Rag GTPases that combine into structurally conserved multi-protein complexes such as the EGO complex (EGOC) in yeast. Here we show that Ego1, which mediates membrane-anchoring of EGOC via lipid modifications that it acquires while traveling through the trans-Golgi network, is separately sorted to vacuoles and perivacuolar endosomes. At both surfaces, it assembles EGOCs, which regulate spatially distinct pools of TORC1 that impinge on functionally divergent effectors: vacuolar TORC1 predominantly targets Sch9 to promote protein synthesis, whereas endosomal TORC1 phosphorylates Atg13 and Vps27 to inhibit macroautophagy and ESCRT-driven microautophagy, respectively. Thus, the coordination of three key regulatory nodes in protein synthesis and degradation critically relies on a division of labor between spatially sequestered populations of TORC1.
Asunto(s)
Proteostasis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/enzimología , Endosomas/genética , Regulación Fúngica de la Expresión Génica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Transcripción/genética , Vacuolas/enzimología , Vacuolas/genéticaRESUMEN
The mechanistic target of rapamycin (mTOR) is an important signaling hub that integrates environmental information regarding energy availability and stimulates anabolic molecular processes and cell growth. Abnormalities in this pathway have been identified in several syndromes in which autism spectrum disorder (ASD) is highly prevalent. Several studies have investigated mTOR signaling in developmental and neuronal processes that, when dysregulated, could contribute to the development of ASD. Although many potential mechanisms still remain to be fully understood, these associations are of great interest because of the clinical availability of mTOR inhibitors. Clinical trials evaluating the efficacy of mTOR inhibitors to improve neurodevelopmental outcomes have been initiated.
Asunto(s)
Trastorno Autístico/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Trastorno Autístico/genética , Trastorno Autístico/patología , Trastorno Autístico/fisiopatología , Humanos , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genéticaRESUMEN
Certain proteins assemble into diverse complex states, each having a distinct and unique function in the cell. Target of rapamycin (Tor) complex 1 (TORC1) plays a central role in signalling pathways that allow cells to respond to the environment, including nutritional status signalling. TORC1 is widely recognised for its association with various diseases. The budding yeast Saccharomyces cerevisiae has two types of TORC1, Tor1-containing TORC1 and Tor2-containing TORC1, which comprise different constituent proteins but are considered to have the same function. Here, we computationally modelled the relevant complex structures and then, based on the structures, rationally engineered a Tor2 mutant that could form Tor complex 2 (TORC2) but not TORC1, resulting in a redesign of the complex states. Functional analysis of the Tor2 mutant revealed that the two types of TORC1 induce different phenotypes, with changes observed in rapamycin, caffeine and pH dependencies of cell growth, as well as in replicative and chronological lifespan. These findings uncovered by a general approach with huge potential - model structure-based engineering - are expected to provide further insights into various fields such as molecular evolution and lifespan.
Asunto(s)
Saccharomyces cerevisiae , Saccharomycetales , Saccharomyces cerevisiae/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina , Fenotipo , SirolimusRESUMEN
Both hedgehog (Hh) and target of rapamycin complex 2 (TORC2) are central, evolutionarily conserved signaling pathways that regulate development and metabolism. In C. elegans, loss of the essential TORC2 component RICTOR (rict-1) causes delayed development, shortened lifespan, reduced brood, small size and increased fat. Here, we report that knockdown of both the hedgehog-related morphogen grd-1 and its patched-related receptor ptr-11 rescues delayed development in TORC2 loss-of-function mutants, and grd-1 and ptr-11 overexpression delays wild-type development to a similar level to that in TORC2 loss-of-function animals. These findings potentially indicate an unexpected role for grd-1 and ptr-11 in slowing developmental rate downstream of a nutrient-sensing pathway. Furthermore, we implicate the chronic stress transcription factor pqm-1 as a key transcriptional effector in this slowing of whole-organism growth by grd-1 and ptr-11. We propose that TORC2, grd-1 and ptr-11 may act linearly or converge on pqm-1 to delay organismal development.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Transducción de Señal/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Receptores PatchedRESUMEN
BACKGROUND: The sympathoadrenergic system and its major effector PKA (protein kinase A) are activated to maintain cardiac output coping with physiological or pathological stressors. If and how PKA plays a role in physiological cardiac hypertrophy (PhCH) and pathological CH (PaCH) are not clear. METHODS: Transgenic mouse models expressing the PKA inhibition domain (PKAi) of PKA inhibition peptide alpha (PKIalpha)-green fluorescence protein (GFP) fusion protein (PKAi-GFP) in a cardiac-specific and inducible manner (cPKAi) were used to determine the roles of PKA in physiological CH during postnatal growth or induced by swimming, and in PaCH induced by transaortic constriction (TAC) or augmented Ca2+ influx. Kinase profiling was used to determine cPKAi specificity. Echocardiography was used to determine cardiac morphology and function. Western blotting and immunostaining were used to measure protein abundance and phosphorylation. Protein synthesis was assessed by puromycin incorporation and protein degradation by measuring protein ubiquitination and proteasome activity. Neonatal rat cardiomyocytes (NRCMs) infected with AdGFP (GFP adenovirus) or AdPKAi-GFP (PKAi-GFP adenovirus) were used to determine the effects and mechanisms of cPKAi on myocyte hypertrophy. rAAV9.PKAi-GFP was used to treat TAC mice. RESULTS: (1) cPKAi delayed postnatal cardiac growth and blunted exercise-induced PhCH; (2) PKA was activated in hearts after TAC due to activated sympathoadrenergic system, the loss of endogenous PKIα (PKA inhibition peptide α), and the stimulation by noncanonical PKA activators; (3) cPKAi ameliorated PaCH induced by TAC and increased Ca2+ influxes and blunted neonatal rat cardiomyocyte hypertrophy by isoproterenol and phenylephrine; (4) cPKAi prevented TAC-induced protein synthesis by inhibiting mTOR (mammalian target of rapamycin) signaling through reducing Akt (protein kinase B) activity, but enhancing inhibitory GSK-3α (glycogen synthase kinase-3α) and GSK-3ß signals; (5) cPKAi reduced protein degradation by the ubiquitin-proteasome system via decreasing RPN6 phosphorylation; (6) cPKAi increased the expression of antihypertrophic atrial natriuretic peptide (ANP); (7) cPKAi ameliorated established PaCH and improved animal survival. CONCLUSIONS: Cardiomyocyte PKA is a master regulator of PhCH and PaCH through regulating protein synthesis and degradation. cPKAi can be a novel approach to treat PaCH.
Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Complejo de la Endopetidasa Proteasomal , Ratones , Ratas , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Cardiomegalia/metabolismo , Miocitos Cardíacos/metabolismo , Ratones Transgénicos , Péptidos/metabolismo , MamíferosRESUMEN
BACKGROUND: Cerebral vascular malformations (CCMs) are primarily found within the brain, where they result in increased risk for stroke, seizures, and focal neurological deficits. The unique feature of the brain vasculature is the blood-brain barrier formed by the brain neurovascular unit. Recent studies suggest that loss of CCM genes causes disruptions of blood-brain barrier integrity as the inciting events for CCM development. CCM lesions are proposed to be initially derived from a single clonal expansion of a subset of angiogenic venous capillary endothelial cells (ECs) and respective resident endothelial progenitor cells (EPCs). However, the critical signaling events in the subclass of brain ECs/EPCs for CCM lesion initiation and progression are unclear. METHODS: Brain EC-specific CCM3-deficient (Pdcd10BECKO) mice were generated by crossing Pdcd10fl/fl mice with Mfsd2a-CreERT2 mice. Single-cell RNA-sequencing analyses were performed by the chromium single-cell platform (10× genomics). Cell clusters were annotated into EC subtypes based on visual inspection and GO analyses. Cerebral vessels were visualized by 2-photon in vivo imaging and tissue immunofluorescence analyses. Regulation of mTOR (mechanistic target of rapamycin) signaling by CCM3 and Cav1 (caveolin-1) was performed by cell biology and biochemical approaches. RESULTS: Single-cell RNA-sequencing analyses from P10 Pdcd10BECKO mice harboring visible CCM lesions identified upregulated CCM lesion signature and mitotic EC clusters but decreased blood-brain barrier-associated EC clusters. However, a unique EPC cluster with high expression levels of stem cell markers enriched with mTOR signaling was identified from early stages of the P6 Pdcd10BECKO brain. Indeed, mTOR signaling was upregulated in both mouse and human CCM lesions. Genetic deficiency of Raptor (regulatory-associated protein of mTOR), but not of Rictor (rapamycin-insensitive companion of mTOR), prevented CCM lesion formation in the Pdcd10BECKO model. Importantly, the mTORC1 (mTOR complex 1) pharmacological inhibitor rapamycin suppressed EPC proliferation and ameliorated CCM pathogenesis in Pdcd10BECKO mice. Mechanistic studies suggested that Cav1/caveolae increased in CCM3-depleted EPC-mediated intracellular trafficking and complex formation of the mTORC1 signaling proteins. CONCLUSIONS: CCM3 is critical for maintaining blood-brain barrier integrity and CCM3 loss-induced mTORC1 signaling in brain EPCs initiates and facilitates CCM pathogenesis.
Asunto(s)
Células Progenitoras Endoteliales , Hemangioma Cavernoso del Sistema Nervioso Central , Diana Mecanicista del Complejo 1 de la Rapamicina , Transducción de Señal , Animales , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Ratones , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/irrigación sanguínea , Ratones Noqueados , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Ratones Endogámicos C57BL , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genéticaRESUMEN
Nutrients are not only organic compounds fueling bioenergetics and biosynthesis, but also key chemical signals controlling growth and metabolism. Nutrients enormously impact the production of reactive oxygen species (ROS), which play essential roles in normal physiology and diseases. How nutrient signaling is integrated with redox regulation is an interesting, but not fully understood, question. Herein, we report that superoxide dismutase 1 (SOD1) is a conserved component of the mechanistic target of rapamycin complex 1 (mTORC1) nutrient signaling. mTORC1 regulates SOD1 activity through reversible phosphorylation at S39 in yeast and T40 in humans in response to nutrients, which moderates ROS level and prevents oxidative DNA damage. We further show that SOD1 activation enhances cancer cell survival and tumor formation in the ischemic tumor microenvironment and protects against the chemotherapeutic agent cisplatin. Collectively, these findings identify a conserved mechanism by which eukaryotes dynamically regulate redox homeostasis in response to changing nutrient conditions.