Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 186(12): 2531-2543.e11, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295401

RESUMEN

RNA editing is a widespread epigenetic process that can alter the amino acid sequence of proteins, termed "recoding." In cephalopods, most transcripts are recoded, and recoding is hypothesized to be an adaptive strategy to generate phenotypic plasticity. However, how animals use RNA recoding dynamically is largely unexplored. We investigated the function of cephalopod RNA recoding in the microtubule motor proteins kinesin and dynein. We found that squid rapidly employ RNA recoding in response to changes in ocean temperature, and kinesin variants generated in cold seawater displayed enhanced motile properties in single-molecule experiments conducted in the cold. We also identified tissue-specific recoded squid kinesin variants that displayed distinct motile properties. Finally, we showed that cephalopod recoding sites can guide the discovery of functional substitutions in non-cephalopod kinesin and dynein. Thus, RNA recoding is a dynamic mechanism that generates phenotypic plasticity in cephalopods and can inform the characterization of conserved non-cephalopod proteins.


Asunto(s)
Cefalópodos , Dineínas , Animales , Dineínas/genética , Dineínas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , ARN/metabolismo , Cefalópodos/genética , Cefalópodos/metabolismo , Proteínas/metabolismo , Microtúbulos/metabolismo , Proteínas de Microtúbulos , Miosinas/metabolismo
2.
Cell ; 176(3): 625-635.e14, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30682371

RESUMEN

Programmed -1 ribosomal frameshifting (-1PRF) is a widely used translation recoding mechanism. HIV-1 expresses Gag-Pol protein from the Gag-coding mRNA through -1PRF, and the ratio of Gag to Gag-Pol is strictly maintained for efficient viral replication. Here, we report that the interferon-stimulated gene product C19orf66 (herein named Shiftless) is a host factor that inhibits the -1PRF of HIV-1. Shiftless (SFL) also inhibited the -1PRF of a variety of mRNAs from both viruses and cellular genes. SFL interacted with the -1PRF signal of target mRNA and translating ribosomes and caused premature translation termination at the frameshifting site. Downregulation of translation release factor eRF3 or eRF1 reduced SFL-mediated premature translation termination. We propose that SFL binding to target mRNA and the translating ribosome interferes with the frameshifting process. These findings identify SFL as a broad-spectrum inhibitor of -1PRF and help to further elucidate the mechanisms of -1PRF.


Asunto(s)
Proteínas de Fusión gag-pol/genética , VIH-1/genética , Secuencia de Bases , Sistema de Lectura Ribosómico/genética , Regulación Viral de la Expresión Génica/genética , Humanos , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Ribosomas/metabolismo , Replicación Viral/genética
3.
Annu Rev Biochem ; 87: 421-449, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925264

RESUMEN

Translation elongation is a highly coordinated, multistep, multifactor process that ensures accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of translated messenger RNA (mRNA). Although translation elongation is heavily regulated by external factors, there is clear evidence that mRNA and nascent-peptide sequences control elongation dynamics, determining both the sequence and structure of synthesized proteins. Advances in methods have driven experiments that revealed the basic mechanisms of elongation as well as the mechanisms of regulation by mRNA and nascent-peptide sequences. In this review, we highlight how mRNA and nascent-peptide elements manipulate the translation machinery to alter the dynamics and pathway of elongation.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencia de Aminoácidos , Animales , Antibacterianos/farmacología , Codón/genética , Epigénesis Genética , Sistema de Lectura Ribosómico/genética , Humanos , Cinética , Modelos Biológicos , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , ARN Mensajero/química , Ribosomas/metabolismo
4.
RNA ; 29(2): 141-152, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36649983

RESUMEN

The adaptiveness of nonsynonymous RNA editing (recoding) could be conferred by the flexibility of the temporal-spatially controllable proteomic diversity, or by its restorative effect which fixes unfavorable genomic mutations at the RNA level. These two complementary hypotheses, namely, the diversifying hypothesis and the restorative hypothesis, have distinct predictions on the landscape of RNA editing sites. We collected the chloroplast C-to-U RNA editomes of 21 vascular plants (11 angiosperms, four gymnosperms, and six ferns) from a previous study, aiming to testify whether the plant editomes typically conform to the restorative hypothesis. All predictions made by the restorative hypothesis are verified: (i) nonsynonymous editing sites are more frequent and have higher editing levels than synonymous sites; (ii) nonsynonymous editing levels are extremely high and show weak tissue-specificity in plants; (iii) on the inferred genomic sites with recent T-to-C mutations, nonsynonymous sites but not synonymous sites are compensated by C-to-U RNA editing. In conclusion, nonsynonymous C-to-U RNA editing in plants is adaptive due to its restorative effects. The recoding levels are high and are constantly required across the whole plant so that the recoding events could perfectly mimic DNA mutations. The evolutionary significance of plant RNA editing is systematically demonstrated at the genome-wide level.


Asunto(s)
Edición de ARN , ARN del Cloroplasto , ARN del Cloroplasto/genética , Edición de ARN/genética , Proteómica , ARN de Planta/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Plantas/genética , Plantas/metabolismo
5.
Mol Cell ; 66(4): 558-567.e4, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525745

RESUMEN

Ribosome frameshifting during translation of bacterial dnaX can proceed via different routes, generating a variety of distinct polypeptides. Using kinetic experiments, we show that -1 frameshifting predominantly occurs during translocation of two tRNAs bound to the slippery sequence codons. This pathway depends on a stem-loop mRNA structure downstream of the slippery sequence and operates when aminoacyl-tRNAs are abundant. However, when aminoacyl-tRNAs are in short supply, the ribosome switches to an alternative frameshifting pathway that is independent of a stem-loop. Ribosome stalling at a vacant 0-frame A-site codon results in slippage of the P-site peptidyl-tRNA, allowing for -1-frame decoding. When the -1-frame aminoacyl-tRNA is lacking, the ribosomes switch into -2 frame. Quantitative mass spectrometry shows that the -2-frame product is synthesized in vivo. We suggest that switching between frameshifting routes may enrich gene expression at conditions of aminoacyl-tRNA limitation.


Asunto(s)
Proteínas Bacterianas/biosíntesis , ADN Polimerasa III/biosíntesis , Escherichia coli/enzimología , Sistema de Lectura Ribosómico , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Proteínas Bacterianas/genética , ADN Polimerasa III/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Cinética , Mutación , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Mensajero/química , ARN Mensajero/genética , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/genética , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad , Espectrometría de Masas en Tándem
6.
Mol Cell ; 65(2): 207-219, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28107647

RESUMEN

Metal efflux pumps maintain ion homeostasis in the cell. The functions of the transporters are often supported by chaperone proteins, which scavenge the metal ions from the cytoplasm. Although the copper ion transporter CopA has been known in Escherichia coli, no gene for its chaperone had been identified. We show that the CopA chaperone is expressed in E. coli from the same gene that encodes the transporter. Some ribosomes translating copA undergo programmed frameshifting, terminate translation in the -1 frame, and generate the 70 aa-long polypeptide CopA(Z), which helps cells survive toxic copper concentrations. The high efficiency of frameshifting is achieved by the combined stimulatory action of a "slippery" sequence, an mRNA pseudoknot, and the CopA nascent chain. Similar mRNA elements are not only found in the copA genes of other bacteria but are also present in ATP7B, the human homolog of copA, and direct ribosomal frameshifting in vivo.


Asunto(s)
Adenosina Trifosfatasas/biosíntesis , Proteínas de Transporte de Catión/biosíntesis , Cobre/metabolismo , Escherichia coli/enzimología , Sistema de Lectura Ribosómico , Chaperonas Moleculares/biosíntesis , Ribosomas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , ATPasas Transportadoras de Cobre , Escherichia coli/genética , Proteínas de Escherichia coli , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Genotipo , Células HEK293 , Homeostasis , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutación , Conformación de Ácido Nucleico , Terminación de la Cadena Péptídica Traduccional , Fenotipo , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transfección
7.
Cell Mol Life Sci ; 81(1): 136, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478033

RESUMEN

BACKGROUND: Metazoan adenosine-to-inosine (A-to-I) RNA editing resembles A-to-G mutation and increases proteomic diversity in a temporal-spatial manner, allowing organisms adapting to changeable environment. The RNA editomes in many major animal clades remain unexplored, hampering the understanding on the evolution and adaptation of this essential post-transcriptional modification. METHODS: We assembled the chromosome-level genome of Coridius chinensis belonging to Hemiptera, the fifth largest insect order where RNA editing has not been studied yet. We generated ten head RNA-Seq libraries with DNA-Seq from the matched individuals. RESULTS: We identified thousands of high-confidence RNA editing sites in C. chinensis. Overrepresentation of nonsynonymous editing was observed, but conserved recoding across different orders was very rare. Under cold stress, the global editing efficiency was down-regulated and the general transcriptional processes were shut down. Nevertheless, we found an interesting site with "conserved editing but non-conserved recoding" in potassium channel Shab which was significantly up-regulated in cold, serving as a candidate functional site in response to temperature stress. CONCLUSIONS: RNA editing in C. chinensis largely recodes the proteome. The first RNA editome in Hemiptera indicates independent origin of beneficial recoding during insect evolution, which advances our understanding on the evolution, conservation, and adaptation of RNA editing.


Asunto(s)
Adenosina , ARN , Humanos , Animales , ARN/genética , Adenosina/genética , Intrones , Proteómica , Inosina/genética , Insectos/genética
8.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046019

RESUMEN

The use of biologics in the treatment of numerous diseases has increased steadily over the past decade due to their high specificities, low toxicity, and limited side effects. Despite this success, peptide- and protein-based drugs are limited by short half-lives and immunogenicity. To address these challenges, we use a genomically recoded organism to produce genetically encoded elastin-like polypeptide-protein fusions containing multiple instances of para-azidophenylalanine (pAzF). Precise lipidation of these pAzF residues generated a set of sequence-defined synthetic biopolymers with programmable binding affinity to albumin without ablating the activity of model fusion proteins, and with tunable blood serum half-lives spanning 5 to 94% of albumin's half-life in a mouse model. Our findings present a proof of concept for the use of genetically encoded bioorthogonal conjugation sites for multisite lipidation to tune protein stability in mouse serum. This work establishes a programmable approach to extend and tune the half-life of protein or peptide therapeutics and a technical foundation to produce functionalized biopolymers endowed with programmable chemical and biophysical properties with broad applications in medicine, materials science, and biotechnology.


Asunto(s)
Biopolímeros/química , Lípidos/química , Péptidos/química , Proteínas/química , Aminoácidos , Animales , Semivida , Ratones , Ingeniería de Proteínas/métodos , Biología Sintética/métodos
9.
BMC Genomics ; 25(1): 803, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187830

RESUMEN

BACKGROUND: Adenosine-to-inosine (A-to-I) RNA editing is a co-/post-transcriptional modification introducing A-to-G variations in RNAs. There is extensive discussion on whether the flexibility of RNA editing exerts a proteomic diversification role, or it just acts like hardwired mutations to correct the genomic allele. Eusocial insects evolved the ability to generate phenotypically differentiated individuals with the same genome, indicating the involvement of epigenetic/transcriptomic regulation. METHODS: We obtained the genomes of 104 Hymenoptera insects and the transcriptomes of representative species. Comparative genomic analysis was performed to parse the evolutionary trajectory of a regulatory Ile > Met auto-recoding site in Adar gene. RESULTS: At genome level, the pre-editing Ile codon is conserved across a node containing all eusocial hymenopterans. At RNA level, the editing events are confirmed in representative species and shows considerable condition-specificity. Compared to random expectation, the editable Ile codon avoids genomic substitutions to Met or to uneditable Ile codons, but does not avoid mutations to other unrelated amino acids. CONCLUSIONS: The flexibility of Adar auto-recoding site in Hymenoptera is selectively maintained, supporting the flexible RNA editing hypothesis. We proposed a new angle to view the adaptation of RNA editing, providing another layer to explain the great phenotypical plasticity of eusocial insects.


Asunto(s)
Adenosina Desaminasa , Adenosina , Evolución Molecular , Inosina , Edición de ARN , Animales , Inosina/metabolismo , Inosina/genética , Adenosina/metabolismo , Adenosina/genética , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Filogenia , Insectos/genética , Himenópteros/genética , Transcriptoma , Genoma de los Insectos
10.
Neuroimage ; 297: 120710, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38942100

RESUMEN

Working memory (WM) supports future behavior by retaining perceptual information obtained in the recent past. The present study tested the hypothesis that WM recodes sensory information in a format that better supports behavioral goals. We recorded EEG while participants performed color delayed-estimation tasks where the colorwheel for the response was either randomly rotated or held fixed across trials. Accordingly, observers had to remember the exact colors in the Rotation condition, whereas they could prepare for a response based on the fixed mapping between the colors and their corresponding locations on the colorwheel in the No-Rotation condition. Results showed that the color reports were faster and more precise in the No-Rotation condition even when exactly the same set of colors were tested in both conditions. To investigate how the color information was maintained in the brain, we decoded the color using a multivariate EEG classification method. The decoding was limited to the stimulus encoding period in the Rotation condition, whereas it continued to be significant during the maintenance period in the No-Rotation condition, indicating that the color information was actively maintained in the condition. Follow-up analyses suggested that the prolonged decoding was not merely driven by the covert shift of attention but rather by the recoding of sensory information into an action-oriented response format. Together, these results provide converging evidence that WM flexibly recodes sensory information depending on the specific task context to optimize subsequent behavioral performance.


Asunto(s)
Percepción de Color , Electroencefalografía , Memoria a Corto Plazo , Humanos , Memoria a Corto Plazo/fisiología , Electroencefalografía/métodos , Masculino , Femenino , Adulto Joven , Adulto , Percepción de Color/fisiología , Atención/fisiología , Encéfalo/fisiología
11.
J Mol Evol ; 92(4): 488-504, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39012510

RESUMEN

Adenosine-to-inosine (A-to-I) RNA editing recodes the genetic information. Apart from diversifying the proteome, another tempting advantage of RNA recoding is to correct deleterious DNA mutation and restore ancestral allele. Solid evidences for beneficial restorative editing are very rare in animals. By searching for "convergent recoding" under a phylogenetic context, we proposed this term for judging the potential restorative functions of particular editing site. For the well-known mammalian Gln>Arg (Q>R) recoding site, its ancestral state in vertebrate genomes was the pre-editing Gln, and all 470 available mammalian genomes strictly avoid other three equivalent ways to achieve Arg in protein. The absence of convergent recoding from His>Arg, or synonymous mutations on Gln codons, could be attributed to the strong maintenance on editing motif and structure, but the absence of direct A-to-G mutation is extremely unexpected. With similar ideas, we found cases of convergent recoding in Drosophila genus, reducing the possibility of their restorative function. In summary, we defined an interesting scenario of convergent recoding, the occurrence of which could be used as preliminary judgements for whether a recoding site has a sole restorative role. Our work provides novel insights to the natural selection and evolution of RNA editing.


Asunto(s)
Adenosina , Codón , Evolución Molecular , Inosina , Filogenia , Edición de ARN , Edición de ARN/genética , Animales , Inosina/genética , Adenosina/genética , Adenosina/metabolismo , Codón/genética , Selección Genética , Humanos , Drosophila/genética
12.
RNA ; 28(10): 1281-1297, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35863867

RESUMEN

The adenosine deaminase acting on RNA (ADAR) enzymes are essential for neuronal function and innate immune control. ADAR1 RNA editing prevents aberrant activation of antiviral dsRNA sensors through editing of long, double-stranded RNAs (dsRNAs). In this review, we focus on the ADAR2 proteins involved in the efficient, highly site-specific RNA editing to recode open reading frames first discovered in the GRIA2 transcript encoding the key GLUA2 subunit of AMPA receptors; ADAR1 proteins also edit many of these sites. We summarize the history of ADAR2 protein research and give an up-to-date review of ADAR2 structural studies, human ADARBI (ADAR2) mutants causing severe infant seizures, and mouse disease models. Structural studies on ADARs and their RNA substrates facilitate current efforts to develop ADAR RNA editing gene therapy to edit disease-causing single nucleotide polymorphisms (SNPs). Artificial ADAR guide RNAs are being developed to retarget ADAR RNA editing to new target transcripts in order to correct SNP mutations in them at the RNA level. Site-specific RNA editing has been expanded to recode hundreds of sites in CNS transcripts in Drosophila and cephalopods. In Drosophila and C. elegans, ADAR RNA editing also suppresses responses to self dsRNA.


Asunto(s)
Adenosina Desaminasa , Adenosina Desaminasa/metabolismo , Animales , Antivirales , Caenorhabditis elegans/genética , Drosophila/genética , Terapia Genética , Humanos , Ratones , ARN Bicatenario/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo
13.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33500350

RESUMEN

Translational stop codon readthrough occurs in organisms ranging from viruses to mammals and is especially prevalent in decoding Drosophila and viral mRNAs. Recoding of UGA, UAG, or UAA to specify an amino acid allows a proportion of the protein encoded by a single gene to be C-terminally extended. The extended product from Drosophila kelch mRNA is 160 kDa, whereas unextended Kelch protein, a subunit of a Cullin3-RING ubiquitin ligase, is 76 kDa. Previously we reported tissue-specific regulation of readthrough of the first kelch stop codon. Here, we characterize major efficiency differences in a variety of cell types. Immunoblotting revealed low levels of readthrough in malpighian tubules, ovary, and testis but abundant readthrough product in lysates of larval and adult central nervous system (CNS) tissue. Reporters of readthrough demonstrated greater than 30% readthrough in adult brains, and imaging in larval and adult brains showed that readthrough occurred in neurons but not glia. The extent of readthrough stimulatory sequences flanking the readthrough stop codon was assessed in transgenic Drosophila and in human tissue culture cells where inefficient readthrough occurs. A 99-nucleotide sequence with potential to form an mRNA stem-loop 3' of the readthrough stop codon stimulated readthrough efficiency. However, even with just six nucleotides of kelch mRNA sequence 3' of the stop codon, readthrough efficiency only dropped to 6% in adult neurons. Finally, we show that high-efficiency readthrough in the Drosophila CNS is common; for many neuronal proteins, C-terminal extended forms of individual proteins are likely relatively abundant.


Asunto(s)
Codón/genética , Drosophila melanogaster/genética , Especificidad de Órganos/genética , Animales , Sistema Nervioso Central/metabolismo , ADN Complementario/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Genes Reporteros , Células HEK293 , Humanos , Discos Imaginales/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
Biol Chem ; 404(8-9): 755-767, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37077160

RESUMEN

In each round of translation elongation, the ribosome translocates along the mRNA by precisely one codon. Translocation is promoted by elongation factor G (EF-G) in bacteria (eEF2 in eukaryotes) and entails a number of precisely-timed large-scale structural rearrangements. As a rule, the movements of the ribosome, tRNAs, mRNA and EF-G are orchestrated to maintain the exact codon-wise step size. However, signals in the mRNA, as well as environmental cues, can change the timing and dynamics of the key rearrangements leading to recoding of the mRNA into production of trans-frame peptides from the same mRNA. In this review, we discuss recent advances on the mechanics of translocation and reading frame maintenance. Furthermore, we describe the mechanisms and biological relevance of non-canonical translocation pathways, such as hungry and programmed frameshifting and translational bypassing, and their link to disease and infection.


Asunto(s)
Factor G de Elongación Peptídica , Ribosomas , ARN Mensajero/metabolismo , Factor G de Elongación Peptídica/genética , Ribosomas/genética , Ribosomas/metabolismo , Biosíntesis de Proteínas/genética , Codón/análisis , Codón/metabolismo , Sistemas de Lectura , ARN de Transferencia/genética
15.
RNA ; 27(12): 1482-1496, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34535545

RESUMEN

Conversion of adenosine to inosine in RNA by ADAR enzymes, termed "RNA editing," is essential for healthy brain development. Editing is dysregulated in neuropsychiatric diseases, but has not yet been investigated at scale at the level of individual neurons. We quantified RNA editing sites in nuclear transcriptomes of 3055 neurons from six cortical regions of a neurotypical female donor, and found 41,930 sites present in at least ten nuclei. Most sites were located within Alu repeats in introns or 3' UTRs, and approximately 80% were cataloged in public RNA editing databases. We identified 9285 putative novel editing sites, 29% of which were also detectable in unrelated donors. Intersection with results from bulk RNA-seq studies provided cell-type and spatial context for 1730 sites that are differentially edited in schizophrenic brain donors, and 910 such sites in autistic donors. Autism-related genes were also enriched with editing sites predicted to modify RNA structure. Inhibitory neurons showed higher overall transcriptome editing than excitatory neurons, and the highest editing rates were observed in the frontal cortex. We used generalized linear models to identify differentially edited sites and genes between cell types. Twenty nine genes were preferentially edited in excitatory neurons, and 43 genes were edited more heavily in inhibitory neurons, including RBFOX1, its target genes, and genes in the autism-associated Prader-Willi locus (15q11). The abundance of SNORD115/116 genes from locus 15q11 was positively associated with editing activity across the transcriptome. We contend that insufficient editing of autism-related genes in inhibitory neurons may contribute to the specific perturbation of those cells in autism.


Asunto(s)
Trastorno Autístico/patología , Bases de Datos Factuales/estadística & datos numéricos , Genoma Humano , Interneuronas/patología , Edición de ARN , Esquizofrenia/patología , Transcriptoma , Trastorno Autístico/genética , Humanos , Interneuronas/metabolismo , Esquizofrenia/genética
16.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33401309

RESUMEN

A-to-I RNA editing, contributing to nearly 90% of all editing events in human, has been reported to involve in the pathogenesis of Alzheimer's disease (AD) due to its roles in brain development and immune regulation, such as the deficient editing of GluA2 Q/R related to cell death and memory loss. Currently, there are urgent needs for the systematic annotations of A-to-I RNA editing events in AD. Here, we built ADeditome, the annotation database of A-to-I RNA editing in AD available at https://ccsm.uth.edu/ADeditome, aiming to provide a resource and reference for functional annotation of A-to-I RNA editing in AD to identify therapeutically targetable genes in an individual. We detected 1676 363 editing sites in 1524 samples across nine brain regions from ROSMAP, MayoRNAseq and MSBB. For these editing events, we performed multiple functional annotations including identification of specific and disease stage associated editing events and the influence of editing events on gene expression, protein recoding, alternative splicing and miRNA regulation for all the genes, especially for AD-related genes in order to explore the pathology of AD. Combing all the analysis results, we found 108 010 and 26 168 editing events which may promote or inhibit AD progression, respectively. We also found 5582 brain region-specific editing events with potentially dual roles in AD across different brain regions. ADeditome will be a unique resource for AD and drug research communities to identify therapeutically targetable editing events. Significance: ADeditome is the first comprehensive resource of the functional genomics of individual A-to-I RNA editing events in AD, which will be useful for many researchers in the fields of AD pathology, precision medicine, and therapeutic researches.


Asunto(s)
Adenosina/metabolismo , Enfermedad de Alzheimer/genética , Amnesia/genética , Inosina/metabolismo , Proteínas del Tejido Nervioso/genética , Edición de ARN , Transcriptoma , Adenosina/genética , Empalme Alternativo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amnesia/metabolismo , Amnesia/patología , Encéfalo/metabolismo , Encéfalo/patología , Mapeo Encefálico , Bases de Datos Genéticas , Ontología de Genes , Humanos , Inosina/genética , MicroARNs/clasificación , MicroARNs/genética , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Proteínas del Tejido Nervioso/clasificación , Proteínas del Tejido Nervioso/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo
17.
Mol Phylogenet Evol ; 189: 107924, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37699449

RESUMEN

Psyllids (class Insecta: order Hemiptera: superfamily Psylloidea) are a taxonomically and phylogenetically challenging clade. Recent studies have largely advanced the phylogeny of this group, yet the family-level relationships among Aphalaridae, Carsidaridae, and others remain unresolved. Genome-scale phylogenetic analysis is known to provide a finer resolution for problems like that. However, such phylogenomics also introduces new problems: incorrect trees with high confidence yielded due to systematic error (bias). Here we addressed these issues using hundreds of single-copy orthologous (SCO) genes in psyllid transcriptomes and genomes. Our analyses revealed conflicts between the nucleotide-based and amino-acid-based phylogenetic trees. While the nucleotide-based phylogeny strongly supported the (Aphalaridae + Carsidaridae) + Others relationship, the amino-acid-based one recovered Aphalaridae + (Carsidaridae + Others) with 100% support. Further inspection revealed significant compositional heterogeneity in nucleotide sequences for 67% of SCO genes, but not in the corresponding translated amino acid sequences. We then used different strategies to combat this compositional bias, and found that using the RY-coding strategy (coding the standard nucleotides as purines and pyrimidines) the nucleotide-based phylogeny became consistent with the amino-acid-based one. We further applied RY-coding to a published concatenated nucleotide dataset and recovered the Aphalaridae monophyly (which is refuted by the original literature on non-recoded sequences) at the base of psyllid tree. Moreover, it was found that variations in evolutionary rate could lead to errors in nucleotide-based phylogeny. The fast-evolving Heteropsylla cubana (Psyllidae: Ciriacreminae) was incorrectly placed within the subfamily Psyllinae. This bias can be avoided by using data removal or RY-coding strategies. Together, our results strongly support the family relationship of Aphalaridae + (Carsidaridae + Others), and show that the amino-acid-based concatenation analysis is more robust than nucleotide-based one. Future phylogenomic analysis of psyllid nucleotide sequences should take into account methods such as the RY-coding scheme to address potential systematic biases arising from composition and rate heterogeneities.


Asunto(s)
Hemípteros , Animales , Filogenia , Hemípteros/genética , Evolución Biológica , Nucleótidos , Aminoácidos/genética , Sesgo
18.
RNA Biol ; 20(1): 703-714, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37676051

RESUMEN

Adenosine-to-inosine (A-to-I) RNA editing, mediated by metazoan ADAR enzymes, is a prevalent post-transcriptional modification that diversifies the proteome and promotes adaptive evolution of organisms. The Drosophila Adar gene has an auto-recoding site (termed S>G site) that forms a negative-feedback loop and stabilizes the global editing activity. However, the evolutionary trajectory of Adar S>G site in many other insects remains largely unknown, preventing us from a deeper understanding on the significance of this auto-editing mechanism. In this study, we retrieved the well-annotated genomes of 375 arthropod species including the five major insect orders (Lepidoptera, Diptera, Coleoptera, Hymenoptera and Hemiptera) and several outgroup species. We performed comparative genomic analysis on the Adar auto-recoding S>G site. We found that the ancestral state of insect S>G site was an uneditable serine codon (unSer) and that this state was largely maintained in Hymenoptera. The editable serine codon (edSer) appeared in the common ancestor of Lepidoptera, Diptera and Coleoptera and was almost fixed in the three orders. Interestingly, Hemiptera species possessed comparable numbers of unSer and edSer codons, and a few 'intermediate codons', demonstrating a multi-step evolutionary trace from unSer-to-edSer with non-synchronized mutations at three codon positions. We argue that the evolution of Adar S>G site is the best genomic evidence supporting the 'proteomic diversifying hypothesis' of RNA editing. Our work deepens our understanding on the evolutionary significance of Adar auto-recoding site which stabilizes the global editing activity and controls transcriptomic diversity.


Asunto(s)
Escarabajos , Proteínas de Drosophila , Hemípteros , Animales , Hemípteros/genética , Proteómica , Edición de ARN , Insectos , Genes de Insecto , Drosophila/genética , Adenosina Desaminasa/genética , Proteínas de Drosophila/genética
19.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894982

RESUMEN

Metagenomics provides detection of phage genome sequences in various microbial communities. However, the use of alternative genetic codes by some phages precludes the correct analysis of their genomes. In this study, the unusual phage genome (phAss-1, 135,976 bp) was found after the de novo assembly of the human gut virome. Genome analysis revealed the presence of the TAG stop codons in 41 ORFs, including characteristic phage ORFs, and three genes of suppressor tRNA. Comparative analysis indicated that no phages with similar genomes were described. However, two phage genomes (BK046881_ctckW2 and BK025033_ct6IQ4) with substantial similarity to phAss-1 were extracted from the human gut metagenome data. These two complete genomes demonstrated 82.7% and 86.4% of nucleotide identity, respectively, similar genome synteny to phAss-1, the presence of suppressor tRNA genes and suppressor TAG stop codons in many characteristic phage ORFs. These data indicated that phAss-1, BK046881_ctckW2, and BK025033_ct6IQ4 are distinct species within the proposed Phassvirus genus. Moreover, a monophyletic group of divergent phage genomes containing the proposed Phassvirus genus was found among metagenome data. Several phage genomes from the group also contain ORFs with suppressor TAG stop codons, indicating the need to use various translation tables when depositing phage genomes in GenBank.


Asunto(s)
Bacteriófagos , Humanos , Bacteriófagos/genética , Viroma , Codón de Terminación/genética , Genoma Viral , Código Genético , ARN de Transferencia/genética , Filogenia
20.
Entropy (Basel) ; 25(7)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37510001

RESUMEN

Multi-hop networks have become popular network topologies in various emerging Internet of Things (IoT) applications. Batched network coding (BNC) is a solution to reliable communications in such networks with packet loss. By grouping packets into small batches and restricting recoding to the packets belonging to the same batch; BNC has much smaller computational and storage requirements at intermediate nodes compared with direct application of random linear network coding. In this paper, we discuss a practical recoding scheme called blockwise adaptive recoding (BAR) which learns the latest channel knowledge from short observations so that BAR can adapt to fluctuations in channel conditions. Due to the low computational power of remote IoT devices, we focus on investigating practical concerns such as how to implement efficient BAR algorithms. We also design and investigate feedback schemes for BAR under imperfect feedback systems. Our numerical evaluations show that BAR has significant throughput gain for small batch sizes compared with existing baseline recoding schemes. More importantly, this gain is insensitive to inaccurate channel knowledge. This encouraging result suggests that BAR is suitable to be used in practice as the exact channel model and its parameters could be unknown and subject to changes from time to time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA