Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Neurocase ; 26(1): 55-59, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31762364

RESUMEN

Virtual reality (VR) systems have been integrated into rehabilitation techniques for phantom limb pain (PLP). In this case report, we used electroencephalography (EEG) to analyze corticocortical coherence between the bilateral sensorimotor cortices during vibrotactile stimulation in conjunction with VR rehabilitation in two PLP patients. As a result, we observed PLP alleviation and increased alpha wave coherence during VR rehabilitation when stimulation was delivered to the cheek and shoulder (referred sensation areas) of the affected side. Vibrotactile stimulation with VR rehabilitation may enhance the awareness and movement of the phantom hand.


Asunto(s)
Ritmo alfa/fisiología , Sincronización de Fase en Electroencefalografía/fisiología , Rehabilitación Neurológica/métodos , Dolor Referido , Miembro Fantasma/fisiopatología , Miembro Fantasma/rehabilitación , Corteza Sensoriomotora/fisiopatología , Realidad Virtual , Adulto , Humanos , Estimulación Física , Percepción del Tacto/fisiología , Vibración
2.
Exp Brain Res ; 236(6): 1815-1824, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29666885

RESUMEN

Phantom limb pain is a restricting condition for a substantial number of amputees with quite different characteristics of pain. Here, we report on a forearm amputee with constant phantom pain in the hand, in whom we could regularly elicit the rare phenomenon of referred cramping phantom pain by touching the face. To clarify the underlying mechanisms, we followed the cramp during the course of an axillary blockade of the brachial plexus. During the blockade, both phantom pain and the referred cramp were abolished, while a referred sensation of "being touched at the phantom" persisted. Furthermore, to identify the cortical substrate, we elicited the cramp during functional magnetic imaging. Imaging revealed that referred cramping phantom limb pain was associated with brain activation of the hand representation in the primary sensorimotor cortex. The results support the hypothesis that referred cramping phantom limb pain in this case is associated with a substantial brain activation in the hand area of the deafferented sensorimotor cortex. However, this alone is not sufficient to elicit referred cramping phantom limb pain. Peripheral inputs, both, from the arm nerves affected by the amputation and from the skin in the face at which the referred cramp is evoked, are a precondition for referred cramping phantom limb pain to occur, at least in this case.


Asunto(s)
Cara/fisiología , Mano/fisiopatología , Calambre Muscular/fisiopatología , Bloqueo Nervioso/métodos , Dolor Referido/fisiopatología , Miembro Fantasma/fisiopatología , Corteza Somatosensorial/fisiopatología , Percepción del Tacto/fisiología , Amputados , Anestésicos Locales/farmacología , Plexo Braquial/efectos de los fármacos , Bupivacaína/farmacología , Femenino , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Miembro Fantasma/diagnóstico por imagen , Corteza Somatosensorial/diagnóstico por imagen , Percepción del Tacto/efectos de los fármacos
3.
Neurocase ; 24(2): 98-104, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29693492

RESUMEN

When someone touches, say, your upper arm, mirror neurons in your brain's area S2 fire. These neurons also fire when you merely watch another person being touched. However, you do not literally feel the touch from his arm on your own skin. Consistent with this view, we find when someone's arm is removed, he does start experiencing another's sensations [Ramachandran, V. S., & Brang, D. (2009)]. A congenital variant of this syndrome also exists, as in our subject TC. TC experienced referred touch, referred tickle in her axilla, and was able to tickle herself.


Asunto(s)
Trastornos de la Percepción/psicología , Autoimagen , Percepción del Tacto , Discriminación en Psicología , Emociones , Femenino , Humanos , Sinestesia , Tacto , Adulto Joven
4.
J Neural Eng ; 20(6)2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37863034

RESUMEN

Objective.This study's objective is to understand distally-referred surface electrical nerve stimulation (DR-SENS) and evaluates the effects of electrode placement, polarity, and stimulation intensity on the location of elicited sensations in non-disabled individuals.Approach.A two-phased human experiment was used to characterize DR-SENS. In Experiment One, we explored 182 electrode combinations to identify a subset of electrode position combinations that would be most likely to elicit distally-referred sensations isolated to the index finger without discomfort. In Experiment Two, we further examined this subset of electrode combinations to determine the effect of stimulation intensity and electrode position on perceived sensation location. Stimulation thresholds were evaluated using parameter estimation by sequential testing and sensation locations were characterized using psychometric intensity tests.Main Results.We found that electrode positions distal to the wrist can consistently evoke distally referred sensations with no significant polarity dependency. The finger-palm combination had the most occurrences of distal sensations, and the different variations of this combination did not have a significant effect on sensation location. Increasing stimulation intensity significantly expanded the area of the sensation, moved the most distal sensation distally, and moved the vertical centroid proximally. Also, a large anodic-leading electrode at the elbow mitigated all sensation at the anodic-leading electrode site while using symmetric stimulation waveforms. Furthermore, this study showed that the most intense sensation for a given percept can be distally referred. Lastly, for each participant, at least one of the finger-palm combinations evaluated in this study worked at both perception threshold and maximum comfortable stimulation intensities.Significance.These findings show that a non-invasive surface electrical stimulation charge modulated haptic interface can be used to elicit distally-referred sensations on non-disabled users. Furthermore, these results inform the design of novel haptic interfaces and other applications of surface electrical stimulation based haptic feedback on electrodes positioned distally from the wrist.


Asunto(s)
Interfaces Hápticas , Tecnología Háptica , Humanos , Retroalimentación , Mano/fisiología , Estimulación Eléctrica/métodos
5.
J Neural Eng ; 19(5)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36001115

RESUMEN

Objective.Electrical stimulation can induce sensation in the phantom limb of individuals with amputation. It is difficult to generalize existing findings as there are many approaches to delivering stimulation and to assessing the characteristics and benefits of sensation. Therefore, the goal of this systematic review was to explore the stimulation parameters that effectively elicited referred sensation, the qualities of elicited sensation, and how the utility of referred sensation was assessed.Approach.We searched PubMed, Web of Science, and Engineering Village through January of 2022 to identify relevant papers. We included papers which electrically induced referred sensation in individuals with limb loss and excluded papers that did not contain stimulation parameters or outcome measures pertaining to stimulation. We extracted information on participant demographics, stimulation approaches, and participant outcomes.Main results.After applying exclusion criteria, 49 papers were included covering nine stimulation methods. Amplitude was the most commonly adjusted parameter (n= 25), followed by frequency (n= 22), and pulse width (n= 15). Of the 63 reports of sensation quality, most reported feelings of pressure (n= 52), paresthesia (n= 48), or vibration (n= 40) while less than half (n= 29) reported a sense of position or movement. Most papers evaluated the functional benefits of sensation (n= 33) using force matching or object identification tasks, while fewer papers quantified subjective measures (n= 16) such as pain or embodiment. Only 15 studies (36%) observed percept intensity, quality, or location over multiple sessions.Significance.Most studies that measured functional performance demonstrated some benefit to providing participants with sensory feedback. However, few studies could experimentally manipulate sensation location or quality. Direct comparisons between studies were limited by variability in methodologies and outcome measures. As such, we offer recommendations to aid in more standardized reporting for future research.


Asunto(s)
Amputados , Miembros Artificiales , Miembro Fantasma , Retroalimentación Sensorial , Humanos , Sensación
6.
Restor Neurol Neurosci ; 39(2): 101-110, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33682735

RESUMEN

BACKGROUND: Patients with brachial plexus avulsion (BPA) usually experience phantom sensations and phantom limb pain (PLP) in the deafferented limb. It has been suggested that evoking the sensation of touch in the deafferented limb by stimulating referred sensation areas (RSAs) on the cheek or shoulder might alleviate PLP. However, feasible rehabilitation techniques using this approach have not been reported. OBJECTIVE: The present study sought to examine the analgesic effects of simple electrical stimulation of RSAs in BPA patients with PLP. METHODS: Study 1: Electrical stimulation of RSAs for 60 minutes was conducted for six BPA patients suffering from PLP to examine short-term analgesic effects. Study 2: A single case design experiment was conducted with two BPA patients to investigate whether electrical stimulation of RSAs was more effective for alleviating PLP than control electrical stimulation (electrical stimulation of sites on side opposite to the RSAs), and to elucidate the long-term effects of electrical stimulation of RSAs. RESULTS: Study 1: Electrical stimulation of RSAs evoked phantom touch sensations in the deafferented limb, and significantly alleviated PLP (p < 0.05). Study 2: PLP was alleviated more after electrical stimulation on RSAs compared with control electrical stimulation (p < 0.05). However, the analgesic effects of electrical stimulation on RSAs were observed only in the short term, not in the long term (p > 0.05). CONCLUSIONS: Electrical stimulation of RSAs not only evoked phantom touch sensation but also alleviated PLP in the short term. The results indicate that electrical stimulation of RSAs may provide a useful practical rehabilitation technique for PLP. Future studies will be required to clarify the mechanisms underlying immediate PLP alleviation via electrical stimulation of RSAs.


Asunto(s)
Dolor , Miembro Fantasma , Percepción del Tacto , Analgésicos , Estimulación Eléctrica , Humanos , Miembro Fantasma/terapia , Tacto
7.
Brain Imaging Behav ; 15(4): 1788-1801, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32712798

RESUMEN

The aim of this study is to examine cortical plasticity and to analyze cortical reorganization following hand and facial transplantation, using functional magnetic resonance imaging. Patients who had undergone full-face transplantation, hand transplantation and scapular arm replantation, as well as healthy controls, participated in the study. The perioral area and volar surfaces of the index finger and thumb were stimulated and images were acquired using 3 T functional MRI. The areas of the somatosensory cortex representing the hand and face are different in size and shape due to experience-dependent plasticity. Therefore, a new and more adaptive volume of interest analysis was created whereby the radiuses of the VOI masks were defined by the peak intensity of subsequent clusters. For each control subject, the distribution of activated voxels was observed for various cluster defining thresholds in order to determine the mean number of activated voxels for each stimulation inside the defined region. The determined numbers of voxels per subject were extracted from the defined regions using a binary search algorithm. Subsequently, the distances between the weighted centers of the extracted regions were calculated and compared. In transplant patients, the weighted centers of the hand and face clusters were separated at same-sized volumes. Two of the rehabilitated full-face transplant patients converge to the range of the controls. As a result, the weighted distribution of somatotopy indicated previous and present cortical reorganization. Additionally, referred sensation was assessed in two full-face transplant and one replant patient with activation clusters partially in BA40 in the Inferior Parietal Lobule.


Asunto(s)
Brazo , Imagen por Resonancia Magnética , Mapeo Encefálico , Mano , Humanos , Plasticidad Neuronal , Lóbulo Parietal , Corteza Somatosensorial/diagnóstico por imagen
8.
IBRO Rep ; 9: 78-84, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32715148

RESUMEN

People with amputation may perceive phantom limb sensations or pain in the amputated body part when ipsilateral body-regions are stimulated. These body-regions are called receptive fields. This study assessed whether receptive fields change in size and position over the course of one month in people with trans-tibial amputation and whether electrical stimulation of these fields in synchrony with walking affects phantom sensations and variables of gait. Thirty-one subjects participated in this study. Receptive fields were mapped seven times over a one month period. Thereafter, the effect of electrical stimulation in synchrony with walking was compared to placebo stimulation in an acute setting with a randomized, single-blind gait analysis in 18 participants. Results showed that receptive field size and position presented an adequate degree of consistency (difference in point of first response position of 4.9 ± 4.8 cm and overlap of total receptive field area of 54.3 ± 35.0 %) for future use of electrical stimulation. Gait parameters for everyday activities (speed, gait width, % stance and swing phase) as well as perception of phantom pain were not altered to a clinically relevant degree by electrical stimulation and no negative effects were reported. In conclusion: Location and size of receptive fields are consistent enough for daily electrical stimulation without laborious daily assessment. If applied acutely, no significant effect on gait or pain could be detected. However, results are promising enough to test chronic application of electrical stimulation during gait in a long-term setting.

9.
Open Biomed Eng J ; 12: 1-15, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29541258

RESUMEN

BACKGROUND: Electrical stimulation is increasingly relevant in a variety of medical treatments. In this study, surface electrical stimulation was evaluated as a method to non-invasively target a neural function, specifically natural sensation in the distal limbs. METHOD: Electrodes were placed over the median and ulnar nerves at the elbow and the common peroneal and lateral sural cutaneous nerves at the knee. Strength-duration curves for sensation were compared between nerves. The location, modality, and intensity of each sensation were also analyzed. In an effort to evoke natural sensations, several patterned waveforms were evaluated. RESULTS: Distal sensation was obtained in all but one of the 48 nerves tested in able-bodied subjects and in the two nerves from subjects with an amputation. Increasing the pulse amplitude of the stimulus caused an increase in the area and magnitude of the sensation in a majority of subjects. A low frequency waveform evoked a tapping or tapping-like sensation in 29 out of the 31 able-bodied subjects and a sensation that could be considered natural in two subjects with an amputation. This waveform performed better than other patterned waveforms that had proven effective during implanted extra-neural stimulation. CONCLUSION: Surface electrical stimulation has the potential to be a powerful, non-invasive tool for activation of the nervous system. These results suggest that a tapping sensation in the distal extremity can be evoked in most able-bodied individuals and that targeting the nerve trunk from the surface is a valid method to evoke sensation in the phantom limb of individuals with an amputation for short term applications.

10.
Front Neurol ; 8: 8, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28163694

RESUMEN

Unilateral major limb amputation causes changes in sensory perception. Changes may occur within not only the residual limb but also the intact limb as well as the brain. We tested the hypothesis that limb amputation may result in the detection of hand sensation during stimulation of a non-limb-related body region. We further investigated the responses of unilateral upper limb amputees and individuals with all limbs intact to temporally based sensory tactile testing of the fingertips to test the hypothesis that changes in sensory perception also have an effect on the intact limb. Upper extremity amputees were assessed for the presence of referred sensations (RSs)-experiencing feelings in the missing limb when a different body region is stimulated, to determine changes within the brain that occur due to an amputation. Eight of 19 amputees (42.1%) experienced RS in the phantom limb with manual tactile mapping on various regions of the face. There was no correlation between whether someone had phantom sensations or phantom limb pain and where RS was found. Six of the amputees had either phantom sensation or pain in addition to RS induced by facial stimulation. Results from the tactile testing showed that there were no significant differences in the accuracy of participants in the temporal order judgment tasks (p = 0.702), whereby participants selected the digit that was tapped first by a tracking paradigm that resulted in correct answers leading to shorter interstimulus intervals (ISIs) and incorrect answers increasing the ISI. There were also no significant differences in timing perception, i.e., the threshold accuracy of the duration discrimination task (p = 0.727), in which participants tracked which of the two digits received a longer stimulus. We conclude that many, but not all, unilateral upper limb amputees experience phantom hand sensation and/or pain with stimulation of the face, suggesting that there could be postamputation changes in neuronal circuitry in somatosensory cortex. However, major unilateral limb amputation does not lead to changes in temporal order judgment or timing perception tasks administered via the tactile modality of the intact hand in upper limb amputees.

11.
J Rehabil Res Dev ; 52(4): 397-406, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26348194

RESUMEN

Surface electrical stimulation (SES) is being investigated as a noninvasive method to evoke natural sensations distal to electrode location. This may improve treatment for phantom limb pain as well as provide an alternative method to deliver sensory feedback. The median and/or ulnar nerves of 35 subjects were stimulated at the elbow using surface electrodes. Strength-duration curves of hand sensation were found for each subject. All subjects experienced sensation in their hand, which was mostly described as a paresthesia-like sensation. The rheobase and chronaxie values were found to be lower for the median nerve than the ulnar nerve, with no significant difference between sexes. Repeated sessions with the same subject resulted in sufficient variability to suggest that recalculating the strength-duration curve for each electrode placement is necessary. Most of the recruitment curves in this study were generated with 28 to 36 data points. To quickly reproduce these curves with limited increase in error, we recommend 10 data points. Future studies will focus on obtaining different sensations using SES with the strength-duration curve defining the threshold of the effective parameter space.


Asunto(s)
Estimulación Eléctrica/métodos , Mano/fisiología , Sensación/fisiología , Adolescente , Adulto , Codo , Femenino , Humanos , Masculino , Nervio Mediano/fisiología , Umbral del Dolor/fisiología , Nervio Cubital/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA