Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 776
Filtrar
Más filtros

Intervalo de año de publicación
1.
Chemistry ; : e202402708, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136930

RESUMEN

In this study, a novel multi-stimulus responsive RGB fluorescent organic molecule, RTPE-NH2, was designed and synthesized based on the combination of aggregation-induced emission tetraphenylethylene (TPE) luminophore and acid-responsive fluorescent molecular switch Rhodamine B. RTPE-NH2 exhibits aggregation-induced emission behavior, as well as UV irradiation-stimulus and acid-stimulus responsive fluorescence properties. It could emit orange-red (R), green(G), and blue(B) light in both solution and PMMA film under 365 nm excitation. The dark through-bond energy transfer (DTBET) mechanism was proposed and supported by control experiments and TD-DFT calculations. The synthesis and application of RTPE-NH2 could accelerate the development of organic smart materials with high sensitivity and excellent optical properties.

2.
J Fluoresc ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38538961

RESUMEN

Dye solubilization in microemulsion based on Cetyltrimethylammonium bromide (CTAB) and its modified forms (counter-anions based upon Zn2+, Cu2+ and Fe3+) is comparatively innovative and not explored in existing literature. Here, surfactant with modified counterions (SMCs) were used to study the effects of metal chlorides (ZnCl2, CuCl2 and FeCl3) modifications on the comparative solubilization of Rhodamine-B (RB) by Cetyltrimethylammonium bromide (CTAB) and its modified forms. The solubility of RB in different microemulsions were studied using UV-Visible spectroscopy and phase diagrams of CTAB with modified counter ions CTA+[ZnCl2.Br]- named as CZN-1, CTA+[CuCl2.Br]- named as CCU-1 and CTA+[FeCl3.Br]- named as CFE-1 based upon surfactant with modified counter ions (SMCs). Four different points in microemulsion region of phase diagram were selected with different percentage composition of Smix (surfactant and co-surfactant), oil and RB (taken as water component). The interaction of RB, CCU-1, CFE-1 and CZN-1 within microemulsion environment were studied using Fluorescence spectroscopy. Emission spectra of RB in CCU-1 and CFE-1 based microemulsion confirmed that RB formed complexes with Cu and Fe ions. It was also found that RB was less soluble in CTAB based microemulsion as compared to microemulsions based on SMCs. This novel research study will expose new path for future research work related to microemulsion.

3.
Environ Res ; 251(Pt 2): 118672, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38508360

RESUMEN

A series of TiO2 - based photocatalysts have been prepared by the incorporation of 10 wt% of various carbon-based nanomaterials as modifying agents to titania. More specifically, commercial TiO2 P25 was modified through a wet impregnation approach with methanol with four different carbon nanostructures: single-walled carbon nanotubes (SWCNTs), partially reduced graphene oxide (prGO), graphite (GI), and graphitic carbon nitride (gCN). Characterization results (XPS and Raman) anticipate the occurrence of important interfacial phenomena, preferentially for samples TiO2/SWCNT and TiO2/prGO, with a binding energy displacement in the Ti 2p contribution of 1.35 eV and 1.54 eV, respectively. These findings could be associated with an improved electron-hole mobility at the carbon/oxide interface. Importantly, these two samples constitute the most promising photocatalysts for Rhodamine B (RhB) photodegradation, with nearly 100% conversion in less than 2 h. These promising results must be associated with intrinsic physicochemical changes at the formed heterojunction structure and the potential dual-role of the composites able to adsorb and degrade RhB simultaneously. Cyclability tests confirm the improved performance of the composites (e.g., TiO2/SWCNT, 100% degradation in 1 h) due to the combined adsorption/degradation ability, although the regeneration after several cycles is not complete due to partial blocking of the inner cavities in the carbon nanotubes by non-reacted RhB. Under these reaction conditions, Rhodamine-B xanthene dye degrades via the de-ethylation route.


Asunto(s)
Nanotubos de Carbono , Titanio , Titanio/química , Catálisis , Nanotubos de Carbono/química , Rodaminas/química , Fotólisis , Carbono/química , Procesos Fotoquímicos , Grafito/química , Grafito/efectos de la radiación
4.
Environ Res ; 251(Pt 1): 118647, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460666

RESUMEN

In this work, the self-assembled SrTiO3 (STO) microstructures were synthesized via a facile one-step solvothermal method. As the solvothermal temperature increased from 140 °C to 200 °C, the STO changed from a flower-like architecture to finally an irregularly aggregated flake-like morphology. The photocatalytic performance of as-synthesized samples was assessed through the degradation of rhodamine B (RhB) and malachite green (MG) under simulated solar irradiation. The results indicated that the photocatalytic performance of STO samples depended on their morphology, in which the hierarchical flower-like STO synthesized at 160 °C demonstrated the highest photoactivities. The photocatalytic enhancement of STO-160 was benefited from its large surface area and mesoporous configuration, hence facilitating the presence of more reactive species and accelerating the charge separation. Moreover, the real-world practicality of STO-160 photocatalysis was examined via the real printed ink wastewater-containing RhB and MG treatment. The phytotoxicity analyses demonstrated that the photocatalytically treated wastewater increased the germination of mung bean seeds, and the good reusability of synthesized STO-160 in photodegradation reaction also promoted its application in practical scenarios. This work highlights the promising potential of tailored STO microstructures for effective environmental remediation applications.


Asunto(s)
Óxidos , Fotólisis , Estroncio , Titanio , Contaminantes Químicos del Agua , Titanio/química , Contaminantes Químicos del Agua/química , Óxidos/química , Estroncio/química , Catálisis , Colorantes de Rosanilina/química , Rodaminas/química , Colorantes/química , Luz Solar , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos
5.
Environ Res ; 261: 119775, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134112

RESUMEN

The performance of Electro-Fenton (EF) cathode materials is primarily assessed by H2O2 yield and Fe3+ reduction efficiency. This study explores the impact of pore structure in chitin-based porous carbon on EF cathode effectiveness. We fabricated mesoporous carbon (CPC-700-2) and microporous carbon (ZPC-700-3) using template and activation methods, retaining nitrogen from the precursors. CPC-700-2, with mesopores (3-5 nm), enhanced O2 diffusion and oxygen reduction, producing up to 778 mg/L of H2O2 in 90 min. ZPC-700-3, with a specific surface area of 1059.83 m2/g, facilitated electron transport and ion diffusion, achieving a Fe2+/Fe3+ conversion rate of 79.9%. EF systems employing CPC-700-2 or ZPC-700-3 as the cathode exhibited superior degradation performance, achieving 99% degradation of Rhodamine B, efficient degradation, and noticeable decolorization. This study provides a reference for the preparation of functionalized carbon cathode materials for efficient H2O2 production and effective Fe3+ reduction in EF systems.

6.
Environ Res ; 249: 118415, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38316383

RESUMEN

Providing safe access to water and addressing the impact of waterborne diseases, which claim over two million lives annually, is a major contribution to water purification. The study introduces a novel nanocomposite, Ch/Fe3O4/α-MoO3, which exhibits outstanding photocatalytic efficacy under visible light. An in-depth investigation of the nanocomposite's synthesis, characterization, and photodegradation mechanisms reveals its outstanding capabilities. Photocatalytic activity is influenced by the catalytic dose, pH, dye concentration, and reaction time, according to the study. A response surface method is used to determine the optimal conditions for Rhodamine B degradation, which results in 96.3% removal efficiency at pH 8.5, dye concentration 25 mg/L, nanocomposite dose at 22 mg/L, and reaction time 50 min. As a result of its high surface area, biocompatibility, availability, and magnetization with iron compounds, Chitosan is an excellent substrate for enhancing the photocatalytic properties of MoO3 nanoparticles. A nanocomposite with an energy band of 3.18 eV exhibits improved visible light absorption. This study confirms the nanocomposite's recyclability and stability, affirming its practicality. Besides dye removal, it offers hope for the global quest for clean water sources by addressing a broader range of waterborne contaminants. By combining molybdenum and magnetite, nanocomposite materials facilitate the degradation of pollutant and bacteria, contributing positively to society's quest for clean and safe water. It emphasizes the role nanotechnology plays in preserving human health and well-being in combating waterborne diseases.


Asunto(s)
Luz , Nanocompuestos , Rodaminas , Aguas Residuales , Contaminantes Químicos del Agua , Rodaminas/química , Nanocompuestos/química , Contaminantes Químicos del Agua/química , Aguas Residuales/química , Catálisis , Purificación del Agua/métodos , Fotólisis , Colorantes/química , Molibdeno/química
7.
Environ Res ; 258: 119484, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38914250

RESUMEN

The present research utilizes a sol-gel approach to create a CoFe2O4/g-C3N4 nanocomposite (NC) and explored several analytical methods to evaluate physical, chemical and optical based characteristics via XRD, FTIR, UV-vis, SEM/EDS and XPS for the prepared pure CoFe2O4, g-C3N4, and CoFe2O4/g-C3N4 NC. The XRD results show that the prepared g-C3N4, CoFe2O4, exhibits hexagonal and cubic phases respectively, whereas the g-C3N4/CoFe2O4 NC exhibit mixing of two phases. The energy band gaps for pure g-C3N4, CoFe2O4 and g-C3N4/CoFe2O4 NC values are viz., 2.75, 1.3, and 2.4 eV. As photocatalysts, synthesized materials were utilized for the decomposition of Rhodamine-B (RhB) dye. Finally, the CoFe2O4/g-C3N4 NC showed good performance of photocatalysis for RhB dye disintegration under the stimulus of visible light. According to the induced visible light, the rate at which the photocatalytic degradation occurs for the CoFe2O4/g-C3N4 NC was found to be 57% in 120 min and this is greater when compared with pure catalysts like CoFe2O4 (28%) and g-C3N4 (10%). These outcomes suggest that the prepared NC have efficiently worked during the photocatalytic process compared with its pure materials.


Asunto(s)
Cobalto , Compuestos Férricos , Grafito , Rodaminas , Cobalto/química , Rodaminas/química , Compuestos Férricos/química , Grafito/química , Compuestos de Nitrógeno/química , Fotólisis , Nanocompuestos/química , Catálisis , Nitrilos/química
8.
Biotechnol Appl Biochem ; 71(3): 651-660, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38449083

RESUMEN

Glycosaminoglycans (GAGs) serve as a biomarker for mucopolysaccharidoses disease. In this study, a novel fluorometric method was developed to measure total GAGs in urine. Graphene oxide (GO) and rhodamine B (RhB), a cationic fluorescent dye, were employed in the development of the method. RhB attaches to the GO surface via electrostatic attraction, leading to the quenching of its fluorescence upon the establishment of the RhB-GO complex. However, the presence of GAGs prompts a resurgence of intense fluorescence. The linear range of the method is between 5.00 and 70.00 mg/L. The total GAG levels of urine samples analyzed using the method agree with the results of the biochemistry analysis laboratory (65.85 and 79.18 mg/L; 73.30 ± 1.76 and 72.21 ± 2.21). The method is simple, accurate, and sensitive and may be used for both first-step diagnosis of the mucopolysaccharidoses and detection of individual GAGs for studies of GAG-related research and other biological applications.


Asunto(s)
Glicosaminoglicanos , Grafito , Grafito/química , Glicosaminoglicanos/orina , Glicosaminoglicanos/química , Humanos , Espectrometría de Fluorescencia , Rodaminas/química , Colorantes Fluorescentes/química , Fluorescencia , Mucopolisacaridosis/orina , Mucopolisacaridosis/diagnóstico
9.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732166

RESUMEN

This current study assessed the impacts of morphology adjustment of perovskite BiFeO3 (BFO) on the construction and photocatalytic activity of P-infused g-C3N4/U-BiFeO3 (U-BFO/PCN) heterostructured composite photocatalysts. Favorable formation of U-BFO/PCN composites was attained via urea-aided morphology-controlled hydrothermal synthesis of BFO followed by solvosonication-mediated fusion with already synthesized P-g-C3N4 to form U-BFO/PCN composites. The prepared bare and composite photocatalysts' morphological, textural, structural, optical, and photocatalytic performance were meticulously examined through various analytical characterization techniques and photodegradation of aqueous rhodamine B (RhB). Ellipsoids and flakes morphological structures were obtained for U-BFO and BFO, and their effects on the successful fabrication of the heterojunctions were also established. The U-BFO/PCN composite exhibits 99.2% efficiency within 20 min of visible-light irradiation, surpassing BFO/PCN (88.5%), PCN (66.8%), and U-BFO (26.1%). The pseudo-first-order kinetics of U-BFO/PCN composites is 2.41 × 10-1 min-1, equivalent to 2.2 times, 57 times, and 4.3 times of BFO/PCN (1.08 × 10-1 min-1), U-BFO, (4.20 × 10-3 min-1), and PCN, (5.60 × 10-2 min-1), respectively. The recyclability test demonstrates an outstanding photostability for U-BFO/PCN after four cyclic runs. This improved photocatalytic activity exhibited by the composites can be attributed to enhanced visible-light utilization and additional accessible active sites due to surface and electronic band modification of CN via P-doping and effective charge separation achieved via successful composites formation.


Asunto(s)
Bismuto , Fotólisis , Rodaminas , Catálisis , Bismuto/química , Rodaminas/química , Luz , Compuestos Férricos/química , Compuestos de Nitrógeno/química , Titanio/química , Procesos Fotoquímicos , Nitrilos/química , Cinética , Grafito , Óxidos , Compuestos de Calcio
10.
J Environ Manage ; 352: 119989, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38215595

RESUMEN

Photocatalytic degradation of organic pollution by biochar was a sustainable strategy for waste water remediation, nevertheless, it still suffers drawbacks like low efficiency due to the poor photocatalytic properties of pristine biochar. Herein, amino groups were grafted on the edge sites/defects of biochar by Friedel-Crafts acylation to enhance the degradation of high concentration dye solutions. The results suggested that the amino groups played an important role in imparting photocatalytic properties to biochar. Owing to the strong Lewis basicity and electron-donating ability of amino groups, their interaction with oxygen-containing functional groups/aromatic structures in biochar was improved, which enhanced the electron exchange ability of biochar under visible light irradiation, resulting in excellent degradation performances of high concentration RhB (∼10 times faster than ungrafted biochar). In this work, amino-grafted garlic peel biochar delivered a new idea for the future direction of biochar-based photocatalysis in wastewater remediation.


Asunto(s)
Antioxidantes , Productos Biológicos , Carbón Orgánico , Electrones , Contaminación Ambiental , Luz , Aguas Residuales
11.
Molecules ; 29(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38257268

RESUMEN

This study successfully synthesized zinc oxide nanorod needles (ZnO-NRNs) using an environmentally friendly method employing Cymbopogon Proximus extract. The resulting ZnO-NRNs exhibited exceptional physicochemical and structural properties, confirmed through various characterization techniques, including UV-Vis spectrophotometry, dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). The analysis revealed a hexagonal wurtzite structure with high crystallinity, a 3.6 eV band gap, and a notably blue-shifted absorption band. ZnO-NRNs showed impressive photocatalytic activity, degrading Rhodamine B dye by 97% under UV and visible sunlight, highlighting their photostability and reusability. This green synthesis process offers cost effectiveness and environmental sustainability for practical applications.

12.
Molecules ; 29(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543049

RESUMEN

The aim of this study was to obtain a series of activated carbon samples by the chemical activation of low-rank coal. The precursor was impregnated with a NaOH solution. Activated carbons were characterized by determining their textural parameters and content of surface oxygen functional groups and by using an elemental analysis. The carbons were tested as potential adsorbents for the removal of liquid pollutants represented by rhodamine B. The effectiveness of rhodamine B removal from water solutions depended on the initial concentration of the dye, the mass of rhodamine B, and the pH and temperature of the reaction. The isotherm examination followed the Langmuir isotherm model. The maximum adsorption capacity of the rhodamine B was 119 mg/g. The kinetic investigation favored the pseudo-second-order model, indicating a chemisorption mechanism. The thermodynamic assessment indicated spontaneous and endothermic adsorption, with decreased randomness at the solid-liquid interface. The experiment revealed that a 0.1 M HCl solution was the most effective regenerative agent.

13.
Molecules ; 29(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38398606

RESUMEN

Organic dyes in natural waters jeopardize human health. Whether semiconductor materials can effectively degrade dyes has become a challenge for scientific research. Based on this, this study rationally prepared different nanocomposites to remove organic dyes effectively. Pure SnO2 quantum dots, ZnO nanosheets, and SnO2/ZnO (ZS) binary nanocomposites are prepared using the hydrothermal method. Subsequently, SnO2/ZnO@GO (ZSG) ternary composites containing different amounts of GO, i.e., ZSG-5, ZSG-15, and ZSG-25, are synthesized by an ultrasonic water bath method, in which ZS was coupled with GO to form Z-type heterojunctions. The ZSG-15 ternary composites exhibited excellent photocatalytic activity for the degradation of rhodamine B by simulating sunlight. The test results show that the degradation rate of ZSG-15 is about 7.6 times higher than ZnO. The increase in photocatalytic activity is attributed to the synergistic effect of SnO2 and GO to improve the separation efficiency of photogenerated carriers in ZnO. Notably, the large specific surface area of GO increases the reactive sites. Compared with binary nanocomposites, ZSG-15 broadens the response range to light while further accelerating the electron transport rate and improving the photoelectric stability.

14.
Molecules ; 29(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39064976

RESUMEN

A new green and highly sensitive method for the determination of rhodamine B (RhB) by deep eutectic solvent-based vortex-assisted liquid-liquid microextraction with fluorescence detection (DES-VALLME-FLD) was developed. The extraction efficiency of conventional solvents and different deep eutectic solvent (DES) systems composed of tetrabutylammonium bromide (TBAB) and an alcohol (hexanol, octanol, or decanol) in different ratios were compared. DFT calculations of intermolecular electrostatic and non-covalent interactions of the most stable RhB forms with DES and water explain the experimental DESs' extraction efficiency. Semiempirical PM7 computations were used to obtain Hansen solubility parameters, which supported the good solubility of the monocationic RhB form in selected DESs. The dependence of the linear calibration of microextraction into 100 µL DES was observed in the RhB calibration range from 0.2 to 10.0 µg L-1 with a correlation coefficient of R2 = 0.9991. The LOD value was calculated to be 0.023 µg L-1. The accuracy and precision of the proposed method were verified over two days with RSD values of 2.9 to 4.1% and recovery of 94.6 to 103.7%. The developed method was applied to the determination of RhB in real samples (tap water, energy drink, and lipstick).

15.
Environ Monit Assess ; 196(5): 491, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691183

RESUMEN

This study explores the dual applications of a greenly synthesized ZnO@CTAB nanocomposite for the efficient remediation of Rhodamine B (RhB) and lead (Pb). The synthesis method involves a sustainable approach, emphasizing environmentally friendly practices. FT-IR, XRD, FESEM, zeta potential, and particle size analyzer (PSA), BET, and UV-VIS were used to physically characterize the zinc oxide and CTAB nanocomposite (ZnO@CTAB). The size and crystalline index of ZnO@CTAB are 77.941 nm and 63.56% respectively. The Zeta potential of ZnO@CTAB is about - 22.4 mV. The pore diameter of the ZnO@CTAB was 3.216 nm, and its total surface area was 97.42 m2/g. The mechanism of adsorption was investigated through pHZPC measurements. The nanocomposite's adsorption performance was systematically investigated through batch adsorption experiments. At pH 2, adsorbent dose of 0.025 g, and temperature 50 °C, ZnO@CTAB removed the most RhB, while at pH 6, adsorbent dose of 0.11 g, and temperature 60 °C, ZnO@CTAB removed the most Pb. With an adsorption efficiency of 214.59 mg/g and 128.86 mg/g for RhB and Pb, the Langmuir isotherm model outperforms the Freundlich isotherm model in terms of adsorption. The pseudo-2nd-order model with an R2 of 0.99 for both RhB and Pb offers a more convincing explanation of adsorption than the pseudo-1st-order model. The results demonstrated rapid adsorption kinetics and high adsorption capacities for RhB and Pb. Furthermore, there was minimal deterioration and a high reusability of ZnO@CTAB till 4 cycles were observed.


Asunto(s)
Plomo , Nanocompuestos , Rodaminas , Contaminantes Químicos del Agua , Óxido de Zinc , Plomo/química , Óxido de Zinc/química , Rodaminas/química , Nanocompuestos/química , Contaminantes Químicos del Agua/química , Adsorción , Cetrimonio/química , Restauración y Remediación Ambiental/métodos , Tecnología Química Verde , Nanoestructuras/química
16.
J Fluoresc ; 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37682499

RESUMEN

Copper and Mercury ions have vital role to play in biological world as their excess or deficiency can cause different type of diseases in human being as well as biological species including plants and animals. Therefore, their detection at trace level becomes very important in term of biological. The current studies embody the fabrication, structural characterization and recognition behavior of a novel rhodamine B hydrazone formed when hydrazide of rhodamine B was condensed with 5-Allyl-3-methoxy salicylaldehyde (RBMA). RBMA was found to be responsive towards the very trace level of Cu2+ and Hg2+ among other tested cations so far. The sensing procedure is based on the classical opening of the spiroatom ring of rhodamine. The limit of detection (LOD) and binding constant is 5.35 ppm, 2.06 × 104 M-1 and 5.16 ppm, 1.26 × 104 M-1 for Cu2+ and Hg2+ ions respectively. The probable mechanism correlates the specific binding of RBMA with Cu2+ and Hg2+ ions. The 1:1 stoichiometry of RBMA with Cu2+ and Hg2+ ions have been supported by HRMS, FT-IR data, Job's plot, and binding constant data. Reversibility is well exhibited by RBMA by the involvement of CO32- ions via demetallation process. The real time application is well demonstrated by the use of paper strip test. The DFT study also carried out which agrees well with the experimental findings. The results displayed the novelty of this current work towards the trace level analysis of the Cu2+ and Hg2+ of the cations which are play the crucial role in industry.

17.
Anal Bioanal Chem ; 415(19): 4703-4712, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37222793

RESUMEN

A new rhodamine B derivative (RDB) was synthesized and utilized for the colorimetric detection of copper ions (Cu2+). This chemosensor utilized a paper strip as a support and a smartphone as a detector for on-site quantitative detection of Cu2+ in water samples. Silica nanoparticles (SiNPs) were investigated as the modifier nanoparticles to achieve uniform color on the paper strip and showed a color response 1.9-fold higher than the one without SiNPs. The RDB chemosensor-based paper strip provided high selectivity toward Cu2+ with a detection limit of 0.7 mg/L, and the working concentrations for Cu2+ ranged from 1 to 17 mg/L. Parallel analyses of eight drinking water samples were conducted by inductively coupled plasma optical emission spectroscopy. The results were in good agreement, indicating the practical reliability of the established method with a short assay time and high selectivity. These indicate its great potential for on-site detection of Cu2+.

18.
Macromol Rapid Commun ; 44(10): e2200966, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36912375

RESUMEN

A simple and cost-efficient method for fluorescent microsphere synthesis, which does not require any fluorescent monomers or modification steps to incorporate fluorescent moieties into the polymer particles, is reported. Using rhodamine B and benzophenone as bimolecular initiation system in type II photoinitiated precipitation polymerization, the method enables the preparation of fluorescent microspheres in one step, at room temperature and without the need for a stabilizer or surfactant of any type.


Asunto(s)
Polímeros , Estirenos , Tamaño de la Partícula , Colorantes , Microesferas
19.
Acta Pharmacol Sin ; 44(1): 201-210, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35794372

RESUMEN

The use of oncolytic peptides with activity against a wide range of cancer entities as a new and promising cancer therapeutic strategy has drawn increasing attention. The oncolytic peptide LTX-315 derived from bovine lactoferricin (LfcinB) was found to be highly effective against suspension cancer cells, but not adherent cancer cells. In this study, we tactically fused LTX-315 with rhodamine B through a hybridization strategy to design and synthesize a series of nucleus-targeting hybrid peptides and evaluated their activity against adherent cancer cells. Thus, four hybrid peptides, NTP-212, NTP-217, NTP-223 and NTP-385, were synthesized. These hybrid peptides enhanced the anticancer activity of LTX-315 in a panel of adherent cancer cell lines by 2.4- to 37.5-fold. In model mice bearing B16-F10 melanoma xenografts, injection of NTP-385 (0.5 mg per mouse for 3 consecutive days) induced almost complete regression of melanoma, prolonged the median survival time and increased the overall survival. Notably, the administered dose of NTP-385 was only half the effective dose of LTX-315. We further revealed that unlike LTX-315, which targets the mitochondria, NTP-385 disrupted the nuclear membrane and accumulated in the nucleus, resulting in the transfer of a substantial amount of reactive oxygen species (ROS) from the cytoplasm to the nucleus through the fragmented nuclear membrane. This ultimately led to DNA double-strand break (DSB)-mediated intrinsic apoptosis. In conclusion, this study demonstrates that hybrid peptides obtained from the fusion of LTX-315 and rhodamine B enhance anti-adherent cancer cell activity by targeting the nucleus and triggering DNA DSB-mediated intrinsic apoptosis. This study also provides an advantageous reference for nucleus-targeting peptide modification.


Asunto(s)
Melanoma , Péptidos , Humanos , Animales , Ratones , Línea Celular Tumoral , Péptidos/farmacología , Péptidos/uso terapéutico , Apoptosis , ADN
20.
Environ Res ; 222: 115370, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716804

RESUMEN

Water contamination by reactive dyes is a serious concern for human health and the environment. In this study, we prepared high efficient SnO2/CuO/rGO nanocomposites for reactive dye degradation. For structural analysis of SnO2/CuO/rGO nanocomposites, XRD, UV-Vis DRS, SEM, TEM-EDAX, and XPS analysis were used to characterize the physicochemical properties of the material. The characterization results confirmed great crystallinity, purity, and optical characteristics features. For both Rhodamine B (RhB) and Reactive Red 120 (RR120) degradation processes, SnO2/CuO/rGO nanocomposites were tested for their photocatalytic degradation performance. The SnO2/CuO/rGO nanocomposites have expressed the degradation rate exposed to 99.6% of both RhB and RR120 dyes. The main reason behind the photocatalytic degradation was due to the formation of OH radical's generation by the composite materials. Moreover, the antibacterial properties of synthesized SnO2/CuO/rGO nanocomposites were studied against E. coli, S. aureus, B. subtilis and P. aeroginosa and exhibited good antibacterial activity against the tested bacterial strains. Thus, the synthesized SnO2/CuO/rGO nanocomposites are a promising photocatalyst and antibacterial agent. Furthermore, mechanisms behind the antibacterial effects will be ruled out in near future.


Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Humanos , Escherichia coli , Staphylococcus aureus , Colorantes/química , Nanocompuestos/química , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA