Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(18): 3341-3355.e13, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35998629

RESUMEN

The extracellular pH is a vital regulator of various biological processes in plants. However, how plants perceive extracellular pH remains obscure. Here, we report that plant cell-surface peptide-receptor complexes can function as extracellular pH sensors. We found that pattern-triggered immunity (PTI) dramatically alkalinizes the acidic extracellular pH in root apical meristem (RAM) region, which is essential for root meristem growth factor 1 (RGF1)-mediated RAM growth. The extracellular alkalinization progressively inhibits the acidic-dependent interaction between RGF1 and its receptors (RGFRs) through the pH sensor sulfotyrosine. Conversely, extracellular alkalinization promotes the alkaline-dependent binding of plant elicitor peptides (Peps) to its receptors (PEPRs) through the pH sensor Glu/Asp, thereby promoting immunity. A domain swap between RGFR and PEPR switches the pH dependency of RAM growth. Thus, our results reveal a mechanism of extracellular pH sensing by plant peptide-receptor complexes and provide insights into the extracellular pH-mediated regulation of growth and immunity in the RAM.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Concentración de Iones de Hidrógeno , Meristema/metabolismo , Péptidos/metabolismo , Células Vegetales , Raíces de Plantas/metabolismo , Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal
2.
Plant J ; 118(3): 607-625, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38361340

RESUMEN

The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root-like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide-coding genes in Medicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression of MtGLV9 and MtGLV10 at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule-induced GLV genes in hairy roots of M. truncatula and application of their synthetic peptide analogues led to a decrease in nodule count by 25-50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term 'noduletaxis'; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule-related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago truncatula , Proteínas de Plantas , Raíces de Plantas , Nódulos de las Raíces de las Plantas , Medicago truncatula/genética , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/metabolismo , Medicago truncatula/efectos de los fármacos , Medicago truncatula/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Nodulación de la Raíz de la Planta/genética , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/efectos de los fármacos , Péptidos/metabolismo , Péptidos/genética
3.
EMBO Rep ; 24(4): e56271, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36718777

RESUMEN

Although strongly influenced by environmental conditions, lateral root (LR) positioning along the primary root appears to follow obediently an internal spacing mechanism dictated by auxin oscillations that prepattern the primary root, referred to as the root clock. Surprisingly, none of the hitherto characterized PIN- and ABCB-type auxin transporters seem to be involved in this LR prepatterning mechanism. Here, we characterize ABCB15, 16, 17, 18, and 22 (ABCB15-22) as novel auxin-transporting ABCBs. Knock-down and genome editing of this genetically linked group of ABCBs caused strongly reduced LR densities. These phenotypes were correlated with reduced amplitude, but not reduced frequency of the root clock oscillation. High-resolution auxin transport assays and tissue-specific silencing revealed contributions of ABCB15-22 to shootward auxin transport in the lateral root cap (LRC) and epidermis, thereby explaining the reduced auxin oscillation. Jointly, these data support a model in which LRC-derived auxin contributes to the root clock amplitude.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Membrana/genética , Ácidos Indolacéticos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Plant J ; 114(1): 176-192, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36721978

RESUMEN

The supply of boron (B) alleviates the toxic effects of aluminum (Al) on root growth; however, the mechanistic basis of this process remains elusive. This study filled this knowledge gap, demonstrating that boron modifies auxin distribution and transport in Al-exposed Arabidopsis roots. In B-deprived roots, treatment with Al induced an increase in auxin content in the root apical meristem zone (MZ) and transition zone (TZ), whereas in the elongation zone (EZ) the auxin content was decreased beyond the level required for adequate growth. These distribution patterns are explained by the fact that basipetal auxin transport from the TZ to the EZ was disrupted by Al-inhibited PIN-FORMED 2 (PIN2) endocytosis. Experiments involving the modulation of protein biosynthesis by cycloheximide (CHX) and transcriptional regulation by cordycepin (COR) demonstrated that the Al-induced increase of PIN2 membrane proteins was dependent upon the inhibition of PIN2 endocytosis, rather than on the transcriptional regulation of the PIN2 gene. Experiments reporting on the profiling of Al3+ and PIN2 proteins revealed that the inhibition of endocytosis of PIN2 proteins was the result of Al-induced limitation of the fluidity of the plasma membrane. The supply of B mediated the turnover of PIN2 endosomes conjugated with indole-3-acetic acid (IAA), and thus restored the Al-induced inhibition of IAA transport through the TZ to the EZ. Overall, the reported results demonstrate that boron supply mediates PIN2 endosome-based auxin transport to alleviate Al toxicity in plant roots.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Aluminio/toxicidad , Aluminio/metabolismo , Boro/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Raíces de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo
5.
Plant J ; 113(1): 106-126, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423224

RESUMEN

Root growth dynamics is an outcome of complex hormonal crosstalk. The primary root meristem size, for example, is determined by antagonizing actions of cytokinin and auxin. Here we show that RAV1, a member of the AP2/ERF family of transcription factors, mediates cytokinin signaling in roots to regulate meristem size. The rav1 mutants have prominently longer primary roots, with a meristem that is significantly enlarged and contains higher cell numbers, compared with wild-type. The mutant phenotype could be restored on exogenous cytokinin application or by inhibiting auxin transport. At the transcript level, primary cytokinin-responsive genes like ARR1, ARR12 were significantly downregulated in the mutant root, indicating impaired cytokinin signaling. In concurrence, cytokinin induced regulation of SHY2, an Aux/IAA gene, and auxin efflux carrier PIN1 was hindered in rav1, leading to altered auxin transport and distribution. This effectively altered root meristem size in the mutant. Notably, CRF1, another member of the AP2/ERF family implicated in cytokinin signaling, is transcriptionally repressed by RAV1 to promote cytokinin response in roots. Further associating RAV1 with cytokinin signaling, our results demonstrate that cytokinin upregulates RAV1 expression through ARR1, during post-embryonic root development. Regulation of RAV1 expression is a part of secondary cytokinin response that eventually represses CRF1 to augment cytokinin signaling. To conclude, RAV1 functions in a branch pathway downstream to ARR1 that regulates CRF1 expression to enhance cytokinin action during primary root development in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Citocininas/metabolismo , Meristema , Ácidos Indolacéticos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Nucleares/metabolismo
6.
J Exp Bot ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770693

RESUMEN

Plants combat dehydration stress through several adaptive measures including root architectural changes. Here we show that when exposed to varying levels of dehydration stress, primary root growth in Arabidopsis is modulated by regulating root meristem activity. ABA in concert with auxin signalling perceives the stress level and adapts primary root growth accordingly. ABI3, the ABA responsive transcription factor stands at the intersection of ABA and auxin signalling and fine tunes primary root growth in response to dehydration stress. Under low ABA or dehydration stress, induction of ABI3 expression promotes auxin signalling by decreasing expression of SHY2, a negative regulator of auxin response. This further enhances the expression of auxin transporter gene PIN1 and cell cycle gene CYCB1;1, resulting in an increase in primary root meristem size and root length. Higher levels of dehydration stress or ABA repress ABI3 expression and promote ABI5 expression. This elevates SHY2 expression, thereby impairing primary root meristem activity and retarding root growth. Notably, ABI5 can promote SHY2 expression only in the absence of ABI3. Such ABA concentration dependent expression of ABI3 therefore functions as a regulatory sensor of dehydration stress levels and orchestrates primary root growth by coordinating its downstream regulon.

7.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526654

RESUMEN

Gene expression is reconfigured rapidly during the cell cycle to execute the cellular functions specific to each phase. Studies conducted with synchronized plant cell suspension cultures have identified hundreds of genes with periodic expression patterns across the phases of the cell cycle, but these results may differ from expression occurring in the context of intact organs. Here, we describe the use of fluorescence-activated cell sorting to analyze the gene expression profile of G2/M cells in the growing root. To this end, we isolated cells expressing the early mitosis cell cycle marker CYCLINB1;1-GFP from Arabidopsis root tips. Transcriptome analysis of these cells allowed identification of hundreds of genes whose expression is reduced or enriched in G2/M cells, including many not previously reported from cell suspension cultures. From this dataset, we identified SCL28, a transcription factor belonging to the GRAS family, whose messenger RNA accumulates to the highest levels in G2/M and is regulated by MYB3R transcription factors. Functional analysis indicates that SCL28 promotes progression through G2/M and modulates the selection of cell division planes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Mitosis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Meristema/metabolismo , Mitosis/genética , Organogénesis , Factores de Transcripción/metabolismo , Transcriptoma/genética
8.
Int J Mol Sci ; 25(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891845

RESUMEN

The generation of complex plant architectures depends on the interactions among different molecular regulatory networks that control the growth of cells within tissues, ultimately shaping the final morphological features of each structure. The regulatory networks underlying tissue growth and overall plant shapes are composed of intricate webs of transcriptional regulators which synergize or compete to regulate the expression of downstream targets. Transcriptional regulation is intimately linked to phytohormone networks as transcription factors (TFs) might act as effectors or regulators of hormone signaling pathways, further enhancing the capacity and flexibility of molecular networks in shaping plant architectures. Here, we focus on homeodomain-leucine zipper (HD-ZIP) proteins, a class of plant-specific transcriptional regulators, and review their molecular connections with hormonal networks in different developmental contexts. We discuss how HD-ZIP proteins emerge as key regulators of hormone action in plants and further highlight the fundamental role that HD-ZIP/hormone networks play in the control of the body plan and plant growth.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio , Leucina Zippers , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Factores de Transcripción/metabolismo , Redes Reguladoras de Genes , Transducción de Señal , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
9.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396652

RESUMEN

The architecture of the root system is fundamental to plant productivity. The rate of root growth, the density of lateral roots, and the spatial structure of lateral and adventitious roots determine the developmental plasticity of the root system in response to changes in environmental conditions. One of the genes involved in the regulation of the slope angle of lateral roots is DEEPER ROOTING 1 (DRO1). Its orthologs and paralogs have been identified in rice, Arabidopsis, and several other species. However, nothing is known about the formation of the slope angle of lateral roots in species with the initiation of lateral root primordia within the parental root meristem. To address this knowledge gap, we identified orthologs and paralogs of the DRO1 gene in cucumber (Cucumis sativus) using a phylogenetic analysis of IGT protein family members. Differences in the transcriptional response of CsDRO1, CsDRO1-LIKE1 (CsDRO1L1), and CsDRO1-LIKE2 (CsDRO1L2) to exogenous auxin were analyzed. The results showed that only CsDRO1L1 is auxin-responsive. An analysis of promoter-reporter fusions demonstrated that the CsDRO1, CsDRO1L1, and CsDRO1L2 genes were expressed in the meristem in cell files of the central cylinder, endodermis, and cortex; the three genes displayed different expression patterns in cucumber roots with only partial overlap. A knockout of individual CsDRO1, CsDRO1L1, and CsDRO1L2 genes was performed via CRISPR/Cas9 gene editing. Our study suggests that the knockout of individual genes does not affect the slope angle formation during lateral root primordia development in the cucumber parental root.


Asunto(s)
Arabidopsis , Cucumis sativus , Cucumis sativus/metabolismo , Raíces de Plantas/metabolismo , Filogenia , Ácidos Indolacéticos/metabolismo , Meristema/genética , Meristema/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Plant J ; 109(3): 664-674, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34783104

RESUMEN

Plants use electrical and chemical signals for systemic communication. Herbivory, for instance, appears to trigger local apoplasmic glutamate accumulation, systemic electrical signals, and calcium waves that travel to report insect damage to neighboring leaves and initiate defense. To monitor extra- and intracellular glutamate concentrations in plants, we generated Arabidopsis lines expressing genetically encoded fluorescent glutamate sensors. In contrast to cytosolically localized sensors, extracellularly displayed variants inhibited plant growth and proper development. Phenotypic analyses of high-affinity display sensor lines revealed that root meristem development, particularly the quiescent center, number of lateral roots, vegetative growth, and floral architecture were impacted. Notably, the severity of the phenotypes was positively correlated with the affinity of the display sensors, intimating that their ability to sequester glutamate at the surface of the plasma membrane was responsible for the defects. Root growth defects were suppressed by supplementing culture media with low levels of glutamate. Together, the data indicate that sequestration of glutamate at the cell surface either disrupts the supply of glutamate to meristematic cells and/or impairs localized glutamatergic signaling important for developmental processes.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Desarrollo de la Planta/genética , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Desarrollo de la Planta/efectos de los fármacos , Hojas de la Planta/genética
11.
Plant Cell Physiol ; 64(3): 317-324, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36611272

RESUMEN

During organogenesis, a key step toward the development of a functional organ is the separation of cells into specific domains with different activities. Mutual inhibition of gene expression has been shown to be sufficient to establish and maintain these domains during organogenesis in several multicellular organisms. Here, we show that the mutual inhibition between the PLETHORA transcription factors (PLTs) and the ARABIDOPSIS RESPONSE REGULATORs (ARRs) transcription factors is sufficient to separate cell division and cell differentiation during root organogenesis. In particular, we show that ARR1 suppresses PLT activities and that PLTs suppress ARR1 and ARR12 by targeting their proteins for degradation via the KISS ME DEADLY 2 F-box protein. These findings reveal new important aspects of the complex process of root zonation and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Raíces de Plantas , Factores de Transcripción , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Planta ; 259(1): 8, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38019301

RESUMEN

MAIN CONCLUSION: This study reveals that mutations in BRIP1/2 subunits of the BAS complex disrupt root meristem development by decreasing PIN genes expression, affecting auxin transport, and downregulating essential root genes PLT. Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes play vital roles in plant development. BRAHMA-interacting proteins1 (BRIP1) and BRIP2 are subunits of BRAHMA (BRM)-associated SWI/SNF complex (BAS) in plants; however, their role and underlying regulatory mechanism in root development are still unknown. Here, we show that brip1 brip2 double mutants have a significantly shortened root meristem and an irregular arrangement in a portion of the root stem cell niche. The mutations in BRIP1 and BRIP2 cause decreased expression of the PIN-FORMED (PIN) genes, which in turn reduces the transport of auxin at the root tip, leading to the disruption of the accurate establishment of normal auxin concentration gradients in the stem cells. Chromatin immunoprecipitation (ChIP) experiments indicated that BRIP1 and BRIP2 directly bind to the PINs. Furthermore, we found a significant down-regulation in the expression of key root development genes, PLETHORA (PLT), in brip1 brip2. The brip1 brip2 plt1 plt2 quadruple mutations do not show further exacerbation in the short-root phenotype compared to plt1 plt2 double mutants. Using a dexamethasone (DEX)-inducible PLT2 transgenic line, we showed that acute overexpression of PLT2 partially rescues root meristem defects of brip1 brip2, suggesting that BRIP1 and BRIP2 act in part through the PLT1/2 pathway. Taken together, our results identify the critical role and the underlying mechanism of BRIP1/2 in maintaining the development of root meristem through the regulation of auxin output and expression of PLTs.


Asunto(s)
Ácidos Indolacéticos , Meristema , Proteínas de Plantas , Transporte Biológico , Regulación hacia Abajo , Expresión Génica , Meristema/genética , Proteínas de Plantas/genética
13.
Planta ; 258(5): 86, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37747517

RESUMEN

MAIN CONCLUSION: Over-expression of phytoglobin mitigates the degradation of the root apical meristem (RAM) caused by waterlogging through changes in nitric oxide and auxin distribution at the root tip. Plant performance to waterlogging is ameliorated by the over-expression of the Arabidopsis Phytoglobin 1 (Pgb1) which also contributes to the maintenance of a functional RAM. Hypoxia induces accumulation of ROS and damage in roots of wild type plants; these events were preceded by the exhaustion of the RAM resulting from the loss of functionality of the WOX5-expressing quiescent cells (QCs). These phenotypic deviations were exacerbated by suppression of Pgb1 and attenuated when the same gene was up-regulated. Genetic and pharmacological studies demonstrated that degradation of the RAM in hypoxic roots is attributed to a reduction in the auxin maximum at the root tip, necessary for the specification of the QC. This reduction was primarily caused by alterations in PIN-mediated auxin flow but not auxin synthesis. The expression and localization patterns of several PINs, including PIN1, 2, 3 and 4, facilitating the basipetal translocation of auxin and its distribution at the root tip, were altered in hypoxic WT and Pgb1-suppressing roots but mostly unchanged in those over-expressing Pgb1. Disruption of PIN1 and PIN2 signal in hypoxic roots suppressing Pgb1 initiated in the transition zone at 12 h and was specifically associated to the absence of Pgb1 protein in the same region. Exogenous auxin restored a functional RAM, while inhibition of the directional auxin flow exacerbated the degradation of the RAM. The regulation of root behavior by Pgb1 was mediated by nitric oxide (NO) in a model consistent with the recognized function of Pgbs as NO scavengers. Collectively, this study contributes to our understanding of the role of Pgbs in preserving root meristem function and QC niche during conditions of stress, and suggests that the root transition zone is most vulnerable to hypoxia.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Meristema/metabolismo , Ácidos Indolacéticos/metabolismo , Óxido Nítrico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hipoxia/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
14.
J Exp Bot ; 74(5): 1475-1488, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516421

RESUMEN

ROOT MERISTEM GROWTH FACTOR1 (RGF1) and its receptors RGF1 INSENSITIVEs (RGIs) regulate primary root meristem activity via a mitogen-activated protein kinase (MPK) signaling cascade in Arabidopsis. However, it is unknown how RGF1 regulates lateral root (LR) development. Here, we show that the RGF1-RGI1 peptide-receptor pair negatively regulates LR development via activation of PUCHI encoding AP2/EREBP. Exogenous RGF1 peptides inhibited LR development of the wild type. However, the rgi1 mutants were partially or fully insensitive to RGF1 during LR development, whereas four other rgi single mutants, namely rgi2, rgi3, rgi4, and rgi5, were sensitive to RGF1 in inhibiting LR formation. Consistent with this, the red fluorescent protein (RFP) signals driven by the RGF1 promoter were detected at stage I and the following stages, overlapping with RGI1 expression. PUCHI expression was significantly up-regulated by RGF1 but completely inhibited in rgi1. LR development of puchi1-1 was insensitive to RGF1. PUCHI expression driven by the RGI1 promoter reduced LR density in both the wild type and rgi1,2,3. Further, mpk6, but not mpk3, displayed significantly down-regulated PUCHI expression and insensitive LR development in response to RGF1. Collectively, these results suggest that the RGF1-RGI1 module negatively regulates LR development by activating PUCHI expression via MPK6.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Péptidos/metabolismo , Raíces de Plantas/metabolismo , Receptores de Péptidos/metabolismo , Factores de Transcripción/metabolismo
15.
Int J Mol Sci ; 24(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176146

RESUMEN

In Arabidopsis, the small signaling peptide (peptide hormone) RALF34 is involved in the gene regulatory network of lateral root initiation. In this study, we aimed to understand the nature of the signals induced by RALF34 in the non-model plant cucumber (Cucumis sativus), where lateral root primordia are induced in the apical meristem of the parental root. The RALF family members of cucumber were identified using phylogenetic analysis. The sequence of events involved in the initiation and development of lateral root primordia in cucumber was examined in detail. To elucidate the role of the small signaling peptide CsRALF34 and its receptor CsTHESEUS1 in the initial stages of lateral root formation in the parental root meristem in cucumber, we studied the expression patterns of both genes, as well as the localization and transport of the CsRALF34 peptide. CsRALF34 is expressed in all plant organs. CsRALF34 seems to differ from AtRALF34 in that its expression is not regulated by auxin. The expression of AtRALF34, as well as CsRALF34, is regulated in part by ethylene. CsTHESEUS1 is expressed constitutively in cucumber root tissues. Our data suggest that CsRALF34 acts in a non-cell-autonomous manner and is not involved in lateral root initiation in cucumber.


Asunto(s)
Arabidopsis , Cucumis sativus , Cucumis sativus/metabolismo , Raíces de Plantas/metabolismo , Filogenia , Meristema/genética , Meristema/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
EMBO J ; 37(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30012836

RESUMEN

In multicellular systems, the control of cell size is fundamental in regulating the development and growth of the different organs and of the whole organism. In most systems, major changes in cell size can be observed during differentiation processes where cells change their volume to adapt their shape to their final function. How relevant changes in cell volume are in driving the differentiation program is a long-standing fundamental question in developmental biology. In the Arabidopsis root meristem, characteristic changes in the size of the distal meristematic cells identify cells that initiated the differentiation program. Here, we show that changes in cell size are essential for the initial steps of cell differentiation and that these changes depend on the concomitant activation by the plant hormone cytokinin of the EXPAs proteins and the AHA1 and AHA2 proton pumps. These findings identify a growth module that builds on a synergy between cytokinin-dependent pH modification and wall remodeling to drive differentiation through the mechanical control of cell walls.


Asunto(s)
Arabidopsis/metabolismo , Diferenciación Celular/fisiología , Células Vegetales/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Raíces de Plantas/citología , ATPasas de Translocación de Protón/metabolismo
17.
New Phytol ; 233(1): 282-296, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34651321

RESUMEN

Exogenous application of CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (CLE) peptides suppresses protophloem differentiation and leads to the consumption of the proximal root meristem. However, the exact CLE peptides and the corresponding receptor complex regulating protophloem differentiation have not yet been clarified. Through expression pattern and phylogenetic analyses, CLE25/26/45 were identified as candidate peptides. Further genetic analyses, physiological assays and specific protophloem marker observations indicated that CLE25/26/45, BARELY ANY MERISTEM1/3 (BAM1/3) and CLV3 INSENSITIVE KINASEs (CIKs) are involved in regulating protophloem differentiation. The cle25 26 45 and cik2 3 4 5 6 mutation can greatly rescue the root defects of brevis radix (brx) and octopus (ops) mutants. The protophloem differentiation and proximal root meristem consumption of clv1 bam1 3 and cik2 3 4 5 6 were insensitive to CLE25/26/45 treatments. cle25 26 45, clv1 bam1 3 and cik2 3 4 5 6 displayed similar premature protophloem. In addition, CLE25/26/45 induced the interactions between BAMs and CIKs in vivo. Furthermore, CLE25/26/45 enhanced the phosphorylation levels of CIKs, which were greatly impaired in clv1 bam1 3 mutant. Our work clarifies that the CLE25/26/45-BAM1/3-CIK2/3/4/5/6 signalling module genetically acts downstream of BRX and OPS to suppress protophloem differentiation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/metabolismo , Meristema/metabolismo , Filogenia
18.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35216183

RESUMEN

The intercellular transport of sugars, nutrients, and small molecules is essential for plant growth, development, and adaptation to environmental changes. Various stresses are known to affect the cell-to-cell molecular trafficking modulated by plasmodesmal permeability. However, the mechanisms of plasmodesmata modification and molecules involved in the phloem unloading process under stress are still not well understood. Here, we show that heat stress reduces the root meristem size and inhibits phloem unloading by inducing callose accumulation at plasmodesmata that connect the sieve element and phloem pole pericycle. Furthermore, we identify the loss-of-function of CALLOSE SYNTHASE 8 (CalS8), which is expressed specifically in the phloem pole pericycle, decreasing the plasmodesmal callose deposition at the interface between the sieve element and phloem pole pericycle and alleviating the suppression at root meristem size by heat stress. Our studies indicate the involvement of callose in the interaction between root meristem growth and heat stress and show that CalS8 negatively regulates the thermotolerance of Arabidopsis roots.


Asunto(s)
Arabidopsis/metabolismo , Glucanos/metabolismo , Respuesta al Choque Térmico/fisiología , Meristema/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Plasmodesmos/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Glucosiltransferasas/metabolismo , Meristema/fisiología , Desarrollo de la Planta/fisiología , Plasmodesmos/fisiología
19.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35682913

RESUMEN

Autophagy is a highly conserved cell degradation process that widely exists in eukaryotic cells. In plants, autophagy helps maintain cellular homeostasis by degrading and recovering intracellular substances through strict regulatory pathways, thus helping plants respond to a variety of developmental and environmental signals. Autophagy is involved in plant growth and development, including leaf starch degradation, senescence, anthers development, regulation of lipid metabolism, and maintenance of peroxisome mass. More and more studies have shown that autophagy plays a role in stress response and contributes to maintain plant survival. The meristem is the basis for the formation and development of new tissues and organs during the post-embryonic development of plants. The differentiation process of meristems is an extremely complex process, involving a large number of morphological and structural changes, environmental factors, endogenous hormones, and molecular regulatory mechanisms. Recent studies have demonstrated that autophagy relates to meristem development, affecting plant growth and development under stress conditions, especially in shoot and root apical meristem. Here, we provide an overview of the current knowledge about how autophagy regulates different meristems under different stress conditions and possibly provide new insights for future research.


Asunto(s)
Meristema , Desarrollo de la Planta , Autofagia , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo
20.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36555789

RESUMEN

Proteasome is a large proteolytic complex that consists of a 20S core particle (20SP) and 19S regulatory particle (19SP) in eukaryotes. The proteasome degrades most cellular proteins, thereby controlling many key processes, including gene expression and protein quality control. Proteasome dysfunction in plants leads to abnormal development and reduced adaptability to environmental stresses. Previous studies have shown that proteasome dysfunction upregulates the gene expression of proteasome subunits, which is known as the proteasome bounce-back response. However, the proteasome bounce-back response cannot explain the damaging effect of proteasome dysfunction on plant growth and stress adaptation. To address this question, we focused on downregulated genes caused by proteasome dysfunction. We first confirmed that the 20SP subunit PBE is an essential proteasome subunit in Arabidopsis and that PBE1 mutation impaired the function of the proteasome. Transcriptome analyses showed that hypoxia-responsive genes were greatly enriched in the downregulated genes in pbe1 mutants. Furthermore, we found that the pbe1 mutant is hypersensitive to waterlogging stress, a typical hypoxic condition, and hypoxia-related developments are impaired in the pbe1 mutant. Meanwhile, the 19SP subunit rpn1a mutant seedlings are also hypersensitive to waterlogging stress. In summary, our results suggested that proteasome dysfunction downregulated the hypoxia-responsive pathway and impaired plant growth and adaptability to hypoxia stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citoplasma/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipoxia , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA