Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(14): 4178-4185, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38552164

RESUMEN

Elucidating charge transport (CT) through proteins is critical for gaining insights into ubiquitous CT chain reactions in biological systems and developing high-performance bioelectronic devices. While intra-protein CT has been extensively studied, crucial knowledge about inter-protein CT via interfacial amino acids is still absent due to the structural complexity. Herein, by loading cytochrome c (Cyt c) on well-defined peptide self-assembled monolayers to mimic the protein-protein interface, we provide a precisely controlled platform for identifying the roles of interfacial amino acids in solid-state CT via peptide-Cyt c junctions. The terminal amino acid of peptides serves as a fine-tuning factor for both the interfacial interaction between peptides and Cyt c and the immobilized Cyt c orientation, resulting in a nearly 10-fold difference in current through peptide-Cyt c junctions with varied asymmetry. This work provides a valuable platform for studying CT across proteins and contributes to the understanding of fundamental principles governing inter-protein CT.


Asunto(s)
Aminoácidos , Citocromos c , Citocromos c/química , Citocromos c/metabolismo , Péptidos/metabolismo , Proteínas , Transporte de Electrón
2.
Nano Lett ; 24(8): 2553-2560, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38363554

RESUMEN

Molecular electronics targets tiny devices exploiting the electronic properties of the molecular orbitals, which can be tailored and controlled by the chemical structure and configuration of the molecules. Many functional devices have been experimentally demonstrated; however, these devices were operated in the low-frequency domain (mainly dc to MHz). This represents a serious limitation for electronic applications, although molecular devices working in the THz regime have been theoretically predicted. Here, we experimentally demonstrate molecular THz switches at room temperature. The devices consist of self-assembled monolayers of molecules bearing two conjugated moieties coupled through a nonconjugated linker. These devices exhibit clear negative differential conductance behaviors (peaks in the current-voltage curves), as confirmed by ab initio simulations, which were reversibly suppressed under illumination with a 30 THz wave. We analyze how the THz switching behavior depends on the THz wave properties (power and frequency), and we benchmark that these molecular devices would outperform actual THz detectors.

3.
Nano Lett ; 24(12): 3670-3677, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38483128

RESUMEN

Functionalization of metallic surfaces by molecular monolayers is a key process in fields such as nanophotonics or biotechnology. To strongly enhance light-matter interaction in such monolayers, nanoparticle-on-a-mirror (NPoM) cavities can be formed by placing metal nanoparticles on such chemically functionalized metallic monolayers. In this work, we present a novel functionalization process of gold surfaces using 5-amino-2-mercaptobenzimidazole (5-A-2MBI) molecules, which can be used for upconversion from THz to visible frequencies. The synthesized surfaces and NPoM cavities are characterized by Raman spectroscopy, atomic force microscopy (AFM), and advancing-receding contact angle measurements. Moreover, we show that NPoM cavities can be efficiently integrated on a silicon-based photonic chip performing pump injection and Raman-signal extraction via silicon nitride waveguides. Our results open the way for the use of 5-A-2MBI monolayers in different applications, showing that NPoM cavities can be effectively integrated with photonic waveguides, enabling on-chip enhanced Raman spectroscopy or detection of infrared and THz radiation.

4.
Chemistry ; 30(3): e202302968, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37870886

RESUMEN

In the last two decades, perchlorate salts have been identified as environmental pollutants and recognized as potential substances affecting human health. We describe self-assembled monolayers (SAMs) of novel semiaza-bambus[6]urils (semiaza-BUs) equipped with thioethers or disulfide (dithiolane) functionalities as surface-anchoring groups on gold electrodes. Cyclic voltammetry (CV) with Fe(CN)6 3-/4- as a redox probe, together with X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and ellipsometry, were employed to characterize the interactions at the interface between the anchoring groups and the metal substrate. Data showed that the anion receptors' packing on the gold strongly depends on the anchoring group. As a result, SAMs of BUs with lipoic amide side chains show a concentration-dependent layer thickness. The BU SAMs are extremely stable on repeated electrochemical potential scans and can selectively recognize perchlorate anions. Our electrochemical impedance spectroscopy (EIS) studies indicated that semiaza-BU equipped with the lipoic amide side chains binds perchlorate (2-100 mM) preferentially over other anions such as F- , Cl- , I- , AcO- , H2 PO4 - , HPO4 2- , SO4 2- , NO2 - , NO3 - , or CO3 2- . The resistance performance is 10 to 100 times more efficient than SAMs containing all other tested anions.

5.
Chemphyschem ; : e202400626, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024523

RESUMEN

Self-assembled monolayers (SAMs) are emerging as platform technology for a myriad of applications, yet they still possess varied spatial stability and predictability issues as their properties are heavily dependent on subtle structural features. Reducing entropy within such a system serves as one of many potential solutions to increase order and therefore coherence/precision in measured properties. Here we explore controlled thermal annealing to improve edge disorders in SAMs and significantly reduce data variance. Using both odd- and even-numbered n-alkanethiol SAMs on Au, we observe statistically significant difference in the contact angles between edge and center. Thermal annealing at 40°C significantly narrows differences between edges and centre of the SAM, albeit with significant reduction in the parity dependent odd-even effect. This study provides a pathway to improve SAMs consistency through minimal external perturbation as reflected by the minimization of odd-even effect as SAMs become increasingly ordered.

6.
J Invertebr Pathol ; 204: 108080, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38432354

RESUMEN

Bombyx mori nucleopolyhedrovirus (BmNPV) is highly contagious and poses a serious threat to sericulture production. Because there are currently no effective treatments for BmNPV, a rapid and simple detection method is urgently needed. This paper describes an electrochemical immunosensor for the detection of BmNPV. The immunosensor was fabricated by covalently immobilizing anti-BmNPV, a biorecognition element, onto the surface of the working gold electrode via 11-mercaptoundecanoic acid (MUA)/ß-mercaptoethanol (ME) hybrid self-assembled monolayers. Electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM) were used to characterize the electrochemical performance and morphology of the immunosensor, respectively. Under optimum conditions, the developed immunosensor exhibited a linear response to BmNPV polyhedrin in the range of 1 × 102-1 × 108 fg/mL, with a low detection limit of 14.54 fg/mL. The immunosensor also exhibited remarkable repeatability, reproducibility, specificity, accuracy, and regeneration. Normal silkworm blood was mixed with BmNPV polyhedrin and analyzed quantitatively using this sensor, and the recovery was 92.31 %-100.61 %. Additionally, the sensor was used to analyze silkworm blood samples at different time points after BmNPV infection, and an obvious antigen signal was detected at 12 h post infection. Although this result agreed with that provided by the conventional polymerase chain reaction (PCR) method, the electroanalysis method established in this study was simpler, shorter in detection period, and lower in material cost. Furthermore, this innovative electrochemical immunosensor, developed for the ultra-sensitive and rapid detection of BmNPV, can be used for the early detection of virus-infected silkworms.


Asunto(s)
Técnicas Biosensibles , Bombyx , Nucleopoliedrovirus , Nucleopoliedrovirus/aislamiento & purificación , Técnicas Biosensibles/métodos , Animales , Bombyx/virología , Técnicas Electroquímicas/métodos , Inmunoensayo/métodos
7.
Mikrochim Acta ; 191(4): 207, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499896

RESUMEN

A miniature L-glutamate (L-Glu) biosensor is described based on Prussian blue (PB) modification with improved stability by using self-assembled monolayers (SAMs) technology and polydopamine (PDA). A gold microelectrode (AuME) was immersed in NH2(CH2)6SH-ethanol solution, forming well-defined SAMs via thiol-gold bonding chemistry which increased the number of deposited Prussian blue nanoparticles (PBNPs) and confined them tightly on the AuME surface. Then, dopamine solution was dropped onto the PBNPs surface and self-polymerized into PDA to protect the PB structure from destruction. The PDA/PB/SAMs/AuME showed improved stability through CV measurements in comparison with PB/AuME, PB/SAMs/AuME, and PDA/PB/AuME. The constructed biosensor achieved a high sensitivity of 70.683 nA µM-1 cm-2 in the concentration range 1-476 µM L-Glu with a low LOD of 0.329 µM and performed well in terms of selectivity, reproducibility, and stability. In addition, the developed biosensor was successfully applied to the determination of L-Glu in tomato juice, and the results were in good agreement with that of high-performance liquid chromatography (HPLC). Due to its excellent sensitivity, improved stability, and miniature volume, the developed biosensor not only has a promising potential for application in food sample analysis but also provides a good candidate for monitoring L-Glu level in food production.


Asunto(s)
Técnicas Biosensibles , Ferrocianuros , Ácido Glutámico , Indoles , Polímeros , Reproducibilidad de los Resultados , Oro/química , Técnicas Biosensibles/métodos
8.
Molecules ; 29(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338304

RESUMEN

In recent decades, considerable attention has been focused on the design and development of surfaces with defined or tunable properties for a wide range of applications and fields. To this end, self-assembled monolayers (SAMs) of organic compounds offer a unique and straightforward route of modifying and engineering the surface properties of any substrate. Thus, alkane-based self-assembled monolayers constitute one of the most extensively studied organic thin-film nanomaterials, which have found wide applications in antifouling surfaces, the control of wettability or cell adhesion, sensors, optical devices, corrosion protection, and organic electronics, among many other applications, some of which have led to their technological transfer to industry. Nevertheless, recently, aromatic-based SAMs have gained importance as functional components, particularly in molecular electronics, bioelectronics, sensors, etc., due to their intrinsic electrical conductivity and optical properties, opening up new perspectives in these fields. However, some key issues affecting device performance still need to be resolved to ensure their full use and access to novel functionalities such as memory, sensors, or active layers in optoelectronic devices. In this context, we will present herein recent advances in π-conjugated systems-based self-assembled monolayers (e.g., push-pull chromophores) as active layers and their applications.

9.
Molecules ; 29(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38398598

RESUMEN

The effects of solution concentration and pH on the formation and surface structure of 2-pyrimidinethiolate (2PymS) self-assembled monolayers (SAMs) on Au(111) via the adsorption of 2,2'-dipyrimidyl disulfide (DPymDS) were examined using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). STM observations revealed that the formation and structural order of 2PymS SAMs were markedly influenced by the solution concentration and pH. 2PymS SAMs formed in a 0.01 mM ethanol solution were mainly composed of a more uniform and ordered phase compared with those formed in 0.001 mM or 1 mM solutions. SAMs formed in a 0.01 mM solution at pH 2 were composed of a fully disordered phase with many irregular and bright aggregates, whereas SAMs formed at pH 7 had small ordered domains and many bright islands. As the solution pH increased from pH 7 to pH 12, the surface morphology of 2PymS SAMs remarkably changed from small ordered domains to large ordered domains, which can be described as a (4√2 × 3)R51° packing structure. XPS measurements clearly showed that the adsorption of DPymDS on Au(111) resulted in the formation of 2PymS (thiolate) SAMs via the cleavage of the disulfide (S-S) bond in DPymDS, and most N atoms in the pyrimidine rings existed in the deprotonated form. The results herein will provide a new insight into the molecular self-assembly behaviors and adsorption structures of DPymDS molecules on Au(111) depending on solution concentration and pH.

10.
Molecules ; 29(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38338450

RESUMEN

Aluminum (Al) placed in hot water (HW) at 90 °C is roughened due to its reaction with water, forming Al hydroxide and Al oxide, as well as releasing hydrogen gas. The roughened surface is thus hydrophilic and possesses a hugely increased surface area, which can be useful in applications requiring hydrophilicity and increased surface area, such as atmospheric moisture harvesting. On the other hand, when using HW to roughen specified areas of an Al substrate, ways to protect the other areas from HW attacks are necessary. We demonstrated that self-assembled monolayers (SAMs) of a fluorinated phosphonic acid (FPA, CF3(CF2)13(CH2)2P(=O)(OH)2) derivatized on the native oxide of an Al film protected the underneath metal substrate from HW attack. The intact wettability and surface morphology of FPA-derivatized Al subjected to HW treatment were examined using contact angle measurement, and scanning electron microscopy and atomic force microscopy, respectively. Moreover, the surface and interface chemistry of FPA-derivatized Al before and after HW treatment were investigated by time-of-flight secondary ion mass spectrometry (ToF-SIMS), verifying that the FPA SAMs were intact upon HW treatment. The ToF-SIMS results therefore explained, on the molecular level, why HW treatment did not affect the underneath Al at all. FPA derivatization is thus expected to be developed as a patterning method for the formation of hydrophilic and hydrophobic areas on Al when combined with HW treatment.

11.
Angew Chem Int Ed Engl ; 63(18): e202401518, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38459749

RESUMEN

The hole-transporting material (HTM), poly (3,4-ethylene dioxythiophene) poly(styrene sulfonate) (PEDOT : PSS), is the most widely used material in the realization of high-efficiency organic solar cells (OSCs). However, the stability of PEDOT : PSS-based OSCs is quite poor, arising from its strong acidity and hygroscopicity. In addition, PEDOT : PSS has an absorption in the infrared region and high highest occupied molecular orbital (HOMO) energy level, thus limiting the enhancement of short-circuit current density (Jsc) and open-circuit voltage (Voc), respectively. Herein, two asymmetric self-assembled molecules (SAMs), namely BrCz and BrBACz, were designed and synthesized as HTM in binary OSCs based on the well-known system of PM6 : Y6, PM6 : eC9, PM6 : L8-BO, and D18 : eC9. Compared with BrCz, BrBACz shows larger dipole moment, deeper work function and lower surface energy. Moreover, BrBACz not only enhances photon harvesting in the active layer, but also minimizes voltage losses as well as improves interface charge extraction/ transport. Consequently, the PM6 : eC9-based binary OSC using BrBACz as HTM exhibits a champion efficiency of 19.70 % with a remarkable Jsc of 29.20 mA cm-2 and a Voc of 0.856 V, which is a record efficiency for binary OSCs so far. In addition, the unencapsulated device maintains 95.0 % of its original efficiency after 1,000 hours of storage at air ambient, indicating excellent long-term stability.

12.
Angew Chem Int Ed Engl ; : e202407228, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975669

RESUMEN

Three functionalized thienopyrazines (TPs), TP-MN (1), TP-CA (2), and TPT-MN (3) were designed and synthesized as self-assembled monolayers (SAMs) deposited on the NiOx film for tin-perovskite solar cells (TPSCs). Thermal, optical, electrochemical, morphological, crystallinity, hole mobility, and charge recombination properties, as well as DFT-derived energy levels with electrostatic surface potential mapping of these SAMs, have been thoroughly investigated and discussed. The structure of the TP-MN (1) single crystal was successfully grown and analyzed to support the uniform SAM produced on the ITO/NiOx substrate. When we used NiOx as HTM in TPSC, the device showed poor performance. To improve the efficiency of TPSC, we utilized a combination of new organic SAMs with NiOx HTM, the TPSC device exhibited the highest PCE of 7.7% for TP-MN (1). Hence, the designed NiOx/TP-MN (1) acts as a new model system for the development of efficient SAM-based TPSC. To the best of our knowledge, the combination of organic SAMs with anchoring CN/CN or CN/COOH groups, and NiOx HTM for TPSC has never been reported elsewhere. The TPSC device based on the NiOx/TP-MN bilayer exhibits great enduring stability for performance, retaining ~80% of its original value for shelf storage over 4000 h.

13.
Angew Chem Int Ed Engl ; 63(22): e202402943, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38529715

RESUMEN

Porous aromatic frameworks (PAFs) show promising potential in anionic conduction due to their high stability and customizable functionality. However, the insolubility of most PAFs presents a significant challenge in their processing into membranes and subsequent applications. In this study, continuous PAF membranes with adjustable thickness were successfully created using liquid-solid interfacial polymerization. The rigid backbone and the stable C-C coupling endow PAF membrane with superior chemical and dimensional stabilities over most conventional polymer membranes. Different quaternary ammonium functionalities were anchored to the backbone through flexible alkyl chains with tunable length. The optimal PAF membrane exhibited an OH- conductivity of 356.6 mS ⋅ cm-1 at 80 °C and 98 % relative humidity. Additionally, the PAF membrane exhibited outstanding alkaline stability, retaining 95 % of its OH- conductivity after 1000 hours in 1 M NaOH. To the best of our knowledge, this is the first application of PAF materials in anion exchange membranes, achieving the highest OH- conductivity and exceptional chemical/dimensional stability. This work provides the possibility for the potential of PAF materials in anionic conductive membranes.

14.
Small ; 19(30): e2301104, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37010043

RESUMEN

Self-assembled monolayers (SAMs) are an important element of modern nanotechnology and surface functionalization. However, their application is still limited because they are easily removed from the surface of the object in corrosive environments. Crosslinking would make SAMs more resistant to the corrosive environment they are exposed to. In this work, how to strongly crosslink SAMs made of non-toxic and biodegradable fatty acids on metal surfaces using ionizing radiation has been demonstrated for the first time. The crosslinked nanocoatings are stable over time and have significantly improved properties compared to SAMs. Thus, crosslinking opens up the possibility of using SAMS in a variety of different systems and on different materials for surface functionalization to achieve stable and durable surface properties such as biocompatibility or selective reactivity.

15.
Small ; 19(32): e2302714, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37154235

RESUMEN

Chiral molecules have recently received renewed interest as highly efficient sources of spin-selective charge emission known as chiral-induced spin selectivity (CISS), which potentially offers a fascinating utilization of organic chiral materials in novel solid-state spintronic devices. However, a practical use of CISS remains far from completion, and rather fundamental obstacles such as (i) external controllability of spin, (ii) function durability, and (iii) improvement of spin-polarization efficiency have not been surmounted to date. In this study, these issues are addressed by developing a self-assembled monolayer (SAM) of overcrowded alkene (OCA)-based molecular motor. With this system, it is successfully demonstrated that the direction of spin polarization can be externally and repeatedly manipulated in an extremely stable manner by switching the molecular chirality, which is achieved by a formation of the covalent bonds between the molecules and electrode. In addition, it is found that a higher stereo-ordering architecture of the SAM of OCAs tailored by mixing them with simple alkanethiols considerably enhances the efficiency of spin polarization per a single OCA molecule. All these findings provide the creditable feasibility study for strongly boosting development of CISS-based spintronic devices that can simultaneously fulfill the controllability, durability, and high spin-polarization efficiency.

16.
Small ; 19(29): e2204962, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37026430

RESUMEN

Patterned, ultra-thin surface layers can serve as templates for positioning nanoparticlesor targeted self-assembly of molecular structures, for example, block-copolymers. This work investigates the high-resolution, atomic force microscopebased patterning of 2 nm thick vinyl-terminated polystyrene brush layers and evaluates the line broadening due to tip degradation. This work compares the patterning properties with those of a silane-based fluorinated self-assembled monolayer (SAM), using molecular heteropatterns generated by modified polymer blend lithography (brush/SAM-PBL). Stable line widths of 20 nm (FWHM) over lengths of over 20000 µm indicate greatly reduced tip wear, compared to expectations on uncoated SiOx surfaces. The polymer brush acts as a molecularly thin lubricating layer, thus enabling a 5000 fold increase in tip lifetime, and the brush is bonded weakly enough that it can be removed with surgical accuracy. On traditionally used SAMs, either the tip wear is very high or the molecules are not completely removed. Polymer Phase Amplified Brush Editing is presented, which uses directed self-assembly to amplify the aspect ratio of the molecular structures by a factor of 4. The structures thus amplified allow transfer into silicon/metal heterostructures, fabricating 30 nm deep, all-silicon diffraction gratings that could withstand focused high-power 405 nm laser irradiation.

17.
Chemistry ; 29(20): e202203540, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36622164

RESUMEN

Particular interest has been focused on modulation of solid-state charge transport (CT) in DNA. Nevertheless, it remains challenging to do so in a sensitive and predictive manner due to the lack of a definite relationship between DNA base pair stacking and DNA CT. The challenges can be mainly attributed to the ill-defined systems, which may lead to ambiguous and even contradictory conclusions. Here, we use DNA hairpins to construct the well-defined self-assembled monolayers. We reveal nearly positive-linear correlations between DNA conformation and CT in the DNA hairpins regulated with metal ion chelation and DNA sequence. The correlations have been confirmed by the solid-state current-voltage characteristics and circular dichroism in solution. The enhanced CT via metal ion chelated DNA hairpins is mainly from the improved DNA energy coupling to electrodes, not the almost unchanged energy barrier when Hg ion-induced DNA conformational switches toward the canonical B-form.


Asunto(s)
ADN , Emparejamiento Base , Conformación de Ácido Nucleico , Secuencia de Bases , Dicroismo Circular
18.
Chemistry ; 29(15): e202203536, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36548089

RESUMEN

This study examines thermoresponse of odd-even effect in self-assembled monolayers (SAMs) of n-alkanethiolates (SCn , n=3-18) formed on template-stripped gold (AuTS ) using macro- and microscopic analytical techniques, contact angle goniometry (CAG) and vibrational sum frequency generation (VSFG) spectroscopy, respectively. Both CAG and VSFG analyses showed that the odd-even effect in liquid-like SAMs (n=3-9) disappeared upon heating at 50-70 °C, indicating that the heating led to increased structural disorder regardless of odd and even carbon numbers. In contrast, the opposite thermoresponse was observed for odd and even SCn molecules in wax- and solid-like SAMs (n=10-18). Namely, temperature-dependent orientational change of terminal CH3 relative to the surface normal was opposite for the odd and even molecules, thereby leading to mitigated odd-even effect. Our work offers important insights into thermoresponse of supramolecular structure in condensed organic matter.

19.
Nanotechnology ; 34(38)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37336192

RESUMEN

Molecular thin films, such as self-assembled monolayers (SAMs), offer the possibility of translating the optimised thermophysical and electrical properties of high-Seebeck-coefficient single molecules to scalable device architectures. However, for many scanning probe-based approaches attempting to characterise such SAMs, there remains a significant challenge in recovering single-molecule equivalent values from large-area films due to the intrinsic uncertainty of the probe-sample contact area coupled with film damage caused by contact forces. Here we report a new reproducible non-destructive method for probing the electrical and thermoelectric (TE) properties of small assemblies (10-103) of thiol-terminated molecules arranged within a SAM on a gold surface, and demonstrate the successful and reproducible measurements of the equivalent single-molecule electrical conductivity and Seebeck values. We have used a modified thermal-electric force microscopy approach, which integrates the conductive-probe atomic force microscope, a sample positioned on a temperature-controlled heater, and a probe-sample peak-force feedback that interactively limits the normal force across the molecular junctions. The experimental results are interpreted by density functional theory calculations allowing quantification the electrical quantum transport properties of both single molecules and small clusters of molecules. Significantly, this approach effectively eliminates lateral forces between probe and sample, minimising disruption to the SAM while enabling simultaneous mapping of the SAMs nanomechanical properties, as well as electrical and/or TE response, thereby allowing correlation of the film properties.


Asunto(s)
Oro , Nanotecnología , Propiedades de Superficie , Microscopía de Fuerza Atómica/métodos , Conductividad Eléctrica
20.
Environ Res ; 237(Pt 1): 116877, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37579966

RESUMEN

Immunosensors are promising alternatives as detection platforms for the current gold standards methods. Electrochemical immunosensors have already proven their capability for the sensitive, selective, detection of target biomarkers specific to COVID-19, varying cancers or Alzheimer's disease, etc. Among the electrochemical techniques, electrochemical impedance spectroscopy (EIS) is a highly sensitive technique which examines the impedance of an electrochemical cell over a range of frequencies. There are several important critical requirements for the construction of successful impedimetric immunosensor. The applied surface chemistry and immobilisation protocol have impact on the electroanalytical performance of the developed immunosensors. In this Review, we summarise the building blocks of immunosensors based on EIS, including self-assembly monolayers, nanomaterials, polymers, immobilisation protocols and antibody orientation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA