Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 30(17): e202304080, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38200698

RESUMEN

Utilization of well-defined siloxane molecules allows for the construction of functional siloxane-based nanoporous materials based on the molecular design. Herein, a novel class of siloxane-based porous materials is synthesized via cross-linking of dimethylsilyl- and dimethylvinylsilyl-functionalized cage siloxanes with double-6-ring (D6R) geometry. Compared with the conventional double-4-ring cage siloxane, this study highlights the characteristics of D6R siloxanes as building blocks, demonstrating their high surface area and chemical stability. Furthermore, density functional theory calculations show their unique cation encapsulation ability.

2.
J Toxicol Environ Health B Crit Rev ; 27(3): 106-129, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38375664

RESUMEN

Cyclic and linear siloxanes are compounds synthesized from silicon consisting of alternating atoms of silicone and oxygen [Si-O] units with organic side chains. The most common cyclic siloxanes are octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), while the most common linear siloxanes are high molecular weight polydimethylsiloxanes (PDMS) and low molecular weight volatile linear siloxanes known as hexamethyldisiloxane (L2), octamethyltrisiloxane (L3), decamethyltetrasiloxane (L4), dodecamethylpentasiloxane (L5). These compounds (1) exhibit low dermal toxicity, (2) are generally inert and non-reactive, and (3) are compatible with a wide range of chemicals offering beneficial chemical properties which include the following: wash-off or transfer resistance from the skin, sun protection factor (SPF) enhancement, emolliency in cleaning products). Because of these properties, these compounds are incorporated into multiple consumer products for use on the skin, such as cosmetics and health-care products, with over 300,000 tons annually sold into the personal care and consumer products sector. Because of their widespread use in consumer products and potential for human dermal exposure, a comprehensive understanding of the dermal absorption and overall fate of siloxanes following dermal exposure is important. This review summarizes available data associated with the dermal absorption/penetration as well as fate of the most commonly used siloxane substances.


Asunto(s)
Cosméticos , Siloxanos , Humanos , Siloxanos/toxicidad , Siloxanos/química , Piel , Siliconas , Dimetilpolisiloxanos
3.
Environ Sci Technol ; 58(23): 10252-10261, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38811014

RESUMEN

With octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) being considered for evaluation under the UN Stockholm Convention on Persistent Organic Pollutants, which specifically acknowledges risks of biomagnification of persistent organic pollutants in traditional foods, a study into the mechanism of the biomagnification process of D4 and D5 in Rainbow trout was conducted by combining the absorption-distribution-metabolism-excretion for bioaccumulation (ADME-B) approach to determine intestinal and somatic biotransformation rates and radiochemical analyses to identify metabolite formation. High rates of intestinal biotransformation of D4 and D5 (i.e., 2.1 (0.70 SE) and 0.88 (0.67 SE) day-1, respectively) and metabolite formation [i.e., 52.0 (17 SD)% of D4 and 56.5% (8.2 SD)% of D5 were metabolized] were observed that caused low dietary uptake efficiencies of D4 and D5 in fish of 15.5 (2.9 SE)% and 21.0 (6.5 SE)% and biomagnification factors of 0.44 (0.08 SE) for D4 and 0.78 (0.24 SE) kg-lipid·kg-lipid-1 for D5. Bioaccumulation profiles indicated little effect of growth dilution on the bioaccumulation of D4 and D5 in fish and were substantially different from those of PCB153. The study highlights the importance of intestinal biotransformation in negating biomagnification of substances in organisms and explains differences between laboratory tests and field observations of bioaccumulation of D4 and D5.


Asunto(s)
Biotransformación , Oncorhynchus mykiss , Siloxanos , Animales , Oncorhynchus mykiss/metabolismo , Siloxanos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Bioacumulación , Dieta
4.
Environ Sci Technol ; 58(20): 8835-8845, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38722766

RESUMEN

Volatile methyl siloxanes (VMS) are a group of organosilicon compounds of interest because of their potential health effects, their ability to form secondary organic aerosols, and their use as tracer compounds. VMS are emitted in the gas-phase from using consumer and personal care products, including deodorants, lotions, and hair conditioners. Because of this emission route, airborne concentrations are expected to increase with population density, although there are few studies in large urban centers. Here, we report summertime concentrations and daily variations of VMS congeners measured in New York City. Median concentrations of the 6 studied congeners, D3 (20 ng m-3), D4 (57 ng m-3), D5 (230 ng m-3), D6 (11 ng m-3), L5 (2.5 ng m-3), and L7 (1.3 ng m-3) are among the highest reported outdoor concentrations in the literature to date. Average congener ratios of D5:D4 and D5:D6 were consistent with previously reported emissions ratios, suggesting that concentrations were dominated by local emissions. Measured concentrations agree with previously published results from a Community Multiscale Air Quality model and support commonly accepted emissions rates for D4, D5, and D6 of 32.8, 135, and 6.1 mg per capita per day. Concentrations of D4, D5, D6, L5, and L7 and total VMS were significantly lower during the day than during the night, consistent with daytime oxidation reactivity. Concentrations of D3 did not show the same diurnal trend but exhibited a strong directional dependence, suggesting that it may be emitted by industrial point sources in the area rather than personal care product use. Concentrations of all congeners had large temporal variations but showed relatively weak relationships with wind speed, temperature, and mixing height.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Siloxanos , Ciudad de Nueva York , Siloxanos/análisis , Contaminantes Atmosféricos/análisis , Industrias , Humanos , Volatilización , Estaciones del Año , Cosméticos/análisis , Compuestos Orgánicos Volátiles/análisis
5.
Environ Sci Technol ; 58(31): 13587-13593, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39042050

RESUMEN

Twenty years since coming into force, the Stockholm Convention has become a "living" global agreement that has allowed for the addition of substances that are likely, as a result of their long-range environmental transport (LRET), to lead to significant adverse effects. The recent listing of the phenolic benzotriazole UV-328 in Annex A and a draft nomination of three cyclic volatile methylsiloxanes (cVMS) for Annex B draw attention to the fact that many chemicals are subject to LRET and that this can lead to questionable nominations. The nomination of UV-328 and the draft nomination of cVMS also raise the spectre of regrettable substitutions. At the same time, atmospheric monitoring across the globe reveals that environmental releases of several unintentionally produced POPs listed in Annex C, such as hexachlorobenzene and hexachlorobutadiene, are continuing unabated, highlighting shortcomings in the enforcement of the minimum measures required under Article 5. There is also no evidence of efforts to substitute a chemical whose use has been known for three decades to unintentionally produce polychlorinated biphenyls. These developments need to be rectified to safeguard the long-term viability and acceptance of a global treaty of undeniable importance.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales , Política Ambiental , Cooperación Internacional , Triazoles , Siloxanos
6.
J Appl Toxicol ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375180

RESUMEN

Siloxanes, commonly known as silicones, are polymeric compounds made up of silicon and oxygen atoms bonded together alternately. Within this group of substances are linear methyl-siloxanes and cyclic methyl-siloxanes, with octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) being the most produced and used industrially. Due to their versatility, high production volume, stability, and local presence in environmental matrices and biological fluids such as breast milk, fat, and plasma, siloxanes have been considered persistent organic pollutants, representing a public health problem. This represents a public health concern, especially when different investigations have reported potential endocrine effects at the reproductive level in experimental animals exposed to D4 and D5. The objective of this study was to review the potential reproductive and endocrine effects derived from siloxanes present in personal care products (PCPs). The results of the literature review confirmed that D4 and D5 were the most used siloxanes as additives in PCP because they improve the emollient properties of the cosmetic and the physical appearance of hair and skin. Similarly the toxicological effects of siloxanes, particularly D4, D5, and D6 included significant endocrine disruption, reproductive toxicity, and liver toxicity. Studies in SD and F-344 rats, commonly used to assess these effects, have shown that D4 has low estrogenic activity, binding to ER-α receptors, whereas D5 does not bind to estrogen receptors. D4 exposure has been associated with increased uterine weight and estrous cycle alterations, leading to prolonged exposure to estrogens, which raises the risk of endometrial hyperproliferation and carcinogenesis. Recent research highlights that D5 exposure disrupts follicle growth, endometrial receptivity, and steroidogenesis, resulting in infertility and hormonal imbalances, potentially causing disorders like endometriosis and increased cancer risk. Chronic exposure to D5 has been linked to the development of uterine endometrial adenocarcinoma, with higher doses further elevating this risk.

7.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928506

RESUMEN

In the presented study, the effectiveness of a siloxane polyether (HOL7) coating on glass against microbiological colonization was assessed using microalgae as a key component of widespread aerial biofilms. The siloxane polyether was successfully synthesized by a hydrosilylation reaction in the presence of Karstedt's catalyst. The product structure was confirmed by NMR spectroscopy and GPC analysis. In addition, the thermal stability of HOL7 was studied by thermogravimetric measurement. Subsequently, the surfaces of glass plates were modified with the obtained organosilicon derivative. In the next step, a microalgal experiment was conducted. A mixture of four strains of algal taxa isolated from building materials was used for the experiment-Chlorodium saccharophilum PNK010, Klebsormidium flaccidum PNK013, Pseudostichococcus monallantoides PNK037, and Trebouxia aggregata PNK080. The choice of these algae followed from their wide occurrence in terrestrial environments. Application of an organofunctional siloxane compound on the glass reduced, more or less effectively, the photosynthetic activity of algal cells, depending on the concentration of the compound. Since the structure of the compound was not based on biocide-active agents, its effectiveness was associated with a reduction in water content in the cells.


Asunto(s)
Microalgas , Siloxanos , Siloxanos/química , Microalgas/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Éteres/química , Éteres/farmacología , Vidrio/química , Fotosíntesis
8.
Angew Chem Int Ed Engl ; : e202412808, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175330

RESUMEN

A highly selective cross-coupling reaction between Si-OAc (AcO = acetoxy) and Si-OH compounds that generates unsymmetrical and symmetrical oligosiloxanes concurrent with the release of acetic acid has been developed. The high selectivity arises from the reactivity difference that depends on the varying number of acetoxy groups present, thus facilitating a clean one-pot synthesis of oligosiloxanes. For instance, the reactions of di-, tri-, or tetraacetoxysilanes with silanols furnish acetoxy-containing di- and trisiloxanes in high yield. Two equivalents of tetraacetoxysilane can react with various silanediols to form 1,1,1,3,3,3-hexaacetoxytrisiloxanes, which subsequently react with a second molecule of a silanediol to selectively afford 1,1,3,3-tetraacetoxycyclotetrasiloxanes. The cyclotetrasiloxanes further react with a third molecule of silanediol to provide unprecedented bicyclic pentasiloxanes with acetoxy groups at the bridgehead silicon atoms. Applications of the acetoxy-containing products as efficient surface-treatment agents and new building blocks for highly heat-resistant materials are demonstrated.

9.
Small ; 19(50): e2303804, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37632324

RESUMEN

Silicon (Si) is considered the most promising anode material for the next generation of lithium-ion batteries (LIBs) because of its high theoretical specific capacity and abundant reserves. However, the volume expansion of silicon in the cycling process causes the destruction of the electrode structure and irreversible capacity loss. As a result, the commercial application of silicon materials is greatly hindered. In recent years, siloxane-based organosilicon materials have been widely used in silicon anode of LIBs because of their unique structure and physical and chemical properties, and have shown excellent electrochemical properties. The comprehensive achievement of siloxanes in silicon-based LIBs can be understood better through a systematic summary, which is necessary to guide the design of electrodes and achieve better electrochemical performance. This paper systematically introduces the unique advantages of siloxane materials in electrode, surface/interface modification, binder, and electrolyte. The challenges and future directions for siloxane materials are presented to enhance their performance and expand their application in silicon-based LIBs.

10.
Environ Sci Technol ; 57(48): 19999-20009, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37971371

RESUMEN

Cyclic volatile methyl siloxanes (cVMS) are ubiquitous in hair care products (HCPs). cVMS emissions from HCPs are of concern, given the potential adverse impact of siloxanes on the environment and human health. To characterize cVMS emissions and exposures during the use of HCPs, realistic hair care experiments were conducted in a residential building. Siloxane-based HCPs were tested using common hair styling techniques, including straightening, curling, waving, and oiling. VOC concentrations were measured via proton-transfer-reaction time-of-flight mass spectrometry. HCP use drove rapid changes in the chemical composition of the indoor atmosphere. cVMS dominated VOC emissions from HCP use, and decamethylcyclopentasiloxane (D5) contributed the most to cVMS emissions. cVMS emission factors (EFs) during hair care routines ranged from 110-1500 mg/person and were influenced by HCP type, styling tools, operation temperatures, and hair length. The high temperature of styling tools and the high surface area of hair enhanced VOC emissions. Increasing the hair straightener temperature from room temperature to 210 °C increased cVMS EFs by 50-310%. Elevated indoor cVMS concentrations can result in substantial indoor-to-outdoor transport of cVMS via ventilation (0.4-6 tons D5/year in the U.S.); thus, hair care routines may augment the abundance of cVMS in the outdoor atmosphere.


Asunto(s)
Preparaciones para el Cabello , Compuestos Orgánicos Volátiles , Humanos , Siloxanos/análisis , Espectrometría de Masas , Atmósfera , Preparaciones para el Cabello/análisis , Monitoreo del Ambiente
11.
Macromol Rapid Commun ; 44(5): e2200766, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36377472

RESUMEN

The enhancement in dielectric properties and self-healing ability for dielectric materials has been a challenging subject these years. Herein, a series of self-healed dielectric elastomers by combining the ferric ions and carboxyl-containing poly(sulfone siloxane)s is reported. Experimental results indicate the excellent dielectric properties of obtained elastomers, as the dielectric constant up to 12.8. SEM micrographs exhibit that carboxyl groups and ferric ions can aggregate together to generate clusters, which further result in interfacial polarization. Besides, high polarity dipole units including sulfonyl units and carboxyl groups contribute to dipole polarization. The overlay of the two mentioned polarization eventually results in the high dielectric property. The dielectric constant obviously increases with the contents of carboxyl groups and ferric ions. Moreover, the samples are feasible for recycling and reprocessing with high self-healing efficiency, owing to the reversibility of the coordination bond. A self-healing efficiency of 92.1% in tensile strength of the obtained samples can be reached after 2 h treatment at 60 °C. And the elastomers can also conveniently recover most mechanical properties after solution treatment. This work may offer a promising method for preparing dielectric elastomers with high dielectric properties and self-healing ability.


Asunto(s)
Elastómeros , Siloxanos , Elastómeros/química , Siloxanos/química , Resistencia a la Tracción , Iones
12.
Environ Geochem Health ; 45(5): 1711-1722, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35622306

RESUMEN

Comprehensive studies on emerging contaminants like volatile methyl siloxanes in settled dust from different micro-environments are still limited. In this study, concentrations and distribution of cyclic volatile methyl siloxanes (CVMSs) including D3, D4, D5, and D6 were examined in indoor dust samples collected from various micro-environments in northern and central Vietnam. Concentrations of total CVMSs in the dust samples ranged from 86.0 to 5890 (median 755) ng/g and decreased in the order: waste processing workshops (median 1560; range 329-5890) > common houses (650; 115-1680) > university classrooms (480; 86.0-1540) > vehicle repair shops (295; 126-1950) ng/g. This observation suggests that informal waste processing activities are sources of CVMSs. Among the studied CVMSs, D5 was the most predominant compound (41 ± 14%), followed by D6 (26 ± 13%), D4 (23 ± 12%), and D3 (11 ± 11%). Moderate positive correlations between D3/D4, D4/D5, and D5/D6 were found. Median daily intake doses of D3, D4, D5, and D6 through dust ingestion were 0.016, 0.051, 0.11, and 0.054 ng/kg/d, respectively, which were comparable to water consumption and markedly lower than the air inhalation pathway.


Asunto(s)
Contaminación del Aire Interior , Monitoreo del Ambiente , Siloxanos , Humanos , Contaminación del Aire Interior/estadística & datos numéricos , Polvo/análisis , Siloxanos/análisis , Vietnam , Contaminantes Atmosféricos
13.
Chemistry ; 28(2): e202103531, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34761842

RESUMEN

The controlled design of functional oligosiloxanes is an important topic in current research. A consecutive Si-O-Si bond cleavage/formation using siloxanes that are substituted with 1,2-diaminobenzene derivatives acting as molecular scissors is presented. The method allows to cut at certain positions of a siloxane scaffold forming a cyclic diaminosilane or -siloxane intermediate and then to introduce new functional siloxy units. The procedure could be extended to a direct one-step cleavage of chlorooligosiloxanes. Both siloxane formation and cleavage proceed with good to excellent yields, high regioselectivity, and great variability of the siloxy units. Control of the selectivity is achieved by the choice of the amino substituent. Insight into the mechanism was provided by low temperature NMR studies and the isolation of a lithiated intermediate.


Asunto(s)
Siloxanos , Espectroscopía de Resonancia Magnética
14.
Chemphyschem ; 23(9): e202200088, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35235247

RESUMEN

The basicity of the simplest silicone, disiloxane (H3 Si-O-SiH3 ), is strongly affected by the Si-O-Si angle (α). We use high-level ab initio MP2/aug'-cc-pVTZ calculations and the molecular electrostatic potential (MEP) to analyze the relationship between the increase in basicity and the reduction of α. Our results clearly point out that this increase can be explained through the MEP, as the interactions between oxygen from disiloxane and the acceptors are mostly electrostatic. Furthermore, the effect of α on the tetrel bond between disiloxane and several Lewis bases can again be rationalized using the MEP. Finally, we explore the cooperativity throughout α for ternary complexes where disiloxane simultaneously interacts with a Lewis acid and a Lewis base. Both non-covalent interactions remain cooperative for all α values, although the largest cooperativity effects are not always those maximizing the binding energy in the binary complexes. Overall, the MEP remains a powerful predictor for noncovalent interactions.


Asunto(s)
Oxígeno , Silanos , Electricidad Estática
15.
Beilstein J Org Chem ; 18: 1256-1263, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158173

RESUMEN

3-Silylated furfurals, readily prepared in three steps from biomass-derived furfural and 5-methylfurfural, are converted into 3-silylated 2-furyl carbinols upon condensation with organomagnesium or organolithium reagents. The hydroxy unit of the carbinol adducts can be exploited to promote C3(sp2)-Si bond functionalization through intramolecular activation. Two approaches were contemplated for this purpose. Activation by alkoxides of the C3-SiEt3 or C3-SiMe2 t-Bu bonds was ineffective. Conversely, treatment of the C3-benzyldimethylsilyl-appended derivatives with tetrabutylammonium fluoride led to cyclic siloxanes, which revealed to be competent donors for copper-catalyzed cross-coupling reactions, such as arylation reactions catalyzed by Pd2(dba)3/CuI, as well as allylation and methylation reactions catalyzed by CuI⋅PPh3. C3-Benzyldimethylsilyl-appended furfurals are thus introduced as versatile platforms, providing a modular access to 3-substituted 2-furyl carbinols from renewable feedstock.

16.
Chemistry ; 27(43): 11041-11044, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34061416

RESUMEN

While alkyl-substituted siloxanes are widely known, virtually nothing is known about perfluoroalkyl siloxanes and their congener species, the silanols and silanolates. We recently reported on the tris(pentafluoroethyl)silanide ion, [Si(C2 F5 )3 ]- , which features Lewis amphoteric character deriving from the pentafluoroethyl substituents and their strong electron-withdrawing properties. Transferring this knowledge, we investigated the Lewis amphoteric behavior of the tris(pentafluoroethyl)silanolate, [Si(C2 F5 )3 O]- . In order to examine such Lewis amphoteric behavior, we first developed a strategy for the synthesis of the corresponding silanol Si(C2 F5 )3 OH, which readily condenses at room temperature to the hexakis(pentafluoroethyl)disiloxane, (C2 F5 )3 SiOSi(C2 F5 )3 . Deprotonation of Si(C2 F5 )3 OH employing a sterically demanding phosphazene base allows the characterization of the first example of a dimeric triorganosilanolate: the dianionic hexakis(pentafluoroethyl)disilanolate, [{Si(C2 F5 )3 O}2 ]2- , implies Lewis amphoteric character of the monomeric [Si(C2 F5 )3 O]- anion.

17.
Environ Sci Technol ; 55(20): 13932-13941, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34590828

RESUMEN

Trophic magnification of cyclic volatile methyl siloxanes (cVMS) in a terrestrial food web was investigated by measuring concentrations of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) and two reference chemicals within air and biota samples from an avian food web located in a mixed urban-agricultural landscape. Terrestrial trophic magnification factors derived from lipid normalized concentrations (TMFLs) for D5 and D6 were 0.94 (0.17 SE) and 1.1 (0.23 SE) and not statistically different from 1 (p > 0.05); however, the TMFL of D4 was 0.62 (0.11 SE) and statistically less than 1 (p < 0.001). TMFLs of PCB-153 and p,p'-DDE were 5.6 (2.2 SE) and 6.1 (2.8 SE) and statistically greater than 1 (p < 0.001). TMFLs of cVMS in this terrestrial system were similar to those reported in aquatic systems. However, trophic magnification factors derived on a fugacity basis (TMFFs), which recognize differences in body temperature and lipid composition between organisms, were greater than corresponding TMFLs primarily because a temperature-induced thermodynamic biomagnification of hydrophobic chemicals occurs when endothermic organisms consume poikilothermic organisms. Therefore, we recommend that biomagnification studies of food webs including endothermic and poikilothermic organisms incorporate differences in body temperature and tissue composition to accurately characterize the biomagnification potential of chemicals.


Asunto(s)
Cadena Alimentaria , Contaminantes Químicos del Agua , Bioacumulación , Temperatura Corporal , Monitoreo del Ambiente , Siloxanos/análisis , Temperatura , Contaminantes Químicos del Agua/análisis
18.
Macromol Rapid Commun ; 42(5): e2000601, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33270347

RESUMEN

The reaction of poly(hydromethylsiloxane-co-methylphenylsiloxane) with zirconium (IV) n-propoxide in dry toluene leads to extensive scission of the siloxane chain and conversion of Si-H groups. These processes produce oligomeric siloxanes and organosilanes containing moisture sensitive propoxy and siloxy-zirconate groups. The obtained post-reaction solution of zirconium containing heterosiloxane oligomers is stable under anhydrous conditions for several weeks. However, its exposure to moisture initiates the hydrolytic condensation of the reactive groups leading to cross-linking and the formation of a siloxane-zirconium composite. Spin coating of the siloxane-zirconium prepolymer followed by exposure to moisture produces thin films with excellent light transparency and increased refractive index. The final coatings are characterized by ellipsometry, UV-Vis, IR, and 29 Si MAS NMR spectroscopies.


Asunto(s)
Siloxanos , Circonio , Hidrólisis , Espectroscopía de Resonancia Magnética , Refractometría
19.
Ecotoxicol Environ Saf ; 224: 112631, 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34416634

RESUMEN

In view of their vast global usage in both consumer products and industrial processes, environmental emission and fates of siloxanes have become concerned issue. This review summarized the research progress, especially in the last decade, on production/consumption data, toxicities, analysis methods, environmental distribution, migration and degradation/transformation of both dimethylsiloxanes and modified siloxanes in atmospheric, aquatic and terrestrial compartments from various areas (especially in China). In spite of their fast degradation (hydrolysis and hydroxylation, etc) in various matrices (except sediment), dimethylsiloxane oligomers have been found in various environmental matrices from many countries due to their constant usage and emission. Moreover, recent literatures have paid attention to behaviors of dimethylsiloxanes in industrial areas, e.g., their higher residual levels compared with residential areas and unique transformed products (such as halogenated products) arose from special industrial production scenarios. Meanwhile, although most prior studies focused on dimethylsiloxanes, identification of modified-siloxanes with other functional groups in environment have been beginning to attract the attention of scientists. Furthermore, related literatures indicated that compared with dimethylsiloxanes, both halogenated-dimethylsiloxanes and modified methylsiloxanes (phenylsiloxanes and trifluoropropylsiloxanes) could have stronger persistence due to their weaker volatilization and degradation, especially in terrestrial matrices.

20.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34502455

RESUMEN

During biogas combustion, siloxanes form deposits of SiO2 on engine components, thus shortening the lifespan of the installation. Therefore, the development of new methods for the purification of biogas is receiving increasing attention. One of the most effective methods is physical absorption with the use of appropriate solvents. According to the principles of green engineering, solvents should be biodegradable, non-toxic, and have a high absorption capacity. Deep eutectic solvents (DES) possess such characteristics. In the literature, due to the very large number of DES combinations, conductor-like screening models for real solvents (COSMO-RS), based on the comparison of siloxane activity coefficient of 90 DESs of various types, were studied. DESs, which have the highest affinity to siloxanes, were synthesized. The most important physicochemical properties of DESs were carefully studied. In order to explain of the mechanism of DES formation, and the interaction between DES and siloxanes, the theoretical studies based on σ-profiles, and experimental studies including the 1H NMR, 13C NMR, and FT-IR spectra, were applied. The obtained results indicated that the new DESs, which were composed of carvone and carboxylic acids, were characterized by the highest affinity to siloxanes. It was shown that the hydrogen bonds between the active ketone group (=O) and the carboxyl group (-COOH) determined the formation of stable DESs with a melting point much lower than those of the individual components. On the other hand, non-bonded interactions mainly determined the effective capture of siloxanes with DES.


Asunto(s)
Biocombustibles , Monoterpenos Ciclohexánicos/química , Siloxanos/aislamiento & purificación , Solventes/química , Absorción Fisicoquímica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA