Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(9): e202314092, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38193569

RESUMEN

The phase distribution and organic spacer cations play pivotal roles in determining the emission performance and stability of perovskite quantum wells (QWs). Here, we propose a universal molecular regulation strategy to tailor phase distribution and enhance the stability of CsPbBr3 QWs. The capability of sterically hindered ligands with formidable surface binding groups is underscored in directing CsPbBr3 growth and refining phase distribution. With trimethylamine modified boron dipyrromethene (BDP-TMA) ligand as a representative, the BDP-TMA driven can precisely control phase distribution and passivate defects of CsPbBr3 . Notably, BDP-TMA acts as a co-spacer organic entity in obtained BDP-TMA-CsPbBr3 , facilitating efficient singlet energy transfer and tailoring the luminescence to produce a distinctive bluish-white emission. The BDP-TMA-CsPbBr3 demonstrates significant phase stability under water exposure, light irradiation, and moderate temperature. Interestingly, BDP-TMA-CsPbBr3 exhibits the thermally-induced dynamic fluorescence control at elevated temperatures, which can be achieved feasible for advanced information encryption. This discovery paves the way for the exploration of perovskite QWs in applications like temperature sensing, anti-counterfeiting, and other advanced optical smart technologies.

2.
Chemistry ; 22(30): 10484-93, 2016 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-27333487

RESUMEN

We report the preparation of several new porphyrin homodimers bridged by a platinum(II) ion in which very intense electronic communication through the coordination link occurs. Moreover, the synthesis of a new porphyrin dyad and its photophysical properties are reported. This dyad exhibits the fastest singlet energy transfer ever reported for synthetic systems between a zinc(II) porphyrin and a porphyrin free base. This extremely fast transfer (∼100 femtoseconds) is in the same range as the fastest one measured in natural systems. This feature is due to the platinum(II) linker, which allows for strong MO couplings between the two porphyrin units as experimentally supported by electrochemistry and corroborated by DFT computations.

3.
Chemistry ; 21(37): 12940-6, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26215923

RESUMEN

Novel diastereomeric triads containing two naphthalene chromophores have been designed in which an electron-donating amine moiety is covalently integrated into the connecting bridge. Photophysical studies (steady-state and time-resolved fluorescence) in solvents of different polarity have been performed. A remarkable stereodifferentiation in the intramolecular fluorescence quenching was found in acetonitrile. Laser flash photolysis gave rise to naphthalene-derived radical cations, which were also quenched by the amine with an even higher degree of stereodifferentiation. The results are in agreement with thermodynamic estimations and indicate that photoinduced electron transfer (PET) is the main quenching pathway. Furthermore, theoretical calculations have allowed us to explain the experimentally observed stereodifferentiation in PET quenching.

4.
Chemistry ; 20(40): 12988-3001, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25123591

RESUMEN

A dyad built up of a zinc(II) porphyrin and the corresponding free base, [Zn-Fb], fused to N-heterocyclic carbene (NHCs) ligands, respectively acting as singlet energy donor and acceptor, and a bridging trans-PdI2 unit, along with the corresponding [Zn-Zn] and [Fb-Fb] dimers were prepared and investigated by absorption and emission spectroscopy and density functional computations. Despite favorable structural and spectroscopic parameters, unexpectedly slow singlet energy transfer rates are measured in comparison with the predicted values by the Förster theory and those observed for other structurally related dyads. This observation is rationalized by the lack of large molecular orbital (MO) overlaps between the frontier MOs of the donor and acceptor, thus preventing a double electron exchange through the trans-PdI2 bridge, and by an electronic shielding induced by the presence of this same linker preventing the two chromophores to fully interact via their transition dipoles.


Asunto(s)
Metaloporfirinas/química , Paladio/química , Zinc/química , Electrones , Transferencia de Energía , Compuestos Heterocíclicos/química , Metano/análogos & derivados , Metano/química , Modelos Moleculares , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA