RESUMEN
Protein lysine acetylation is an important posttranslational modification that regulates numerous biological processes. Targeting lysine acetylation regulatory factors, such as acetyltransferases, deacetylases, and acetyl-lysine recognition domains, has been shown to have potential for treating human diseases, including cancer and neurological diseases. Over the past decade, many other acyl-lysine modifications, such as succinylation, crotonylation, and long-chain fatty acylation, have also been investigated and shown to have interesting biological functions. Here, we provide an overview of the functions of different acyl-lysine modifications in mammals. We focus on lysine acetylation as it is well characterized, and principles learned from acetylation are useful for understanding the functions of other lysine acylations. We pay special attention to the sirtuins, given that the study of sirtuins has provided a great deal of information about the functions of lysine acylation. We emphasize the regulation of sirtuins to illustrate that their regulation enables cells to respond to various signals and stresses.
Asunto(s)
Lisina/metabolismo , Mamíferos/metabolismo , Sirtuinas/química , Sirtuinas/metabolismo , Acetilación , Acilación , Animales , Cromatina/genética , Cromatina/metabolismo , Histona Acetiltransferasas/metabolismo , Humanos , Procesamiento Proteico-PostraduccionalRESUMEN
A decline in capillary density and blood flow with age is a major cause of mortality and morbidity. Understanding why this occurs is key to future gains in human health. NAD precursors reverse aspects of aging, in part, by activating sirtuin deacylases (SIRT1-SIRT7) that mediate the benefits of exercise and dietary restriction (DR). We show that SIRT1 in endothelial cells is a key mediator of pro-angiogenic signals secreted from myocytes. Treatment of mice with the NAD+ booster nicotinamide mononucleotide (NMN) improves blood flow and increases endurance in elderly mice by promoting SIRT1-dependent increases in capillary density, an effect augmented by exercise or increasing the levels of hydrogen sulfide (H2S), a DR mimetic and regulator of endothelial NAD+ levels. These findings have implications for improving blood flow to organs and tissues, increasing human performance, and reestablishing a virtuous cycle of mobility in the elderly.
Asunto(s)
Envejecimiento , Sulfuro de Hidrógeno/metabolismo , NAD/metabolismo , Animales , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Ratones , Ratones Noqueados , Microvasos/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Neovascularización Fisiológica , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/genética , Sirtuina 1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Sirtuin 7 (SIRT7) is a member of the mammalian family of nicotinamide adenine dinucleotide (NAD+)-dependent histone/protein deacetylases, known as sirtuins. It acts as a potent oncogene in numerous malignancies, but the molecular mechanisms employed by SIRT7 to sustain lung cancer progression remain largely uncharacterized. We demonstrate that SIRT7 exerts oncogenic functions in lung cancer cells by destabilizing the tumor suppressor alternative reading frame (ARF). SIRT7 directly interacts with ARF and prevents binding of ARF to nucleophosmin, thereby promoting proteasomal-dependent degradation of ARF. We show that SIRT7-mediated degradation of ARF increases expression of protumorigenic genes and stimulates proliferation of non-small-cell lung cancer (NSCLC) cells both in vitro and in vivo in a mouse xenograft model. Bioinformatics analysis of transcriptome data from human lung adenocarcinomas revealed a correlation between SIRT7 expression and increased activity of genes normally repressed by ARF. We propose that disruption of SIRT7-ARF signaling stabilizes ARF and thus attenuates cancer cell proliferation, offering a strategy to mitigate NSCLC progression.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Progresión de la Enfermedad , Neoplasias Pulmonares , Sirtuinas , Humanos , Sirtuinas/metabolismo , Sirtuinas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Regulación Neoplásica de la Expresión Génica , Línea Celular TumoralRESUMEN
Sirt2 is a nicotinamide adenine dinucleotide (NAD+)-dependent protein lysine deacylase that can remove both acetyl group and long-chain fatty acyl groups from lysine residues of many proteins. It was reported to affect inflammatory bowel disease (IBD) symptoms in a mouse model. However, conflicting roles were reported, with genetic knockout aggravating while pharmacological inhibition alleviating IBD symptoms. These seemingly conflicting reports cause confusion and deter further efforts in developing Sirt2 inhibitors as a potential treatment strategy for IBD. We investigated these conflicting reports and elucidated the role of Sirt2 in the mouse model of IBD. We essentially replicated these conflicting results and confirmed that Sirt2 inhibitors' protective effect is not through off-targets as two very different Sirt2 inhibitors (TM and AGK2) showed similar protection in the IBD mouse model. We believe that the differential effects of inhibitors and knockout are due to the fact that the Sirt2 inhibitors only inhibit some but not all the activities of Sirt2. This hypothesis is confirmed by the observation that a PROTAC degrader of Sirt2 did not protect mice in the IBD model, similar to Sirt2 knockout. Our study provides an interesting example where genetic knockout and pharmacological inhibition do not align and emphasizes the importance of developing substrate-dependent inhibitors. Importantly, we showed that the effect of Sirt2 inhibition in IBD is through regulating the gut epithelium barrier by inhibiting Arf6-mediated endocytosis of E-cadherin, a protein important for the intestinal epithelial integrity. This mechanistic understanding further supports Sirt2 as a promising therapeutic target for treating IBD.
Asunto(s)
Colitis , Mucosa Intestinal , Sirtuina 2 , Animales , Humanos , Ratones , Cadherinas/metabolismo , Cadherinas/genética , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/prevención & control , Modelos Animales de Enfermedad , Furanos , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Quinolinas , Sirtuina 2/metabolismo , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/genéticaRESUMEN
Sirtuins (SIRTs) are a family of proteins with enzymatic activity. In particular, they are a family of class III NAD+-dependent histone deacetylases and ADP-ribosyltransferases. NAD+-dependent deac(et)ylase activities catalyzed by sirtuin include ac(et)ylation, propionylation, butyrylation, crotonylation, manylation, and succinylation. Specifically, human SIRT3 is a 399 amino acid protein with two functional domains: a large Rossmann folding motif and NAD+ binding, and a small complex helix and zinc-binding motif. SIRT3 is widely expressed in mitochondria-rich tissues and is involved in maintaining mitochondrial integrity, homeostasis, and function. Moreover, SIRT3 regulates related diseases, such as aging, hepatic, kidney, neurodegenerative and cardiovascular disease, metabolic diseases, and cancer development. In particular, one of the most significant and damaging post-translational modifications is irreversible protein oxidation, i.e. carbonylation. This process is induced explicitly by increased ROS production due to mitochondrial dysfunction. SIRT3 is carbonylated by 4-hydroxynonenal at the level of Cys280. The carbonylation induces conformational changes in the active site, resulting in allosteric inhibition of SIRT3 activity and loss of the ability to deacetylate and regulate antioxidant enzyme activity. Phytochemicals and, in particular, polyphenols, thanks to their strong antioxidant activity, are natural compounds with a positive regulatory action on SIRT3 in various pathologies. Indeed, the enzymatic SIRT3 activity is modulated, for example, by different natural polyphenol classes, including resveratrol and the bergamot polyphenolic fraction. Thus, this review aims to elucidate the mechanisms by which phytochemicals can interact with SIRT3, resulting in post-translational modifications that regulate cellular metabolism.
Asunto(s)
Mitocondrias , Procesamiento Proteico-Postraduccional , Sirtuina 3 , Humanos , Sirtuina 3/metabolismo , Sirtuina 3/química , Sirtuina 3/genética , Mitocondrias/metabolismo , Animales , Productos Biológicos/metabolismo , Productos Biológicos/química , Productos Biológicos/farmacologíaRESUMEN
Aging is a significant risk factor for cancer which is due, in part, to heightened genomic instability. Mitotic surveillance proteins such as BubR1 play a pivotal role in ensuring accurate chromosomal segregation and preventing aneuploidy. BubR1 levels have been shown to naturally decline with age and its loss is associated with various age-related pathologies. Sirtuins, a class of NAD+-dependent deacylases, are implicated in cancer and genomic instability. Among them, SIRT2 acts as an upstream regulator of BubR1, offering a critical pathway that can potentially mitigate age-related diseases, including cancer. In this review, we explore BubR1 as a key regulator of cellular processes crucial for aging-related phenotypes. We delve into the intricate mechanisms through which BubR1 influences genomic stability and cellular senescence. Moreover, we highlight the role of NAD+ and SIRT2 in modulating BubR1 expression and function, emphasizing its potential as a therapeutic target. The interaction between BubR1 and SIRT2 not only serves as a fundamental regulatory pathway in cellular homeostasis but also represents a promising avenue for developing targeted therapies against age-related diseases, particularly cancer.
RESUMEN
Intermediary metabolites and flux through various pathways have emerged as key determinants of post-translational modifications. Independently, dynamic fluctuations in their concentrations are known to drive cellular energetics in a bi-directional manner. Notably, intracellular fatty acid pools that drastically change during fed and fasted states act as precursors for both ATP production and fatty acylation of proteins. Protein fatty acylation is well regarded for its role in regulating structure and functions of diverse proteins; however, the effect of intracellular concentrations of fatty acids on protein modification is less understood. In this regard, we unequivocally demonstrate that metabolic contexts, viz. fed and fasted states, dictate the extent of global fatty acylation. Moreover, we show that presence or absence of glucose that influences cellular and mitochondrial uptake/utilization of fatty acids and affects palmitoylation and oleoylation, which is consistent with their intracellular abundance in fed and fasted states. Employing complementary approaches including click-chemistry, lipidomics, and imaging, we show the top-down control of cellular metabolic state. Importantly, our results establish the crucial role of mitochondria and retrograde signaling components like SIRT4, AMPK, and mTOR in orchestrating protein fatty acylation at a whole cell level. Specifically, pharmacogenetic perturbations that alter either mitochondrial functions and/or retrograde signaling affect protein fatty acylation. Besides illustrating the cross-talk between carbohydrate and lipid metabolism in mediating bulk post-translational modification, our findings also highlight the involvement of mitochondrial energetics.
Asunto(s)
Acilación , Ácidos Grasos , Metabolismo de los Lípidos , Procesamiento Proteico-Postraduccional , Proteínas , Adenosina Trifosfato/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Química Clic , Ayuno/fisiología , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Lipidómica , Lipoilación , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas/química , Proteínas/metabolismo , Sirtuinas/metabolismo , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
BACKGROUND: Hypertension can lead to podocyte damage and subsequent apoptosis, eventually resulting in glomerulosclerosis. Although alleviating podocyte apoptosis has clinical significance for the treatment of hypertensive nephropathy, an effective therapeutic target has not yet been identified. The function of septin4, a proapoptotic protein and an important marker of organ damage, is regulated by post-translational modification. However, the exact role of septin4 in regulating podocyte apoptosis and its connection to hypertensive renal damage remains unclear. METHODS: We investigated the function and mechanism of septin4 in hypertensive nephropathy to discover a theoretical basis for targeted treatment. Mouse models including Rosa 26 (Gt(ROSA)26Sor)-SIRT2 (silent mating type information regulation 2 homolog-2)-Flag-TG (transgenic) (SIRT2-TG) mice SIRT2-knockout, and septin4-K174Q mutant mice, combined with proteomic and acetyl proteomics analysis, followed by multiple molecular biological methodologies, were used to demonstrate mechanisms of SIRT2-mediated deacetylation of septin4-K174 in hypertensive nephropathy. RESULTS: Using transgenic septin4-K174Q mutant mice treated with the antioxidant Tempol, we found that hyperacetylation of the K174 site of septin4 exacerbates Ang II (angiotensin II)- induced hypertensive renal injury resulting from oxidative stress. Proteomics and Western blotting assays indicated that septin4-K174Q activates the cleaved-PARP1 (poly [ADP-ribose] polymerase family, member 1)-cleaved-caspase3 pathway. In septin4-knockdown human renal podocytes, septin4-K174R, which mimics deacetylation at K174, rescues podocyte apoptosis induced by Ang II. Immunoprecipitation and mass spectrometry analyses identified SIRT2 as a deacetylase that interacts with the septin4 GTPase domain and deacetylates septin4-K174. In Sirt2-deficient mice and SIRT2-knockdown renal podocytes, septin4-K174 remains hyperacetylated and exacerbates hypertensive renal injury. By contrast, in Rosa26-Sirt2-Flag (SIRT2-TG) mice and SIRT2-knockdown renal podocytes reexpressing wild-type SIRT2, septin4-K174 is hypoacetylated and mitigates hypertensive renal injury. CONCLUSIONS: Septin4, when activated through acetylation of K174 (K174Q), promotes hypertensive renal injury. Septin4-K174R, which mimics deacetylation by SIRT2, inhibits the cleaved-PARP1-cleaved-caspase3 pathway. Septin4-K174R acts as a renal protective factor, mitigating Ang II-induced hypertensive renal injury. These findings indicate that septin4-K174 is a potential therapeutic target for the treatment of hypertensive renal injury.
Asunto(s)
Hipertensión Renal , Hipertensión , Animales , Humanos , Ratones , Apoptosis , Hipertensión Renal/genética , Riñón/metabolismo , Ratones Transgénicos , Proteómica , Sirtuina 2/genética , Sirtuina 2/metabolismoRESUMEN
The sirtuin family comprises seven NAD+-dependent enzymes which catalyze protein lysine deacylation and mono ADP-ribosylation. Sirtuins act as central regulators of genomic stability and gene expression and control key processes, including energetic metabolism, cell cycle, differentiation, apoptosis, and aging. As a result, all sirtuins play critical roles in cellular homeostasis and organism wellness, and their dysregulation has been linked to metabolic, cardiovascular, and neurological diseases. Furthermore, sirtuins have shown dichotomous roles in cancer, acting as context-dependent tumor suppressors or promoters. Given their central role in different cellular processes, sirtuins have attracted increasing research interest aimed at developing both activators and inhibitors. Indeed, sirtuin modulation may have therapeutic effects in many age-related diseases, including diabetes, cardiovascular and neurodegenerative disorders, and cancer. Moreover, isoform selective modulators may increase our knowledge of sirtuin biology and aid to develop better therapies. Through this review, we provide critical insights into sirtuin pharmacology and illustrate their enzymatic activities and biological functions. Furthermore, we outline the most relevant sirtuin modulators in terms of their modes of action, structure-activity relationships, pharmacological effects, and clinical applications.
RESUMEN
Intrinsic circadian clocks are present in all forms of photosensitive life, enabling daily anticipation of the light/dark cycle and separation of energy storage and utilization cycles on a 24-h timescale. The core mechanism underlying circadian rhythmicity involves a cell-autonomous transcription/translation feedback loop that in turn drives rhythmic organismal physiology. In mammals, genetic studies have established that the core clock plays an essential role in maintaining metabolic health through actions within both brain pacemaker neurons and peripheral tissues and that disruption of the clock contributes to disease. Peripheral clocks, in turn, can be entrained by metabolic cues. In this review, we focus on the role of the nucleotide NAD(P)(H) and NAD+-dependent sirtuin deacetylases as integrators of circadian and metabolic cycles, as well as the implications for this interrelationship in healthful aging.
Asunto(s)
Relojes Circadianos , Sirtuinas , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Mamíferos/metabolismo , NAD/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismoRESUMEN
Sirtuins are a group of NAD+-dependent deacylases that conserved in three domains of life and comprehensively involved in the regulation of gene transcription, chromosome segregation, RNA splicing, apoptosis, and aging. Previous studies in mammalian cells have revealed that sirtuins not only exist as multiple copies, but also show distinct deacylase activities in addition to deacetylation. However, the understanding of sirtuin zymographs in other organisms with respect to molecular evolution remains at an early stage. Here, we systematically analyze the sirtuin activities in representative species from archaea, bacteria, and eukaryotes, using both the HPLC assay and a 7-amino-4-methylcoumarin-based fluorogenic method. Global profiling suggests that the deacylase activities of sirtuins could be divided into three categories and reveals undifferentiated zymographs of class III sirtuins, especially for those from bacteria and archaea. Nevertheless, initial differentiation of enzymatic activity was also observed for the class III sirtuins at both paralog and ortholog levels. Further phylogenetic analyses support a divergent evolution of sirtuin that may originate from class III sirtuins. Together, this work demonstrates a comprehensive panorama of sirtuin zymographs and provides new insights into the cellular specific regulation and molecular evolution of sirtuins.
Asunto(s)
Evolución Molecular , Sirtuinas , Animales , Bacterias , Filogenia , Sirtuinas/química , ArchaeaRESUMEN
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, which affects the patients' quality of life and health and imposes a significant socioeconomic burden. Despite great efforts made by researchers to understand the pathogenesis of IDD, effective strategies for preventing and treating this disease remain very limited. Sirtuins are a highly conserved family of (NAD+)-dependent deacetylases in mammals that are involved in a variety of metabolic processes in vivo. In recent years, sirtuins have attracted much attention owing to their regulatory roles in IDD on physiological activities such as inflammation, apoptosis, autophagy, aging, oxidative stress, and mitochondrial function. At the same time, many studies have explored the therapeutic effects of sirtuins-targeting activators or micro-RNA in IDD. This review summarizes the molecular pathways of sirtuins involved in IDD, and summarizes the therapeutic role of activators or micro-RNA targeting Sirtuins in IDD, as well as the current limitations and challenges, with a view to provide possible solutions for the treatment of IDD.
Asunto(s)
Degeneración del Disco Intervertebral , Sirtuinas , Humanos , Sirtuinas/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/genética , Animales , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Autofagia , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacosRESUMEN
Sirtuins (SRTs) are a group of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that target both histone and nonhistone proteins. The biological function of SRT in horticultural plants has been rarely studied. In this study, FaSRT1-2 was identified as a key member of the 8 FaSRTs encoded in cultivated strawberry genome. Transient overexpression of FaSRT1-2 in strawberry fruit accelerated ripening, increased the content of anthocyanins and sugars, enhanced ripening-related gene expression. Moreover, stable transformation of FaSRT1-2 in strawberry plants resulted in enhanced vegetative growth, increased sensitivity to heat stress and increased susceptibility to Botrytis cinerea infection. Interestingly, knocking out the homologous gene in woodland strawberry had the opposite effects. Additionally, we found the content of stress-related hormone abscisic acid (ABA) was decreased, while the growth-related gibberellin (GA) concentration was increased in FaSRT1-2 overexpression lines. Gene expression analysis revealed induction of heat shock proteins, transcription factors, stress-related and antioxidant genes in the FaSRT1-2-overexpressed plants while knocked-out of the gene had the opposite impact. In conclusion, our findings demonstrated that FaSRT1-2 could positively promote strawberry plant vegetative growth and fruit ripening by affecting ABA and GA pathways. However, it negatively regulates the resistance to heat stress and B. cinerea infection by influencing the related gene expression.
Asunto(s)
Botrytis , Fragaria , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Fragaria/genética , Fragaria/crecimiento & desarrollo , Fragaria/fisiología , Fragaria/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Botrytis/fisiología , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Giberelinas/metabolismo , Plantas Modificadas Genéticamente , Resistencia a la Enfermedad/genéticaRESUMEN
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a debilitating and progressive lung disease of unknown aetiology, characterized by the relentless deposition of fibrotic tissue. Biomarkers may play a pivotal role as indicators of disease presence, progression, and treatment response. Sirtuins, a family of enzymes with ADP ribosyltransferase or deacetylase activity, have been implicated in several diseases, including pulmonary fibrosis. METHODS: A cross-sectional, prospective, observational single-center study was conducted to investigate the potential role of serum SIRTs levels as biomarkers in patients with IPF. Demographic, clinical, and functional data and serological samples were collected from 34 patients with IPF followed at the Interstital Lung and Rare Diseases Outpatient Clinic of the Vanvitelli Pneumology Clinic, Monaldi Hospital, Naples, Italy and from 19 age-matched controls. RESULTS: Serum SIRT-1 levels were significantly reduced in IPF patients compared to controls (median IPF 667 [435-858] pg/mL versus controls 925 [794-1173] pg/mL; p < 0.001 ). In contrast, serum SIRT-3 levels were significantly increased in IPF patients compared to controls (median IPF 338 [230-500] pg/mL versus controls 154 [99.8-246] pg/mL; p < 0.001). There were no statistically significant differences in serum SIRT-6 and SIRT-7 levels between IPF and controls. In addition, we found a significant positive correlation between SIRT-1 and lung function parameters such as FEV1% (ϱ=0.417;p = 0.016), FVC% (ϱ=0.449;p = 0.009) and DLCO% (ϱ=0.393;p = 0.024), while a significant negative correlation was demonstrated between SIR-1 and GAP score, demonstrating a significant reduction in SIRT-1 in advanced Gender-Age-Physiology (GAP) stages 2-3 compared to GAP stage 1 (p = 0.008). CONCLUSIONS: This prospective, cross-sectional study showed that SIRT-1 was associated with lung function and IPF severity and that both SIRT-1 and SIRT-3 could be considered as potential biomarkers of IPF, whereas SIRT-6 and SIRT-7 were not associated with IPF.
Asunto(s)
Biomarcadores , Fibrosis Pulmonar Idiopática , Sirtuina 1 , Sirtuina 3 , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/sangre , Masculino , Femenino , Biomarcadores/sangre , Estudios Transversales , Anciano , Estudios Prospectivos , Persona de Mediana Edad , Sirtuina 3/sangre , Sirtuina 1/sangre , PronósticoRESUMEN
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Asunto(s)
Hepatopatías Alcohólicas , Enfermedad del Hígado Graso no Alcohólico , Sepsis , Humanos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Cirrosis Hepática/metabolismo , Hepatopatías Alcohólicas/metabolismo , Sepsis/complicacionesRESUMEN
Sirtuins, which are NAD+-dependent class III histone deacetylases, are involved in various biological processes, including DNA damage repair, immune inflammation, oxidative stress, mitochondrial homeostasis, autophagy, and apoptosis. Sirtuins are essential regulators of cellular function and organismal health. Increasing evidence suggests that the development of age-related diseases, including kidney diseases, is associated with aberrant expression of sirtuins, and that regulation of sirtuins expression and activity can effectively improve kidney function and delay the progression of kidney disease. In this review, we summarise current studies highlighting the role of sirtuins in renal diseases. First, we discuss sirtuin family members and their main mechanisms of action. We then outline the possible roles of sirtuins in various cell types in kidney diseases. Finally, we summarise the compounds that activate or inhibit sirtuin activity and that consequently ameliorate renal diseases. In conclusion, targeted modulation of sirtuins is a potential therapeutic strategy for kidney diseases. Video Abstract.
Asunto(s)
Enfermedades Renales , Sirtuinas , Humanos , Sirtuinas/metabolismo , Enfermedades Renales/tratamiento farmacológico , Estrés Oxidativo , Reparación del ADNRESUMEN
Atherosclerosis is characterized by the development of intimal plaque, thrombosis, and stenosis of the vessel lumen causing decreased blood flow and hypoxia precipitating angina. Chronic inflammation in the stable plaque renders it unstable and rupture of unstable plaques results in the formation of emboli leading to hypoxia/ischemia to the organs by occluding the terminal branches and precipitate myocardial infarction and stroke. Such delibitating events could be controlled by the strategies that prevent plaque development or plaque stabilization. Despite the use of statins to stabilize plaques, there is a need for novel targets due to continuously increasing cases of cardiovascular events. Sirtuins (SIRTs), a family of signaling proteins, are involved in sustaining genome integrity, DNA damage response and repair, modulating oxidative stress, aging, inflammation, and energy metabolism. SIRTs play a critical role in modulating inflammation and involves in the development and progression of atherosclerosis. The role of SIRTs in relation to atherosclerosis and plaque vulnerability is scarcely discussed in the literature. Since SIRTs regulate oxidative stress, inflammation, and aging, they may also regulate plaque progression and vulnerability as these molecular mechanisms underlie the pathogenesis of plaque development, progression, and vulnerability. This review critically discusses the role of SIRTs in plaque progression and vulnerability and the possibility of targeting SIRTs to attenuate plaque rupture, focusing on the highlights in genomics, molecular pathways, and cell types involved in the underlying pathophysiology.
Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Sirtuinas , Humanos , Aterosclerosis/patología , Placa Aterosclerótica/patología , Inflamación , HipoxiaRESUMEN
BACKGROUND: Experimental evidence suggests a key role of SIRT1 (silent information regulator 1) in age- and metabolic-related vascular dysfunction. Whether these effects hold true in the human microvasculature is unknown. We aimed to investigate the SIRT1 role in very early stages of age- and obesity-related microvascular dysfunction in humans. METHODS: Ninety-five subjects undergoing elective laparoscopic surgery were recruited and stratified based on their body mass index status (above or below 30 kg/m2) and age (above or below 40 years) in 4 groups: Young Nonobese, Young Obese, Old Nonobese, and Old Obese. We measured small resistance arteries' endothelial function by pressurized micromyography before and after incubation with a SIRT1 agonist (SRT1720) and a mitochondria reactive oxygen species (mtROS) scavenger (MitoTEMPO). We assessed vascular levels of mtROS and nitric oxide availability by confocal microscopy and vascular gene expression of SIRT1 and mitochondrial proteins by qPCR. Chromatin immunoprecipitation assay was employed to investigate SIRT1-dependent epigenetic regulation of mitochondrial proteins. RESULTS: Compared with Young Nonobese, obese and older patients showed lower vascular expression of SIRT1 and antioxidant proteins (FOXO3 [forkhead box protein O3] and SOD2) and higher expression of pro-oxidant and aging mitochondria proteins p66Shc and Arginase II. Old Obese, Young Obese and Old Nonobese groups endothelial dysfunction was rescued by SRT1720. The restoration was comparable to the one obtained with mitoTEMPO. These effects were explained by SIRT1-dependent chromatin changes leading to reduced p66Shc expression and upregulation of proteins involved in mitochondria respiratory chain. CONCLUSIONS: SIRT1 is a novel central modulator of the earliest microvascular damage induced by age and obesity. Through a complex epigenetic control mainly involving p66Shc and Arginase II, it influences mtROS levels, NO availability, and the expression of proteins of the mitochondria respiratory chain. Therapeutic modulation of SIRT1 restores obesity- and age-related endothelial dysfunction. Early targeting of SIRT1 might represent a crucial strategy to prevent age- and obesity-related microvascular dysfunction.
Asunto(s)
Arginasa , Obesidad , Sirtuina 1 , Enfermedades Vasculares , Adulto , Arginasa/metabolismo , Epigénesis Genética , Humanos , Proteínas Mitocondriales/metabolismo , Óxido Nítrico/metabolismo , Obesidad/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Enfermedades Vasculares/etiologíaRESUMEN
BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a growing health problem without effective therapies. Epidemiological studies indicate that diabetes is a strong risk factor for HFpEF, and about 45% of patients with HFpEF are suffering from diabetes, yet the underlying mechanisms remain elusive. METHODS: Using a combination of echocardiography, hemodynamics, RNA-sequencing, molecular biology, in vitro and in vivo approaches, we investigated the roles of SIRT6 (sirtuin 6) in regulation of endothelial fatty acid (FA) transport and HFpEF in diabetes. RESULTS: We first observed that endothelial SIRT6 expression was markedly diminished in cardiac tissues from heart failure patients with diabetes. We then established an experimental mouse model of HFpEF in diabetes induced by a combination of the long-term high-fat diet feeding and a low-dose streptozocin challenge. We also generated a unique humanized SIRT6 transgenic mouse model, in which a single copy of human SIRT6 transgene was engineered at mouse Rosa26 locus and conditionally induced with the Cre-loxP technology. We found that genetically restoring endothelial SIRT6 expression in the diabetic mice ameliorated diastolic dysfunction concurrently with decreased cardiac lipid accumulation. SIRT6 gain- or loss-of-function studies showed that SIRT6 downregulated endothelial FA uptake. Mechanistically, SIRT6 suppressed endothelial expression of PPARγ through SIRT6-dependent deacetylation of histone H3 lysine 9 around PPARγ promoter region; and PPARγ reduction mediated SIRT6-dependent inhibition of endothelial FA uptake. Importantly, oral administration of small molecule SIRT6 activator MDL-800 to diabetic mice mitigated cardiac lipid accumulation and diastolic dysfunction. CONCLUSIONS: The impairment of endothelial SIRT6 expression links diabetes to HFpEF through the alteration of FA transport across the endothelial barrier. Genetic and pharmacological strategies that restored endothelial SIRT6 function in mice with diabetes alleviated experimental HFpEF by limiting FA uptake and improving cardiac metabolism, thus warranting further clinical evaluation.
Asunto(s)
Diabetes Mellitus Experimental , Insuficiencia Cardíaca , Sirtuinas , Humanos , Ratones , Animales , Volumen Sistólico/fisiología , Insuficiencia Cardíaca/metabolismo , PPAR gamma , Modelos Animales de Enfermedad , Sirtuinas/genética , LípidosRESUMEN
BACKGROUND: Glucose overload drives diabetic cardiomyopathy by affecting the tricarboxylic acid pathway. However, it is still unknown how cells could overcome massive chronic glucose influx on cellular and structural level. METHODS/MATERIALS: Expression profiles of hyperglycemic, glucose transporter-4 (GLUT4) overexpressing H9C2 (KE2) cardiomyoblasts loaded with 30 mM glucose (KE230L) and wild type (WT) cardiomyoblasts loaded with 30 mM glucose (WT30L) were compared using proteomics, real-time polymerase quantitative chain reaction analysis, or Western blotting, and immunocytochemistry. RESULTS: The findings suggest that hyperglycemic insulin-sensitive cells at the onset of diabetic cardiomyopathy present complex changes in levels of structural cell-related proteins like tissue inhibitor of metalloproteases-1 (1.3 fold), intercellular adhesion molecule 1 (1.8 fold), type-IV-collagen (3.2 fold), chaperones (Glucose-Regulated Protein 78: 1.8 fold), autophagy (Autophagosome Proteins LC3A, LC3B: 1.3 fold), and in unfolded protein response (UPR; activating transcription factor 6α expression: 2.3 fold and processing: 2.4 fold). Increased f-actin levels were detectable with glucose overload by immnocytochemistry. Effects on energy balance (1.6 fold), sirtuin expression profile (Sirtuin 1: 0.7 fold, sirtuin 3: 1.9 fold, and sirtuin 6: 4.2 fold), and antioxidant enzymes (Catalase: 0.8 fold and Superoxide dismutase 2: 1.5 fold) were detected. CONCLUSION: In conclusion, these findings implicate induction of chronic cell distress by sustained glucose accumulation with a non-compensatory repair reaction not preventing final cell death. This might explain the chronic long lasting pathogenesis observed in developing heart failure in diabetes mellitus.