RESUMEN
The quality of electrophysiological (EP) signals heavily relies on the electrode's contact with the skin. However, motion or exposure to water can easily destabilize this connection. In contrast to traditional methods of attaching electrodes to the skin surface, this study introduces a skin-integration strategy inspired by the skin's intergrown structure. A highly conductive and room-temperature curable composite composed of silver microflakes and polydimethylsiloxane (Ag/PDMS) is applied to the skin. Before curing, the PDMS oil partially diffuse into the stratum corneum (SC) layer of the skin. Upon curing, the composite solidifies into an electrode that seamlessly integrated with the skin, resembling a natural extension. This skin-integration strategy offers several advantages. It minimizes motion artifacts resulting from relative electrode-skin displacement, significantly reduces interface impedance (67% of commercial Ag/AgCl gel electrodes at 100 Hz) and withstands water flushes due to its hydrophobic nature. These advantages pave the way for promising advancements in EP signal recording, particularly during motion and underwater conditions.
RESUMEN
Rapid technological advancements have created opportunities for new solutions in various industries, including healthcare. One exciting new direction in this field of innovation is the combination of skin-based technologies and augmented reality (AR). These dermatological devices allow for the continuous and non-invasive measurement of vital signs and biomarkers, enabling the real-time diagnosis of anomalies, which have applications in telemedicine, oncology, dermatology, and early diagnostics. Despite its many potential benefits, there is a substantial information vacuum regarding using flexible photonics in conjunction with augmented reality for medical purposes. This review explores the current state of dermal augmented reality and flexible optics in skin-conforming sensing platforms by examining the obstacles faced thus far, including technical hurdles, demanding clinical validation standards, and problems with user acceptance. Our main areas of interest are skills, chiroptical properties, and health platform applications, such as optogenetic pixels, spectroscopic imagers, and optical biosensors. My skin-enhanced spherical dichroism and powerful spherically polarized light enable thorough physical inspection with these augmented reality devices: diabetic tracking, skin cancer diagnosis, and cardiovascular illness: preventative medicine, namely blood pressure screening. We demonstrate how to accomplish early prevention using case studies and emergency detection. Finally, it addresses real-world obstacles that hinder fully realizing these materials' extraordinary potential in advancing proactive and preventative personalized medicine, including technical constraints, clinical validation gaps, and barriers to widespread adoption.
Asunto(s)
Realidad Aumentada , Piel , Medicina de Precisión , Electrónica , Atención a la SaludRESUMEN
In addition to mechanical compliance, achieving the full potential of on-skin electronics needs the introduction of other features. For example, substantial progress has been achieved in creating biodegradable, self-healing, or breathable, on-skin electronics. However, the research of making on-skin electronics with passive-cooling capabilities, which can reduce energy consumption and improve user comfort, is still rare. Herein, we report the development of multifunctional on-skin electronics, which can passively cool human bodies without needing any energy consumption. This property is inherited from multiscale porous polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) supporting substrates. The multiscale pores of SEBS substrates, with characteristic sizes ranging from around 0.2 to 7 µm, can effectively backscatter sunlight to minimize heat absorption but are too small to reflect human-body midinfrared radiation to retain heat dissipation, thereby delivering around 6 °C cooling effects under a solar intensity of 840 Wâ m-2 Other desired properties, rooted in multiscale porous SEBS substrates, include high breathability and outstanding waterproofing. The proof-of-concept bioelectronic devices include electrophysiological sensors, temperature sensors, hydration sensors, pressure sensors, and electrical stimulators, which are made via spray printing of silver nanowires on multiscale porous SEBS substrates. The devices show comparable electrical performances with conventional, rigid, nonporous ones. Also, their applications in cuffless blood pressure measurement, interactive virtual reality, and human-machine interface are demonstrated. Notably, the enabled on-skin devices are dissolvable in several organic solvents and can be recycled to reduce electronic waste and manufacturing cost. Such on-skin electronics can serve as the basis for future multifunctional smart textiles with passive-cooling functionalities.
RESUMEN
Pencils and papers are ubiquitous in our society and have been widely used for writing and drawing, because they are easy to use, low-cost, widely accessible, and disposable. However, their applications in emerging skin-interfaced health monitoring and interventions are still not well explored. Herein, we report a variety of pencil-paper-based on-skin electronic devices, including biophysical (temperature, biopotential) sensors, sweat biochemical (pH, uric acid, glucose) sensors, thermal stimulators, and humidity energy harvesters. Among these devices, pencil-drawn graphite patterns (or combined with other compounds) serve as conductive traces and sensing electrodes, and office-copy papers work as flexible supporting substrates. The enabled devices can perform real-time, continuous, and high-fidelity monitoring of a range of vital biophysical and biochemical signals from human bodies, including skin temperatures, electrocardiograms, electromyograms, alpha, beta, and theta rhythms, instantaneous heart rates, respiratory rates, and sweat pH, uric acid, and glucose, as well as deliver programmed thermal stimulations. Notably, the qualities of recorded signals are comparable to those measured with conventional methods. Moreover, humidity energy harvesters are prepared by creating a gradient distribution of oxygen-containing groups on office-copy papers between pencil-drawn electrodes. One single-unit device (0.87 cm2) can generate a sustained voltage of up to 480 mV for over 2 h from ambient humidity. Furthermore, a self-powered on-skin iontophoretic transdermal drug-delivery system is developed as an on-skin chemical intervention example. In addition, pencil-paper-based antennas, two-dimensional (2D) and three-dimensional (3D) circuits with light-emitting diodes (LEDs) and batteries, reconfigurable assembly and biodegradable electronics (based on water-soluble papers) are explored.
Asunto(s)
Electrónica/instrumentación , Grafito , Monitoreo Fisiológico/instrumentación , Piel , Dispositivos Electrónicos Vestibles , Suministros de Energía Eléctrica , Electrodos , Diseño de Equipo , Humanos , PapelRESUMEN
Hydrogel-based electronics have found widespread applications in soft sensing and health monitoring because of their remarkable biocompatibility and mechanical features similar to human skin. However, they are subjected to potential challenges like structural failure, functional degradation, and device delamination in practical applications, especially facing extreme environmental conditions (e.g., abnormal temperature and humidity). To address these, ionically conductive organohydrogel-based soft electronics are developed, which can perform at subzero and elevated temperatures (thermal compatibility) as well as at dehydrated and hydrated environments (hydration compatibility) for extended applications. More specifically, gelatin/poly(acrylic acid-N-hydrosuccinimide ester) (PAA-NHS ester)-based ionic-conductive organohydrogel is synthesized. By introducing a glycerol-water binary solvent system, the gel can maintain mechanical softness in a wide temperature range (from -80 to 60 °C). Besides, excellent conductivity is achieved under various conditions by soaking the gel into lithium chloride anhydrous (LiCl) solution. Strong adhesion with skin, even under water, can be realized by covalent bonds between NHS ester from gel and amino groups from human skin. The excellent performances of LiCl-loaded PAA-based organohydrogel (L-PAA-OH)-based electronics are further demonstrated under freezing and high temperatures as well as underwater conditions, unveiling their promising prospects in wearable health monitoring in various conditions.
Asunto(s)
Electrónica , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Humanos , Hidrogeles , IonesRESUMEN
Finger skin electronics are essential for realizing humanoid soft robots and/or medical applications that are very similar to human appendages. A selective sensitivity to pressure and vibration that are indispensable for tactile sensing is highly desirable for mimicking sensory mechanoreceptors in skin. Additionally, for a human-machine interaction, output signals of a skin sensor should be highly correlated to human neural spike signals. As a demonstration of fully mimicking the skin of a human finger, we propose a self-powered flexible neural tactile sensor (NTS) that mimics all the functions of human finger skin and that is selectively and sensitively activated by either pressure or vibration stimuli with laminated independent sensor elements. A sensor array of ultrahigh-density pressure (20 × 20 pixels on 4 cm2) of interlocked percolative graphene films is fabricated to detect pressure and its distribution by mimicking slow adaptive (SA) mechanoreceptors in human skin. A triboelectric nanogenerator (TENG) was laminated on the sensor array to detect high-frequency vibrations like fast adaptive (FA) mechanoreceptors, as well as produce electric power by itself. Importantly, each output signal for the SA- and FA-mimicking sensors was very similar to real neural spike signals produced by SA and FA mechanoreceptors in human skin, thus making it easy to convert the sensor signals into neural signals that can be perceived by humans. By introducing microline patterns on the top surface of the NTS to mimic structural and functional properties of a human fingerprint, the integrated NTS device was capable of classifying 12 fabrics possessing complex patterns with 99.1% classification accuracy.
Asunto(s)
Técnicas Biosensibles , Nanotecnología , Piel/química , Tacto/fisiología , Electrónica , Humanos , Presión , Fenómenos Fisiológicos de la Piel , VibraciónRESUMEN
Thin-film electronics are urged to be directly laminated onto human skin for reliable, sensitive biosensing together with feedback transdermal therapy, their self-power supply using the thermoelectric and moisture-induced-electric effects also has gained great attention (skin and on-skin electronics (On-skinE) themselves are energy storehouses). However, "thin-film" On-skinE 1) cannot install "bulky" heatsinks or sweat transport channels, but the output power of thermoelectric generator and moisture-induced-electric generator relies on the temperature difference (∆T ) across generator and the ambient humidity (AH), respectively; 2) lack a routing and accumulation of sweat for biosensing, lack targeted delivery of drugs for precise transdermal therapy; and 3) need insulation between the heat-generating unit and heat-sensitive unit. Here, two breathable nanowood biofilms are demonstrated, which can help insulate between units and guide the heat and sweat to another in-plane direction. The transparent biofilms achieve record-high transport// /transport⥠(//: along cellulose nanofiber alignment direction, â¥: perpendicular direction) of heat (925%) and sweat (338%), winning applications emphasizing on ∆T/AH-dependent output power and "reliable" biosensing. The porous biofilms are competent in applications where "sensitive" biosensing (transporting// sweat up to 11.25 mm s-1 at the 1st second), "insulating" between units, and "targeted" delivery of saline-soluble drugs are of uppermost priority.
Asunto(s)
Biopelículas , Nanofibras/química , Piel , Dispositivos Electrónicos Vestibles , Madera/química , Anisotropía , Humanos , Pinus/química , Porosidad , Sudor , Madera/ultraestructura , Difracción de Rayos XRESUMEN
Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains, whereas susceptibility to electromagnetic interference (EMI), heat accumulation issues, and ultraviolet (UV)-induced aging problems pose significant constraints on their potential applications. Here, an ultra-elastic, highly breathable, and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals. Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles (NPs), an interwoven thermal conducting fiber network (0.72 W m-1 K-1) is constructed benefiting from the seamless thermal interfaces, facilitating unimpeded heat dissipation for comfort skin wearing. More excitingly, the elastomeric fiber substrates simultaneously achieve outstanding UV protection (UPF = 143.1) and EMI shielding (SET > 65, X-band) capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs. Furthermore, an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor, which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference. This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation.
RESUMEN
Stretchable conductive nanocomposites have been intensively studied for wearable bioelectronics. However, development of nanocomposites that simultaneously feature metal-like conductivity(> 100 000 S cm-1 ) and high stretchability (> 100%) for high-performance skin-mountable devices is still extremely challenging. Here a material strategy for such a nanocomposite is presented by using local bundling of silver nanowires stabilized with dual ligands (i.e., 1-propanethiols and 1-decanethiols). When the nanocomposite is solidified via solvent evaporation under a highly humid condition, the nanowires in the organic solution are bundled and stabilized. The resulting locally-bundled nanowires lower contact resistance while maintain their percolation network, leading to high conductivity. Dual ligands of 1-propanethiol and 1-decanethiol further boost up the conductivity. As a result, a nanocomposite with both high conductivity of ≈122,120 S cm-1 and high stretchability of ≈200% is obtained. Such superb electrical and mechanical properties are critical for various applications in skin-like electronics, and herein, a wearable thermo-stimulation device is demonstrated.
RESUMEN
On-skin personal electrocardiography (ECG) devices, which can monitor real-time cardiac autonomic changes, have been widely applied to predict cardiac diseases and save lives. However, current interface electrodes fail to be unconditionally and universally applicable, often losing their efficiency and functionality under harsh atmospheric conditions (e.g., underwater, abnormal temperature, and humidity). Herein, an environmentally adaptable organo-ionic gel-based electrode (OIGE) is developed with a facile one-pot synthesis of highly conductive choline-based ionic liquid ([DMAEA-Q] [TFSI], I.L.) and monomers (2,2,2-trifluoroethyl acrylate (TFEA) and N-hydroxyethyl acrylamide (HEAA). In virtue of inherent conductivity, self-responsive hydrophobic barriers, dual-solvent effect, and multiple interfacial interactions, this OIGE features distinct sweat and water-resistance, anti-freezing and anti-dehydration properties with strong adhesiveness and electrical stability under all kinds of circumstances. In contrast to the dysfunction of commercial gel electrodes (CGEs), this OIGE with stronger adhesion as well as skin tolerability can realize a real-time and accurate collection of ECG signals under multiple extreme conditions, including aquatic environments (sweat and underwater), cryogenic (<-20°C) and arid (dehydration) environments. Therefore, the OIGE shows great prospects in diagnosing cardiovascular diseases and paves new horizons for multi-harsh environmental personalized healthcare.
Asunto(s)
Piel , Agua , Agua/química , Conductividad Eléctrica , Electrocardiografía , ElectrodosRESUMEN
Point-of-care monitoring of physiological signals such as electrocardiogram, electromyogram, and electroencephalogram is essential for prompt disease diagnosis and quick treatment, which can be realized through advanced skin-worn electronics. However, it is still challenging to design an intimate and nonrestrictive skin-contact device for physiological measurements with high fidelity and artifact tolerance. This research presents a facile method using a "tacky" surface to produce a tight interface between the ACNT skin-like electronic and the skin. The method provides the skin-worn electronic with a stretchability of up to 70% strain, greater than that of most common epidermal electrodes. Low-density ACNT bundles facilitate the infiltration of adhesive and improve the conformal contact between the ACNT sheet and the skin, while dense ACNT bundles lessen this effect. The stretchability and conformal contact allow the ACNT sheet-based electronics to create a tight interface with the skin, which enables the high-fidelity measurement of physiological signals (the Pearson's coefficient of 0.98) and tolerance for motion artifacts. In addition, our method allows the use of degradable substrates to enable reusability and degradability of the electronics based on ACNT sheets, integrating "green" properties into on-skin electronics.
Asunto(s)
Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Piel , Electrónica , EpidermisRESUMEN
Peripheral neuropathy characterized by rapidly increasing numbers of patients is commonly diagnosed via analyzing electromyography signals obtained from stimulation-recording devices. However, existing commercial electrodes have difficulty in implementing conformal contact with skin and gentle detachment, dramatically impairing stimulation/recording performances. Here, this work develops on-skin patches with polyaspartic acid-modified dopamine/ethyl-based ionic liquid hydrogel (PDEH) as stimulation/recording devices to capture electromyography signals for the diagnosis of peripheral neuropathy. Triggered by a one-step electric field treatment, the hydrogel achieves rapid and wide-range regulation of adhesion and substantially strengthened mechanical performances. Moreover, hydrogel patches assembled with a silver-liquid metal (SLM) layer exhibit superior charge injection and low contact impedance, capable of capturing high-fidelity electromyography. This work further verifies the feasibility of hydrogel devices for accurate diagnoses of peripheral neuropathy in sensory, motor, and mixed nerves. For various body parts, such as fingers, the elderly's loose skin, hairy skin, and children's fragile skin, this work regulates the adhesion of PDEH-SLM devices to establish intimate device/skin interfaces or ensure benign removal. Noticeably, hydrogel patches achieve precise diagnoses of nerve injuries in these clinical cases while providing extra advantages of more effective stimulation/recording performances. These patches offer a promising alternative for the diagnosis and rehabilitation of neuropathy in future.
RESUMEN
The development of stable and biocompatible soft ionic conductors, alternatives to hydrogels and ionogels, will open up new avenues for the construction of stretchable electronics. Here, a brand-new design, encapsulating a naturally occurring ionizable compound by a biocompatible polymer via high-density hydrogen bonds, resulting in a solvent-free supramolecular ion-conductive elastomer (SF-supra-ICE) that eliminates the dehydration problem of hydrogels and possesses excellent biocompatibility, is reported. The SF-supra-ICE with high ionic conductivity (>3.3 × 10-2 S m-1 ) exhibits skin-like softness and strain-stiffening behaviors, excellent elasticity, breathability, and self-adhesiveness. Importantly, the SF-supra-ICE can be obtained by a simple water evaporation step to solidify the aqueous precursor into a solvent-free nature. Therefore, the aqueous precursor can act as inks to be painted and printed into customized ionic tattoos (I-tattoos) for the construction of multifunctional on-skin bioelectronics. The painted I-tattoos exhibit ultraconformal and seamless contact with human skin, enabling long-term and high-fidelity recording of various electrophysiological signals with extraordinary immunity to motion artifacts. Human-machine interactions are achieved by exploiting the painted I-tattoos to transmit the electrophysiological signals of human beings. Stretchable I-tattoo electrode arrays, manufactured by the printing method, are demonstrated for multichannel digital diagnosis of the health condition of human back muscles and spine.
Asunto(s)
Elastómeros , Tatuaje , Humanos , Elastómeros/química , Solventes , Piel , HidrogelesRESUMEN
On-skin electronic systems, which can facilitate noninvasive continuous acquisition of low-artifact physiological signals, are a promising technique for future wearable devices in healthcare. Inspired by the nature of Arabic gum (AG), we developed a costless, easy-to-prepare, easy-to-use, and environment-friendly electronic ink (E-ink) that can be used to construct multiform on-skin electronic systems through simple painting or stamping. In addition to its competitive electrical properties, the E-ink has the following advantages: waterproof (0.5 m/s water flushing for 10 s), self-healing (1.5 mm wide wound), and easy-cleaning (can be easily removed using cotton ball with 5% surfactant), making it environmentally tolerant and highly reliable for practical use. We demonstrated that our E-ink can act as electric wires for epidermal circuits, sensors to handle a variety of physiological data measurements. This research provides an effective strategy for direct integration of electronics and skin, which can accelerate the realization of the next generation of imperceptible, scalable, cost-effective and customized wearable devices.
Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Electrónica , Tinta , AguaRESUMEN
Welding usually involves high temperatures, toxic solvents, or conditions not compatible with human bodies, which severely limit the fusion of electronics and human tissues. To achieve direct welding of electronics on human skin, the intrinsically sticky conductors that can simultaneously achieve metal-grade electrical conductivity (≈41 7000 S m-1 ), hydrogel-grade stretchability (>900% strain), and self-adhesiveness (1.8 N cm-1 ) are reported. The sticky conductors composed of gallium indium alloy and acrylate polymer adhesives have a surface-enriched structure, which can form instant mechanical and electrical connections with different surfaces through gentle pressure without involving conditions that may damage human tissues. Based on the sticky conductors, the in situ welding of electronics on the skin is realized. To demonstrate the feasibility of in situ welding, electronic tattoos are achieved for movement monitoring. Intrinsically sticky electrodes that can resist drying and simultaneously deform with the skin for electrophysiological measurement are also developed.
Asunto(s)
Soldadura , Conductividad Eléctrica , Electrodos , Electrónica , Humanos , PielRESUMEN
Progress toward intelligent human-robotic interactions requires monitoring sensors that are mechanically flexible, facile to implement, and able to harness recognition capability under harsh environments. Conventional sensing methods have been divided for human-side collection or robot-side feedback and are not designed with these criteria in mind. However, the iontronic polymer is an example of a general method that operates properly on both human skin (commonly known as skin electronics or iontronics) and the machine/robotic surface. Here, a unique iontronic composite (silk protein/glycerol/Ca(II) ion) and supportive molecular mechanism are developed to simultaneously achieve high conductivity (around 6 kΩ at 50 kHz), self-healing (within minutes), strong stretchability (around 1000%), high strain sensitivity and transparency, and universal adhesiveness across a broad working temperature range (-40-120 °C). Those merits facilitate the development of iontronic sensing and the implementation of damage-resilient robotic manipulation. Combined with a machine learning algorithm and specified data collection methods, the system is able to classify 1024 types of human and robot hand gestures under challenging scenarios and to offer excellent object recognition with an accuracy of 99.7%.
RESUMEN
Highly conductive and stretchable nanocomposites are promising material candidates for skin electronics. However, the resistance of stretchable metallic nanocomposites highly depends on external strains, often deteriorating the performance of fabricated electronic devices. Here, a material strategy for the highly conductive and stretchable nanocomposites comprising metal nanomaterials of various dimensions and a viscoelastic block-copolymer matrix is presented. The resistance of the nanocomposites can be well retained under skin deformations (<50% strain). It is demonstrated that silver nanomaterials can self-organize inside the viscoelastic media in response to external strain when their surface is conjugated with 1-decanethiol. Distinct self-organization behaviors associated with nanomaterial dimensions and strain conditions are found. Adopting the optimum composition of 0D/1D/2D silver nanomaterials can render the resistance of the nanocomposites insensitive to uniaxial or biaxial strains. As a result, the resistance can be maintained with a variance of < 1% during 1000 stretching cycles under uniaxial and biaxial strains of <50% while a high conductivity of ≈31 000 S cm-1 is achieved.
RESUMEN
Although conventional skin-attachable electronics exhibit good functionalities, their direct attachment (without any adhesive) to human skin with sufficient conformal contact is challenging. Herein, all-solution-processed on-skin electronics based on self-reconfigurable high-weight-per- volume-gelatin (HWVG) film constructed using an effective, biocompatible water absorption-evaporation technique are demonstrated. Completely conformal contact of self-reconfigurable HWVG films is realized by rapidly inducing anisotropic swelling in the perpendicular direction and covering any curvature on the skin without spatial gap or void after shrinking. A sufficiently thin HWVG film (~2 um) exhibited higher adhesion owing to van der Waals force and the carboxylic acid and amine groups in HWVG film form cross-linkages through intermolecular bonds with human skin. Self-reconfigurable HWVG films with high biocompatibility are optimized to afford a superior efficiency of 87.83 % at a concentration of 20 % (w/v) and a storage modulus of 1822 MPa at 36.5 °C. Furthermore, functional nanoelectrodes consisting of self-reconfigurable silver nanowires/HWVG films for high-performance on-skin sensors allowing the detection of sensitive motion and electrophysiological signals, as well as an armband-type sensor system incorporated with a smartphone for health-care monitoring are demonstrated. Outstanding performances, including stability, reliability, flexibility, re-usability, biocompatibility, and permeability of on-skin electronics based on HWVG films can open-up a prospective route to realizing breathable human-machine interfaces based on biocompatible materials and processes.
Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Electrónica , Gelatina , Humanos , Estudios Prospectivos , Reproducibilidad de los ResultadosRESUMEN
Sleep disturbances are prevalent in neurodegenerative diseases in general, and in Parkinson's disease (PD) in particular. Recent evidence points to the clinical value of sleep in disease progression and improving quality of life. Therefore, monitoring sleep quality in an ongoing manner at the convenience of one's home has the potential to improve clinical research and to contribute to significantly better personalized treatment. Further, precise mapping of sleep patterns of each patient can contribute to a better understanding of the disease, its progression and the appropriate medical treatment. Here we review selective, state-of-the-art, home-based devices for assessing sleep and sleep related disorders. We highlight the large potential as well as the main challenges. In particular, we discuss medical validity, standardization and regulatory concerns that currently impede widespread clinical adoption of existing devices. Finally, we propose a roadmap with the technological and scientific steps that are required to impact PD research and treatment.
Asunto(s)
Enfermedad de Parkinson , Trastornos del Sueño-Vigilia , Servicios de Atención de Salud a Domicilio , Humanos , Laboratorios , Enfermedad de Parkinson/complicaciones , Calidad del Sueño , Trastornos del Sueño-Vigilia/diagnóstico , Trastornos del Sueño-Vigilia/etiologíaRESUMEN
On-skin electronics require conductive, porous, and stretchable materials for a stable operation with minimal invasiveness to the human body. However, porous elastic conductors that simultaneously achieve high conductivity, good stretchability, and durability are rare owing to the lack of proper design for good adhesion between porous elastic polymer and conductive metallic networks. Here, a simple fabrication approach for porous nanomesh-type elastic conductors is shown by designing a layer-by-layer structure of nanofibers/nanowires (NFs/NWs) via interfacial hydrogen bonding. The as-prepared conductors, consisting of Ag NWs and polyurethane (PU) NFs, simultaneously achieve high conductivity (9190 S cm-1 ), high stretchability (310%), and good durability (82% resistance increase after 1000 cycles of deformation at 70% tensile strain). The direct contact between the Ag NWs enables the high conductivity. The synergistic effect of the layer-by-layer structure and good adhesion between the Ag NWs and the PU NFs enables good mechanical properties. Furthermore, without any adhesive gel/tape, the conductors can be utilized as breathable strain sensors for precise joint motion monitoring, and as breathable sensing electrodes for continuous electrophysiological signal recording.