Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nanotechnology ; 35(23)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38430569

RESUMEN

Achieving highly efficient broadband absorption is an important research area in nanophotonics. In this paper, a novel method is proposed to design broadband near-perfect absorbers, consisting of a four-layer hemispherical concentric nanoshell array. The proposed nanostructure supports absorptivity exceeding 95% in the entire visible region, and the absorption bandwidth is determined by the interaction or 'hybridization' of the plasmons of the inner and outer metal-based nanoshells. Moreover, the designed absorber has wide-angle capability and is insensitive to polarization. The simple structure, as well as the stable absorption properties, suggests that such core-shell nanostructures can serve as a potential candidate for many applications such as solar energy harvesting, photo-detection, and emissivity control.

2.
Environ Sci Technol ; 58(14): 6158-6169, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38546376

RESUMEN

Coastal regions, home to more than half of the global population and contributing over 50% to the global economy, possess vast renewable resources, such as seawater and solar energy. The effective utilization of these resources, through the seawater-cooled district cooling system (SWDCS), seawater toilet flushing (SWTF), and rooftop solar photovoltaic system (RTPV), has the potential to significantly reduce carbon emissions. However, implementing these technologies in different geographic contexts to achieve the desired carbon and economic outcomes at the city level lacks a clear roadmap. To address this challenge, we comprehensively analyzed 12 coastal megacities worldwide by integrating geospatial building data. Our study evaluated the potential energy savings, carbon mitigation, and levelized carbon abatement costs (LCACs) from a life cycle perspective. The results revealed that using seawater and solar energy within urban boundaries can reduce electricity consumption from 1 to 24% across these cities. The spatial distribution of the LCAC for seawater-based systems exhibited more variation compared to the RTPV. By applying specific LCAC thresholds ranging from 0 to 225 USD/tCO2e, all cities could achieve both carbon reductions and economic benefits. These thresholds resulted in up to 80 million tonnes of carbon emission reductions and 5 billion USD of economic benefits, respectively. Our study provides valuable insights into integrating renewable resource systems, enabling coastal cities to achieve carbon and economic advantages at the city scale simultaneously.


Asunto(s)
Aparatos Sanitarios , Energía Solar , Ciudades , Carbono , Agua de Mar
3.
Small ; 19(39): e2301957, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37231557

RESUMEN

Radiative cooling materials that can dynamically control solar transmittance and emit thermal radiation into cold outer space are critical for smart thermal management and sustainable energy-efficient buildings. This work reports the judicious design and scalable fabrication of biosynthetic bacterial cellulose (BC)-based radiative cooling (Bio-RC) materials with switchable solar transmittance, which are developed by entangling silica microspheres with continuously secreted cellulose nanofibers during in situ cultivation. Theresulting film shows a high solar reflection (95.3%) that can be facilely switched between an opaque state and a transparent state upon wetting. Interestingly, the Bio-RC film exhibits a high mid-infrared emissivity (93.4%) and an average sub-ambient temperature drop of ≈3.7 °C at noon. When integrating with a commercially available semi-transparent solar cell, the switchable solar transmittance of Bio-RC film enables an enhancement of solar power conversion efficiency (opaque state: 0.92%, transparent state: 0.57%, bare solar cell: 0.33%). As a proof-of-concept illustration, an energy-efficient model house with its roof built with Bio-RC-integrated semi-transparent solar cell is demonstrated. This research can shine new light on the design and emerging applications of advanced radiative cooling materials.

4.
Small ; 19(52): e2303933, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37574266

RESUMEN

Exploiting novel strategies for simultaneously harvesting ubiquitous, renewable, and easily accessible solar energy based on the photothermal effect, and efficiently storing the acquired thermal energy plays a vital role in revolutionizing the current fossil fuel-dominating energy structure. Developing black phosphorene-based phase-change composites with optimized photothermal conversion efficiencyand high latent heat is the most promising way to achieve efficient solar energy harvesting and rapid thermal energy storage. However, exfoliating high-quality black phosphorene nanosheets  remains challenging, Furthermore, an efficient strategy that can construct the aligned black phosphorene frameworks to maximize thermal conductivity enhancement is still lacking. Herein, high-quality black phosphorene nanosheets are prepared by an optimized exfoliating strategy. Meanwhile, by regulating the temperature gradient during freeze-casting, the framework consisting of shipshape aligned black phosphorene at long-range is successfully fabricated, improving the thermal conductivity of the poly(ethylene glycol) matrix up to 1.81 W m-1  K-1 at 20 vol% black phosphorene loading. The framework also endows the composite with excellent phase-change material encapsulation capacity and  high latent heat of 103.91 J g-1 . It is envisioned that the work advances the paradigm of contrasting frameworks with nanosheets toward controllable structure thermal enhancement of the composites.

5.
Chemphyschem ; 24(15): e202200881, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37093151

RESUMEN

Metallic heterogeneous nanostructures with plasmonic functionality have attracted great attention in the field of plasmon-enhanced electrocatalysis, where surface plasmons produced under light excitation could facilitate the overall electrocatalytic performances. Owing to their controllability, multifunctionality, and complexity, heterogeneous metallic nanostructures take advantages of the properties from individual components and synergistic effects from adjacent components, thus may achieve remarkable electrocatalytic performances. This review highlights the state-of-the-art progress of the application of metallic heterostructures for plasmon-enhanced electrocatalysis. First, a brief introduction to plasmonic heterogeneous nanostructures is demonstrated. Then, fundamental principles of localized surface plasmon resonance and the underlying mechanisms of plasmonic heterogeneous nanostructures in catalysis are discussed. This is followed by a discussion of recent advances of plasmonic heterogeneous nanostructures in plasmon-enhanced electrocatalysis, in which the enhanced activity, selectivity, and stability are particularly emphasized. Finally, an outlook of remaining challenges and future opportunities for plasmonic heterogeneous nanomaterials and plasmon-related electrocatalysis is presented.

6.
Chem Eng J ; 452: 138894, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36060035

RESUMEN

The recent outbreak of Covid-19 guarantees overconsumption of different drugs as a necessity to reduce the symptoms caused by this pandemic. This triggers the proliferation of pharmaceuticals into drinking water systems. Is there any hope for access to safe drinking water? Photocatalytic degradation using artificial Z-scheme photocatalysts that has been employed for over a decade conveys a prospect for sustainable clean water supply. It is compelling to comprehensively summarise the state-of-the-art effects of Z-scheme photocatalytic systems towards the removal of pharmaceuticals in water. The principle of Z-scheme and the techniques used to validate the Z-scheme interfacial charge transfer are explored in detail. The application of the Z-scheme photocatalysts towards the degradation of antibiotics, NSAIDs, and bacterial/viral inactivation is deliberated. Conclusions and stimulating standpoints on the challenges of this emergent research direction are presented. The insights and up-to-date information will prompt the up-scaling of Z- scheme photocatalytic systems for commercialization.

7.
Nano Lett ; 21(9): 3745-3752, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33877843

RESUMEN

The control of morphology in bioinspired chromophore assemblies is key to the rational design of functional materials for light harvesting. We investigate here morphological changes in perylene monoimide chromophore assemblies during thermal annealing in aqueous environments of high ionic strength to screen electrostatic repulsion. We found that annealing under these conditions leads to the growth of extra-large ribbon-shaped crystalline supramolecular polymers of widths from about 100 nm to several micrometers and lengths from 1 to 10 µm while still maintaining a unimolecular thickness. This growth process was monitored by variable-temperature absorbance spectroscopy, synchrotron X-ray scattering, and confocal microscopy. The extra-large single-crystal-like supramolecular polymers are highly porogenic, thus creating loosely packed hydrogel scaffolds that showed greatly enhanced photocatalytic hydrogen production with turnover numbers as high as 13 500 over ∼110 h compared to 7500 when smaller polymers are used. Our results indicate great functional opportunities in thermally and pathway-controlled supramolecular polymerization.


Asunto(s)
Perileno , Hidrógeno , Polimerizacion , Polímeros , Electricidad Estática
8.
Angew Chem Int Ed Engl ; 60(4): 1869-1874, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33285029

RESUMEN

2D covalent organic frameworks (COFs) could have well-defined arrangements of photo- and electro-active units that serve as electron or hole transport channels for solar energy harvesting and conversion, but their insufficient charge transfer and rapid charge recombination impede the sunlight-driven photocatalytic performance. We report a new donor-acceptor (D-A) system, PyTz-COF that was constructed from the electron-rich pyrene (Py) and electron-deficient thiazolo[5,4-d]thiazole (Tz). With its bicontinuous heterojunction, PyTz-COF demonstrated exceptional optoelectronic properties, photocatalytic ability in superoxide anion radical-mediated coupling of (arylmethyl)amines and photoelectrochemical activity in sunlight-driven hydrogen evolution. Remarkably, PyTz-COF exhibited a photocurrent up to 100 µA cm-2 at 0.2 V vs. RHE and could reach a hydrogen evolution rate of 2072.4 µmol g-1 h-1 . This work is paving the way for reticular design of highly efficient and highly active D-A systems for solar energy harvesting and conversion.

9.
Sensors (Basel) ; 20(13)2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32605300

RESUMEN

The huge spreading of Internet of things (IoT)-oriented modern technologies is revolutionizing all fields of human activities, leading several benefits and allowing to strongly optimize classic productive processes. The agriculture field is also affected by these technological advances, resulting in better water and fertilizers' usage and so huge improvements of both quality and yield of the crops. In this manuscript, the development of an IoT-based smart traceability and farm management system is described, which calibrates the irrigations and fertigation operations as a function of crop typology, growth phase, soil and environment parameters and weather information; a suitable software architecture was developed to support the system decision-making process, also based on data collected on-field by a properly designed solar-powered wireless sensor network (WSN). The WSN nodes were realized by using the ESP8266 NodeMCU module exploiting its microcontroller functionalities and Wi-Fi connectivity. Thanks to a properly sized solar power supply system and an optimized scheduling scheme, a long node autonomy was guaranteed, as experimentally verified by its power consumption measures, thus reducing WSN maintenance. In addition, a literature analysis on the most used wireless technologies for agri-food products' traceability is reported, together with the design and testing of a Bluetooth low energy (BLE) low-cost sensor tag to be applied into the containers of agri-food products, just collected from the fields or already processed, to monitor the main parameters indicative of any failure or spoiling over time along the supply chain. A mobile application was developed for monitoring the tracking information and storing conditions of the agri-food products. Test results in real-operative scenarios demonstrate the proper operation of the BLE smart tag prototype and tracking system.

10.
Molecules ; 24(11)2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31174356

RESUMEN

Solar cells made of hybrid organic-inorganic perovskite (HOIP) materials have attracted ever-increasing attention due to their high efficiency and easy fabrication. However, issues regarding their poor stability remain a challenge for practical applications. Engineering the composition and structure of HOIP can effectively enhance the thermal stability and improve the power conversion efficiency (PCE). In this work, mixed two-dimensional (2D) HOIPs are systematically investigated for solar-power harvesting using first-principles calculations. We find that their electronic properties depend strongly on the mixed atoms (Cs, Rb, Ge and Pb) and the formation energy is related to the HOIP's composition, where the atoms are more easily mixed in SnI-2D-HOIPs due to low formation energy at the same composition ratio. We further show that optimal solar energy harvesting can be achieved on the solar cells composed of mixed SnI-2D-HOIPs because of reduced bandgaps, enhanced mobility and improved stability. Importantly, we find that the mixed atoms (Cs, Rb, Ge and Pb) with the appropriate composition ratios can effectively enhance the solar-to-power efficiency and show greatly improved resistance to moisture. The findings demonstrate that mixed 2D-HOIPs can replace the bulk HOIPs or pure 2D-HOIPs for applications into solar cells with high efficiency and stability.


Asunto(s)
Compuestos de Calcio/química , Compuestos Inorgánicos/química , Compuestos Orgánicos/química , Óxidos/química , Energía Solar , Titanio/química , Suministros de Energía Eléctrica , Electrónica , Luz Solar
11.
Sensors (Basel) ; 16(4): 448, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-27043559

RESUMEN

Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.

12.
J Colloid Interface Sci ; 672: 765-775, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38870767

RESUMEN

Nanofluids-based direct absorption solar collectors are promising candidates for medium-high-temperature solar energy harvesting. However, nanofluids' complicated preparation process and undesirable high-temperature stability have hindered their practical applications. Herein, we propose a facile method for synthesizing gold/carbon quantum dots (Au-CQDs) nanofluids by directly carbonizing the base fluid and spontaneously assembling with Au nanoparticles (AuNPs) triggered by high temperatures. The results indicate that the self-assembled Au-CQDs nanofluids can maintain high stability at 110 °C for 100 h without precipitation and keep excellent photothermal conversion performance under 10 sun irradiation. The concentration and particle size of AuNPs are crucial factors affecting the self-assembly process. By modulating the microscopic morphologies of the self-assembled nanoparticles, the extinction coefficient of the prepared nanofluids is up to 88.7 % at a low loading of 30 ppm. The nanofluids can reach an equilibrium temperature of 50 °C under 1 sun irradiation, 10.4 °C higher than the base fluid due to the enhanced plasmonic effects and stability resulting from the CQDs dotted AuNPs. This work offers a new strategy to fabricate highly stable nanofluids with excellent light absorption properties for efficient solar thermal applications.

13.
Environ Sci Pollut Res Int ; 31(12): 18296-18312, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38063961

RESUMEN

The Internet of Things (IoT) stands out as one of the most captivating technologies of the current decade. Its ability to connect people and things anytime and anywhere has led to its rapid expansion and numerous impactful applications that enhance human life. With billions of connected devices and substantial power and infrastructure requirements, the IoT system can pose a threat to the environment. However, the IoT's vast range of resources and capabilities can also be leveraged to assist in environmental conservation in the evolution of technologies due to massive CO2 emissions, climate change, and environmental and health issues. In this study, with the two-way integration of IoT and green practices, two distinct concepts for green IoT are presented. Among green practices, energy solutions play a vital role in greening the IoT. In this study, the energy solutions for the IoT system are divided as reducing energy consumption and using green energy sources. Solutions for reducing IoT energy consumption are studied systematically through a five-layer framework to simplify its modular design and implementation. Then, the use of green energy resources is discussed for all components of the IoT ecosystem. Leveraging IoT to make the environment and other technologies green is the other concept of green IoT. IoT technology plays a crucial role in enhancing both energy management systems and the efficient harvesting of renewable energy sources. Switching to solar energy from fossil fuel energy is one of the most fundamental green practices today. In this study, the mutual relationship between solar energy harvesting and the IoT is addressed specifically. Several promising research directions in the realm of green IoT are also highlighted.


Asunto(s)
Internet de las Cosas , Energía Solar , Humanos , Ecosistema , Internet , Cambio Climático
14.
Adv Mater ; 36(14): e2311042, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38140890

RESUMEN

The first synthesis and comprehensive characterization of two vinyl tetrazine-linked covalent organic frameworks (COF), TA-COF-1 and TA-COF-2, are reported. These materials exhibit high crystallinity and high specific surface areas of 1323 and 1114 m2 g-1. The COFs demonstrate favorable band positions and narrow band gaps suitable for light-driven applications. These advantages enable TA-COFs to act as reusable metal-free photocatalysts in the arylboronic acids oxidation and light-induced coupling of benzylamines. In addition, these TA-COFs show acid sensing capabilities, exhibiting visible and reversible color changes upon exposure to HCl solution, HCl vapor, and NH3 vapor. Further, the TA-COFs outperform a wide range of previously reported COF photocathodes. The tetrazine linker in the COF skeleton represents a significant advancement in the field of COF synthesis, enhancing the separation efficiency of charge carriers during the photoreaction and contributing to their photocathodic properties. TA-COFs can also degrade 5-nitro-1,2,4-triazol-3-one (NTO), an insensitive explosive present in industrial wastewater, in 20 min in a sunlight-driven photocatalytic process; thus, revealing dual functionality of the protonated TA-COFs as both photodegradation and Brønsted acid catalysts. This pioneering work opens new avenues for harnessing the potential of the tetrazine linker in COF-based materials, facilitating advances in catalysis, sensing, and other related fields.

15.
Nanomaterials (Basel) ; 13(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37836291

RESUMEN

Ultra-thin solar cells enable materials to be saved, reduce deposition time, and promote carrier collection from materials with short diffusion lengths. However, light absorption efficiency in ultra-thin solar panels remains a limiting factor. Most methods to increase light absorption in ultra-thin solar cells are either technically challenging or costly, given the thinness of the functional layers involved. We propose a cost-efficient and lithography-free solution to enhance light absorption in ultra-thin solar cells-a Tsuchime-like self-forming nanocrater (T-NC) aluminum (Al) film. T-NC Al film can be produced by the electrochemical anodization of Al, followed by etching the nanoporous alumina. Theoretical studies show that T-NC film can increase the average absorbance by 80.3%, depending on the active layer's thickness. The wavelength range of increased absorption varies with the active layer thickness, with the peak of absolute absorbance increase moving from 620 nm to 950 nm as the active layer thickness increases from 500 nm to 10 µm. We have also shown that the absorbance increase is retained regardless of the active layer material. Therefore, T-NC Al film significantly boosts absorbance in ultra-thin solar cells without requiring expensive lithography, and regardless of the active layer material.

16.
Adv Mater ; 35(11): e2209713, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36580631

RESUMEN

The triboelectric nanogenerator (TENG) is regarded as an effective strategy for harvesting energy from raindrops, and is a complementary solution with solar cells to achieve all-weather energy harvesting and sustainable energy supply. However, due to the irregularity of natural rainfalls in the volume, frequency, density, and location, designing high-efficiency raindrop TENG (R-TENG) arrays faces great challenges. In this work, a highly transparent, large-area, and high-efficiency R-TENG array with rational material choice, electrode structure, and array distribution is developed for efficiently harvesting irregular raindrop energy. The problem of electrical signal cancellation among adjacent raindrops can be fully avoided, as viewed from the high-resolution space-time analyses of high-speed camera and electrical signal characteristics. With the rationally designed electrode instead of multiple complex electrodes, all charges can be exported by the R-TENG array in a simulated irregular raindrop scenario. Moreover, it is demonstrated that the R-TENG possesses higher average power density (40.80 mW m-2 ) than that of the solar cell (37.03 mW m-2 ) in rainy condition. Additionally, a self-powered wireless light-intensity-monitoring system is demonstrated for real-time and all-day weather monitoring. This work provides useful guidance for designing high-efficiency TENG arrays integrated with solar panels for harvesting irregular raindrop energy and solar energy.

17.
Micromachines (Basel) ; 14(2)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36838063

RESUMEN

Renewable energy sources are becoming more and more essential to energy production as societies evolve toward a fossil-fuel-free world. Solar energy is one of the most abundant sources of green energy. Nanoantennas can be used to improve and enhance the absorption of light into a photovoltaic cell in order to generate more current. In this study, different nanoantenna structures are analysed in tandem with a silicon solar cell in an effort to improve its output. The nanoantennas studied are metallic aperture nanoantennas made up of either silver, aluminium, gold or copper. The three geometries compared are rectangular, circular and triangular. The maximum field enhancement obtained is for an aluminium rectangular nanoantenna of 50 nm thickness. Despite this, the geometry with more improvements compared with a basic silicon cell was the circle geometry with a 100 nm radius.

18.
Nanomaterials (Basel) ; 13(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37368312

RESUMEN

Perfect metamaterial absorber (PMA) is an attractive optical wavelength absorber with potential solar energy and photovoltaic applications. Perfect metamaterials used as solar cells can improve efficiency by amplifying incident solar waves on the PMA. This study aims to assess a wide-band octagonal PMA for a visible wavelength spectrum. The proposed PMA consists of three layers: nickel, silicon dioxide, and nickel. Based on the simulations, polarisation-insensitive absorption transverse electric (TE) and transverse magnetic (TM) modes were achieved due to symmetry. The proposed PMA structure was subjected to computational simulation using a FIT-based CST simulator. The design structure was again confirmed using FEM-based HFSS to maintain pattern integrity and absorption analysis. The absorption rates of the absorber were estimated at 99.987% and 99.997% for 549.20 THz and 653.2 THz, respectively. The results indicated that the PMA could achieve high absorption peaks in TE and TM modes despite being insensitive to polarisation and the incident angle. Electric field and magnetic field analyses were performed to understand the absorption of the PMA for solar energy harvesting. In conclusion, the PMA possesses outstanding visible frequency absorption, making it a promising option.

19.
SLAS Technol ; 25(1): 75-81, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31516083

RESUMEN

A merged system incorporating paperfluidics and papertronics has recently emerged as a simple, single-use, low-cost paradigm for disposable point-of-care (POC) diagnostic applications. Stand-alone and self-sustained paper-based systems are essential to providing effective and lifesaving treatments in resource-constrained environments. Therefore, a realistic and accessible power source is required for actual paper-based POC systems as their diagnostic performance and portability rely significantly on power availability. Among many paper-based batteries and energy storage devices, paper-based microbial fuel cells have attracted much attention because bacteria can harvest electricity from any type of organic matter that is readily available in those challenging regions. However, the promise of this technology has not been translated into practical power applications because of its short power duration, which is not enough to fully operate those systems for a relatively long period. In this work, we for the first time demonstrate a simple and long-lasting paper-based biological solar cell that uses photosynthetic bacteria as biocatalysts. The bacterial photosynthesis and respiration continuously and self-sustainably generate power by converting light energy into electricity. With a highly porous and conductive anode and an innovative solid-state cathode, the biological solar cell built upon the paper substrates generated the maximum current and power density of 65 µA/cm2 and 10.7 µW/cm2, respectively, which are considerably greater than those of conventional micro-sized biological solar cells. Furthermore, photosynthetic bacteria in a 3-D volumetric chamber made of a stack of papers provided stable and long-lasting electricity for more than 5 h, while electrical current from the heterotrophic culture on 2-D paper dramatically decreased within several minutes.


Asunto(s)
Fuentes de Energía Bioeléctrica , Fotosíntesis , Energía Solar , Synechocystis/metabolismo , Papel
20.
ACS Appl Mater Interfaces ; 11(7): 7584-7590, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30688056

RESUMEN

Solar-driven interfacial evaporation, as one of the most effective ways to convert and utilize solar energy, has attracted lot of interest recently. Most of the previous research studies, however, mainly focused on nonpatterned solar absorbers by improving the structural and chemical characteristics of the solar absorbers used in the interfacial evaporation systems. In this work, we investigated the influence of patterned surface on the evaporation performance of solar absorbers. The patterned surfaces studied, which include black patterns and white patterns, were achieved by selectively printing carbon black on the air-laid paper. Such a design leads to the lateral temperature differences between adjacent patterns of the solar absorber under solar illumination. The temperature differences result in the lateral heat and mass transfer between those patterns, which can effectively accelerate solar-driven vapor generation. With similar patterns and same coverage of carbon black, the increase in the circumference of the surface patterns leads to the increase in the evaporation performance. Additionally, we found that the evaporation performance can be optimized through the design of surface patterns, which demonstrates the potential in reducing the usage of the light-absorbing materials in the solar absorber. The findings in this work not only expand the understanding of the interfacial evaporation systems but also offer additional guidelines in designing interfacial evaporation systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA