RESUMEN
Spatiotemporal patterns in multicellular systems are important to understanding tissue dynamics, for instance, during embryonic development and disease. Here, we use a multiphase field model to study numerically the behavior of a near-confluent monolayer of deformable cells with intercellular friction. Varying friction and cell motility drives a solid-liquid transition, and near the transition boundary, we find the emergence of local nematic order of cell deformation driven by shear-aligning cellular flows. Intercellular friction contributes to the monolayer's viscosity, which significantly increases the spatial correlation in the flow and, concomitantly, the extent of nematic order. We also show that local hexatic and nematic order are tightly coupled and propose a mechanical-geometric model for the colocalization of [Formula: see text] nematic defects and 5-7 disclination pairs, which are the structural defects in the hexatic phase. Such topological defects coincide with regions of high cell-cell overlap, suggesting that they may mediate cellular extrusion from the monolayer, as found experimentally. Our results delineate a mechanical basis for the recent observation of nematic and hexatic order in multicellular collectives in experiments and simulations and pinpoint a generic pathway to couple topological and physical effects in these systems.
Asunto(s)
Movimiento Celular , Fricción , Modelos Biológicos , Movimiento Celular/fisiología , ViscosidadRESUMEN
Metallic micro/nano structures with special physicochemical properties have undergone rapid development owing to their broad applications in micromachines and microdevices. Ultrafast laser processing is generally accepted as an effective technology for functional structures manufacture, however, the controllable fabrication of specific metallic micro/nano structures remains a challenge. Here, this work proposes a novel strategy of laser induced transient solid-liquid transition to fabricate unique structures. Through modulating the transient state of metal from solid to liquid phase using the initial pulse excitation, the subsequent ultrafast pulse-induced recoil pressure can suppress the plasma emission and removal of liquid phase metals, resulting in the controllable fabrication of coffee-ring structures. The solid-liquid transition dynamics, which related with the transient reflectivity and plasma intensity, are revealed by established two temperature model coupled with molecular dynamics model. The coffee-ring structure exhibits tunable structure color owing to various optical response, which can be used for color printing with large scale and high resolution. This work provides a promising strategy for fabricating functional micro/nano structures, which can greatly broaden the potential applications.
RESUMEN
We study equilibrium configurations of hexagonal columnar liquid crystals in the context of characterizing packing structures of bacteriophage viruses in a protein capsid. These are viruses that infect bacteria and are currently the focus of intense research efforts, with the goal of finding new therapies for bacteria-resistant antibiotics. The energy that we propose consists of the Oseen-Frank free energy of nematic liquid crystals that penalizes bending of the columnar directions, in addition to the cross-sectional elastic energy accounting for distortions of the transverse hexagonal structure; we also consider the isotropic contribution of the core and the energy of the unknown interface between the outer ordered region of the capsid and the inner disordered core. The problem becomes of free boundary type, with constraints. We show that the concentric, azimuthal, spool-like configuration is the absolute minimizer. Moreover, we present examples of toroidal structures formed by DNA in free solution and compare them with the analogous ones occurring in experiments with other types of lyotropic liquid crystals, such as food dyes and additives. This article is part of the theme issue 'Topics in mathematical design of complex materials'.
Asunto(s)
Bacteriófagos/ultraestructura , Cristales Líquidos/ultraestructura , Bacteriófagos/química , Bacteriófagos/genética , Fenómenos Biofísicos , Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , ADN Viral/química , ADN Viral/genética , ADN Viral/ultraestructura , Cristales Líquidos/química , Conceptos Matemáticos , Modelos Biológicos , Modelos Moleculares , Termodinámica , Empaquetamiento del Genoma Viral/genética , Empaquetamiento del Genoma Viral/fisiologíaRESUMEN
Investigating the structural evolution of particulate gels is a very challenging task due to their vulnerability and true flow characteristics. In this work, deeper insight into the rheological properties of gel fuels filled with fumed silica (FS) and aluminum microparticles (Al MPs) was gained by changing shear procedures. Firstly, the flow curves were found to no longer follow the monotonic power law and exhibited subtle thixotropic responses. As the shear rate increased, the gel structure underwent a transition from local shear to bulk shear in the nonlinear region after yielding. This finding reveals the prevalence of nonideal local shear in industry. Secondly, the time-dependent rheological responses demonstrated that the strength spectrum of gel fuels depends on the applied shear rate, with stress relaxation more easily observed at lower shear rates. Those results involved the structural disruption, recovery, and equilibrium of particulate gels from two scales of shear rate and shear time.