Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Trends Biochem Sci ; 47(10): 839-850, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35927139

RESUMEN

Plants constantly come into contact with a diverse mix of pathogenic and beneficial microbes. The ability to distinguish between them and to respond appropriately is essential for plant health. Here we review recent progress in understanding the role of amino acid sensing, signaling, transport, and metabolism during plant-microbe interactions. Biochemical pathways converting individual amino acids into active compounds have recently been elucidated, and comprehensive large-scale approaches have brought amino acid sensors and transporters into focus. These findings show that plant central amino acid metabolism is closely interwoven with stress signaling and defense responses at various levels. The individual biochemical mechanisms and the interconnections between the different processes are just beginning to emerge and might serve as a foundation for new plant protection strategies.


Asunto(s)
Aminoácidos , Plantas , Aminoácidos/metabolismo , Plantas/metabolismo , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 120(44): e2310134120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37878725

RESUMEN

Plants exude specialized metabolites from their roots, and these compounds are known to structure the root microbiome. However, the underlying mechanisms are poorly understood. We established a representative collection of maize root bacteria and tested their tolerance against benzoxazinoids (BXs), the dominant specialized and bioactive metabolites in the root exudates of maize plants. In vitro experiments revealed that BXs inhibited bacterial growth in a strain- and compound-dependent manner. Tolerance against these selective antimicrobial compounds depended on bacterial cell wall structure. Further, we found that native root bacteria isolated from maize tolerated the BXs better compared to nonhost Arabidopsis bacteria. This finding suggests the adaptation of the root bacteria to the specialized metabolites of their host plant. Bacterial tolerance to 6-methoxy-benzoxazolin-2-one (MBOA), the most abundant and selective antimicrobial metabolite in the maize rhizosphere, correlated significantly with the abundance of these bacteria on BX-exuding maize roots. Thus, strain-dependent tolerance to BXs largely explained the abundance pattern of bacteria on maize roots. Abundant bacteria generally tolerated MBOA, while low abundant root microbiome members were sensitive to this compound. Our findings reveal that tolerance to plant specialized metabolites is an important competence determinant for root colonization. We propose that bacterial tolerance to root-derived antimicrobial compounds is an underlying mechanism determining the structure of host-specific microbial communities.


Asunto(s)
Antiinfecciosos , Arabidopsis , Microbiota , Zea mays/metabolismo , Raíces de Plantas/metabolismo , Bacterias/metabolismo , Plantas/metabolismo , Rizosfera , Benzoxazinas/farmacología , Benzoxazinas/metabolismo , Arabidopsis/metabolismo , Antiinfecciosos/metabolismo , Microbiología del Suelo
3.
Proc Natl Acad Sci U S A ; 119(24): e2122808119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35666864

RESUMEN

Deploying toxins in complex mixtures is thought to be advantageous and is observed during antagonistic interactions in nature. Toxin mixtures are widely utilized in medicine and pest control, as they are thought to slow the evolution of detoxification counterresponses in the targeted organisms. Here we show that caterpillars rearrange key constituents of two distinct plant defense pathways to postingestively disable the defensive properties of both pathways. Specifically, phenolic esters of quinic acid, chlorogenic acids (CAs), potent herbivore and ultraviolet (UV) defenses, are reesterified to decorate particular sugars of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) and prevent their respective anti­herbivore defense functions. This was discovered through the employment of comparative metabolomics of the leaves of Nicotiana attenuata and the frass of this native tobacco's specialist herbivore, Manduca sexta larvae. Feeding caterpillars on leaves of transgenic plants abrogated in each of the two pathways, separately and together, revealed that one of the fully characterized frass conjugates, caffeoylated HGL-DTG, originated from ingested CA and HGL-DTGs and that both had negative effects on the defensive function of the other compound class, as revealed by rates of larval mass gain. This negative defensive synergy was further explored in 183 N. attenuata natural accessions, which revealed a strong negative covariance between the two defense pathways. Further mapping analyses in a biparental recombinant inbred line (RIL) population imputed quantitative trait loci (QTLs) for the two pathways at distinct genomic locations. The postingestive repurposing of defense metabolism constituents reveals a downside of deploying toxins in mixtures, a downside which plants in nature have evolved to counter.


Asunto(s)
Manduca , Animales , Herbivoria , Insectos/metabolismo , Larva/metabolismo , Manduca/metabolismo , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
4.
J Bacteriol ; 206(3): e0032523, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38353531

RESUMEN

Streptomyces are the primary source of bioactive specialized metabolites used in research and medicine, including many antimicrobials. These are presumed to be secreted and function as freely soluble compounds. However, increasing evidence suggests that extracellular vesicles are an alternative secretion system. We assessed environmental and lab-adapted Streptomyces (sporulating filamentous actinomycetes) and found frequent production of antimicrobial vesicles. The molecular cargo included actinomycins, anthracyclines, candicidin, and actinorhodin, reflecting both diverse chemical properties and diverse antibacterial and antifungal activity. The levels of packaged antimicrobials correlated with the level of inhibitory activity of the vesicles, and a strain knocked out for the production of anthracyclines produced vesicles that lacked antimicrobial activity. We demonstrated that antimicrobial containing vesicles achieve direct delivery of the cargo to other microbes. Notably, this delivery via membrane fusion occurred to a broad range of microbes, including pathogenic bacteria and yeast. Vesicle encapsulation offers a broad and permissive packaging and delivery system for antimicrobial specialized metabolites, with important implications for ecology and translation.IMPORTANCEExtracellular vesicle encapsulation changes our picture of how antimicrobial metabolites function in the environment and provides an alternative translational approach for the delivery of antimicrobials. We find many Streptomyces strains are capable of releasing antimicrobial vesicles, and at least four distinct classes of compounds can be packaged, suggesting this is widespread in nature. This is a striking departure from the primary paradigm of the secretion and action of specialized metabolites as soluble compounds. Importantly, the vesicles deliver antimicrobial metabolites directly to other microbes via membrane fusion, including pathogenic bacteria and yeast. This suggests future applications in which lipid-encapsulated natural product antibiotics and antifungals could be used to solve some of the most pressing problems in drug resistance.


Asunto(s)
Antiinfecciosos , Vesículas Extracelulares , Streptomyces , Streptomyces/genética , Saccharomyces cerevisiae , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Antraciclinas/metabolismo
5.
Plant J ; 115(4): 1021-1036, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37272491

RESUMEN

The process of crop domestication leads to a dramatic reduction in the gene expression associated with metabolic diversity. Genes involved in specialized metabolism appear to be particularly affected. Although there is ample evidence of these effects at the genetic level, a reduction in diversity at the metabolite level has been taken for granted despite having never been adequately accessed and quantified. Here we leveraged the high coverage of ultra high performance liquid chromatography-high-resolution mass spectrometry based metabolomics to investigate the metabolic diversity in the common bean (Phaseolus vulgaris). Information theory highlights a shift towards lower metabolic diversity and specialization when comparing wild and domesticated bean accessions. Moreover, molecular networking approaches facilitated a broader metabolite annotation than achieved to date, and its integration with gene expression data uncovers a metabolic shift from specialized metabolism towards central metabolism upon domestication of this crop.


Asunto(s)
Phaseolus , Phaseolus/genética , Phaseolus/metabolismo , Domesticación , Teoría de la Información , Metabolómica
6.
Plant J ; 116(3): 823-839, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37522396

RESUMEN

Steroidal saponins are a class of specialized metabolites essential for plant's response to biotic and abiotic stresses. They are also important raw materials for the industrial production of steroid drugs. Steroidal saponins are present in some monocots, such as Dioscorea and Paris, but their distribution, origin, and evolution in plants remain poorly understood. By reconstructing the evolutionary history of the steroidal saponin-associated module (SSAM) in plants, we reveal that the steroidal saponin pathway has its origin in Asparagus and Dioscorea. Through evaluating the distribution and evolutionary pattern of steroidal saponins in angiosperms, we further show that steroidal saponins originated multiple times in angiosperms, and exist in early diverged lineages of certain monocot lineages including Asparagales, Dioscoreales, and Liliales. In these lineages, steroidal saponins are synthesized through the high copy and/or high expression mechanisms of key genes in SSAM. Together with shifts in gene evolutionary rates and amino acid usage, these molecular mechanisms shape the current distribution and diversity of steroidal saponins in plants. Consequently, our results provide new insights into the distribution, diversity and evolutionary history of steroidal saponins in plants, and enhance our understanding of plants' resistance to abiotic and biotic stresses. Additionally, fundamental understanding of the steroidal saponin biosynthesis will facilitate their industrial production and pharmacological applications.


Asunto(s)
Plantas , Saponinas , Plantas/metabolismo
7.
BMC Genomics ; 25(1): 418, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679745

RESUMEN

BACKGROUND: Plant specialized (or secondary) metabolites (PSM), also known as phytochemicals, natural products, or plant constituents, play essential roles in interactions between plants and environment. Although many research efforts have focused on discovering novel metabolites and their biosynthetic genes, the resolution of metabolic pathways and identified biosynthetic genes was limited by rudimentary analysis approaches and enormous number of candidate genes. RESULTS: Here we integrated state-of-the-art automated machine learning (ML) frame AutoGluon-Tabular and multi-omics data from Arabidopsis to predict genes encoding enzymes involved in biosynthesis of plant specialized metabolite (PSM), focusing on the three main PSM categories: terpenoids, alkaloids, and phenolics. We found that the related features of genomics and proteomics were the top two crucial categories of features contributing to the model performance. Using only these key features, we built a new model in Arabidopsis, which performed better than models built with more features including those related with transcriptomics and epigenomics. Finally, the built models were validated in maize and tomato, and models tested for maize and trained with data from two other species exhibited either equivalent or superior performance to intraspecies predictions. CONCLUSIONS: Our external validation results in grape and poppy on the one hand implied the applicability of our model to the other species, and on the other hand showed enormous potential to improve the prediction of enzymes synthesizing PSM with the inclusion of valid data from a wider range of species.


Asunto(s)
Arabidopsis , Genómica , Aprendizaje Automático , Arabidopsis/genética , Arabidopsis/metabolismo , Genómica/métodos , Alcaloides/biosíntesis , Alcaloides/metabolismo , Terpenos/metabolismo , Proteómica/métodos , Metabolómica/métodos , Genes de Plantas , Plantas/genética , Plantas/metabolismo , Fenoles/metabolismo , Multiómica
8.
BMC Genomics ; 25(1): 199, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378469

RESUMEN

BACKGROUND: Abiotic stresses in plants include all the environmental conditions that significantly reduce yields, like drought and heat. One of the most significant effects they exert at the cellular level is the accumulation of reactive oxygen species, which cause extensive damage. Plants possess two mechanisms to counter these molecules, i.e. detoxifying enzymes and non-enzymatic antioxidants, which include many classes of specialized metabolites. Sunflower, the fourth global oilseed, is considered moderately drought resistant. Abiotic stress tolerance in this crop has been studied using many approaches, but the control of specialized metabolites in this context remains poorly understood. Here, we performed the first genome-wide association study using abiotic stress-related specialized metabolites as molecular phenotypes in sunflower. After analyzing leaf specialized metabolites of 450 hybrids using liquid chromatography-mass spectrometry, we selected a subset of these compounds based on their association with previously known abiotic stress-related quantitative trait loci. Eventually, we characterized these molecules and their associated genes. RESULTS: We putatively annotated 30 compounds which co-localized with abiotic stress-related quantitative trait loci and which were associated to seven most likely candidate genes. A large proportion of these compounds were potential antioxidants, which was in agreement with the role of specialized metabolites in abiotic stresses. The seven associated most likely candidate genes, instead, mainly belonged to cytochromes P450 and glycosyltransferases, two large superfamilies which catalyze greatly diverse reactions and create a wide variety of chemical modifications. This was consistent with the high plasticity of specialized metabolism in plants. CONCLUSIONS: This is the first characterization of the genetic control of abiotic stress-related specialized metabolites in sunflower. By providing hints concerning the importance of antioxidant molecules in this biological context, and by highlighting some of the potential molecular mechanisms underlying their biosynthesis, it could pave the way for novel applications in breeding. Although further analyses will be required to better understand this topic, studying how antioxidants contribute to the tolerance to abiotic stresses in sunflower appears as a promising area of research.


Asunto(s)
Helianthus , Helianthus/genética , Helianthus/metabolismo , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Estrés Fisiológico/genética , Plantas/genética , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
J Exp Bot ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305223

RESUMEN

Post-transcriptional and post-translational modification of transcription factors (TFs) and pathway enzymes significantly affect the stress-stimulated biosynthesis of specialized metabolites (SM). Protein phosphorylation is one of the conserved and ancient mechanisms that critically influences many biological processes including specialized metabolism. The phosphorylation of TFs and enzymes by protein kinases (PKs), especially the Mitogen-Activated Protein Kinases (MAPKs), is well-studied in plants. While the roles of MAPKs in plant growth and development, phytohormone signaling, and immunity are well elucidated, significant recent advances have also been made in understanding the involvement of MAPKs in specialized metabolism. However, a comprehensive review highlighting the significant progress in the past several years is notably missing. This review focuses on MAPK-mediated regulation of several important SM, including phenylpropanoids (flavonoids and lignin), terpenoids (artemisinin and other terpenoids), alkaloids (terpenoid indole alkaloids and nicotine), and other nitrogen- and sulfur-containing SM (camalexin and indole glucosinolates). In addition to MAPKs, other PKs also regulate SM biosynthesis. For comparison, we briefly discuss the regulation by other PKs, such as sucrose non-fermenting-1 (SNF)-related protein kinases (SnRKs) and calcium-dependent protein kinases (CPKs). Furthermore, we provide future perspectives in this active area of research.

10.
J Exp Bot ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814918

RESUMEN

Medicinal plants (MPs) are valued for their contributions to human health. However, the growing demand for MPs and the concerns regarding their quality and sustainability have prompted the reassessment of conventional production practices. Controlled environment cropping systems, such as vertical farms, offer a transformative approach to MP production. By enabling precise control over environment factors, such as light, carbon dioxide, temperature, humidity, nutrients, and airflow, controlled environments can improve the consistency, concentration, and yield of bioactive phytochemicals in MPs. This review explores the potential of controlled environment systems for enhancing MP production. First, we describe how controlled environments can overcome the limitations of conventional production in improving the quality of MP. Next, we propose strategies based on plant physiology to manipulate environment conditions for enhancing the levels of bioactive compounds in plants. These strategies include improving photosynthetic carbon assimilation, light spectrum signalling, purposeful stress elicitation, and chronoculture. We describe the underlying mechanisms and practical applications of these strategies. Finally, we highlight the major knowledge gaps and challenges that limit the application of controlled environments, and discuss future research directions.

11.
Environ Sci Technol ; 58(22): 9525-9535, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38758591

RESUMEN

While the ecological role that Trichodesmium sp. play in nitrogen fixation has been widely studied, little information is available on potential specialized metabolites that are associated with blooms and standing stock Trichodesmium colonies. While a collection of biological material from a T. thiebautii bloom event from North Padre Island, Texas, in 2014 indicated that this species was a prolific producer of chlorinated specialized metabolites, additional spatial and temporal resolution was needed. We have completed these metabolite comparison studies, detailed in the current report, utilizing LC-MS/MS-based molecular networking to visualize and annotate the specialized metabolite composition of these Trichodesmium blooms and colonies in the Gulf of Mexico (GoM) and other waters. Our results showed that T. thiebautii blooms and colonies found in the GoM have a remarkably consistent specialized metabolome. Additionally, we isolated and characterized one new macrocyclic compound from T. thiebautii, trichothilone A (1), which was also detected in three independent cultures of T. erythraeum. Genome mining identified genes predicted to synthesize certain functional groups in the T. thiebautii metabolites. These results provoke intriguing questions of how these specialized metabolites affect Trichodesmium ecophysiology, symbioses with marine invertebrates, and niche development in the global oligotrophic ocean.


Asunto(s)
Trichodesmium , Trichodesmium/metabolismo , Golfo de México , Cianobacterias/metabolismo , Eutrofización , Cromatografía Liquida , Espectrometría de Masas en Tándem
12.
Oecologia ; 205(3-4): 725-737, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38829402

RESUMEN

Plants employ diverse anti-herbivore defences that can covary to form syndromes consisting of multiple traits. Such syndromes are hypothesized to impact herbivores more than individual defences. We studied 16 species of lowland willows occurring in central Europe and explored if their chemical and physical traits form detectable syndromes. We tested for phylogenetic trends in the syndromes and explored whether three herbivore guilds (i.e., generalist leaf-chewers, specialist leaf-chewers, and gallers) are affected more by the detected syndromes or individual traits. The recovered syndromes showed low phylogenetic signal and were mainly defined by investment in concentration, richness, or uniqueness of structurally related phenolic metabolites. Resource acquisition traits or inducible volatile organic compounds exhibited a limited correlation with the syndromes. Individual traits composing the syndromes showed various correlations to the assemblages of herbivores from the three studied guilds. In turn, we found some support for the hypothesis that defence syndromes are composed of traits that provide defence against various herbivores. However, individual traits rather than trait syndromes explained more variation for all studied herbivore assemblages. The detected negative correlations between various phenolics suggest that investment trade-offs may occur primarily among plant metabolites with shared metabolic pathways that may compete for their precursors. Moreover, several traits characterizing the recovered syndromes play additional roles in willows other than defence from herbivory. Taken together, our findings suggest that the detected syndromes did not solely evolve as an anti-herbivore defence.


Asunto(s)
Herbivoria , Salix , Animales , Filogenia , Hojas de la Planta , Europa (Continente)
13.
Appl Microbiol Biotechnol ; 108(1): 473, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320549

RESUMEN

Prenylated indole alkaloids, which are mainly produced by genera Aspergillus and Penicillium, are a class of structurally intriguing specialized metabolites with remarkable biomedical interests. In this study, chemically guided isolation of the Nicotiana tabacum-derived endophytic fungus Aspergillus japonicus TE-739D yielded eight structurally diverse prenylated indole alkaloids, including an undescribed compound, namely aspertaichamide B (ATB, 1), together with seven previously discovered derivatives (compounds 2 - 8). Their chemical structures as well as the stereochemical features were determined by integrated spectroscopic analyses, including HRESIMS, NMR, NMR calculations with DP4 + probability analysis, and a comparison of the experimental ECD data with computed DFT-based quantum chemical calculations. In vitro cytotoxic effects against the gastric cancer MFC cells revealed that the new compound ATB demonstrated considerable activity. Further studies found that ATB suppressed the viability, colony formation, and migration ability of MFC cells, and induced MFC cells apoptosis in a concentration-dependent way. Moreover, ATB stimulated ROS production in MFC cells and inhibited the tumor growth in the MFC-sourced subcutaneous tumor model while not significantly reducing the weight of mice. The pharmacological results suggested that the newly discovered ATB may be a promising anti-tumor lead compound. KEY POINTS: • Eight structurally diverse prenylated indole alkaloids including a new aspertaichamide B (ATB) were isolated from the fungus Aspergillus japonicus TE-739D. • The structure of ATB was elucidated by HRESIMS, NMR, NMR calculations with DP4 + probability analysis, and ECD calculations. • ATB inhibited cell proliferation, promoted apoptosis, and increased ROS production in gastric cancer cells, and exhibited inhibitory effects on tumor growth in vivo.


Asunto(s)
Antineoplásicos , Aspergillus , Alcaloides Indólicos , Prenilación , Aspergillus/química , Animales , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/química , Alcaloides Indólicos/aislamiento & purificación , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Ratones , Apoptosis/efectos de los fármacos , Humanos , Supervivencia Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacos
14.
Chem Biodivers ; : e202401640, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087501

RESUMEN

Rice (Oryza sativa L.) husk harbors a substantial proportion of biological metabolites, as one of the most plentiful agriculture by-products in rice milling process, rice husk remains poorly utilized. As a continuing search for potential bioactive molecules from the husk of rice, a totally of twelve conponents (1-12), including six sterol ferulates (1-6), one flavonoid (7), one dipeptide (8), and four phenylpropanoid derivatives (9-12) were obtained. All the chemical structures were elucidated based on comprehensive spectroscopic data. Wherein, compounds 1 and 2 were yield as previous undescribed metabolites, and the comprehensive NMR data for compounds 3 and 4 were first presented in its entirety. Motivated by the similarity of the structural motifs of components 1-6 to that of reported sterol ferulates, the antioxidant and anti-inflammatory effects for compounds 1-6 were evaluated in vitro. Among them, compounds 5/6 had a significant antioxidant activity compare to that of vitamin E in both DPPH and reducing power assay up to the concentration 40 µg/ml; while compounds 1 and 2 exhibited weak suppressive effect on the production of nitric oxide, with the IC50 values of 53.27 ± 1.37 µM.

15.
Molecules ; 29(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38257350

RESUMEN

In the search for new alternative biocontrol strategies, phytopathogenic fungi could represent a new frontier for weed management. In this respect, as part of our ongoing work aiming at using fungal pathogens as an alternative to common herbicides, the foliar pathogen Nigrospora sphaerica has been evaluated to control buffelgrass (Cenchrus ciliaris). In particular, in this work, the isolation and structural elucidation of two new biosynthetically related metabolites, named nigrosphaeritriol (3-(hydroxymethyl)-2-methylpentane-1,4-diol) and nigrosphaerilactol (3-(1-hydroxyethyl)-4-methyltetrahydrofuran-2-ol), from the phytotoxic culture filtrate extract were described, along with the identification of several known metabolites. Moreover, the absolute stereochemistry of (3R,4S,5S)-nigrosphaerilactone, previously reported as (3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone, was determined for the first time by X-ray diffraction analysis. Considering their structural relationship, the determination of the absolute stereochemistry of nigrosphaerilactone allowed us to hypothesize the absolute stereochemistry of nigrosphaeritriol and nigrosphaerilactol.


Asunto(s)
Ascomicetos , Cenchrus , Malezas , Cristalografía por Rayos X
16.
J Bacteriol ; 205(7): e0015323, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37347176

RESUMEN

Streptomyces bacteria have been studied for more than 80 years thanks to their ability to produce an incredible array of antibiotics and other specialized metabolites and their unusual fungal-like development. Their antibiotic production capabilities have ensured continual interest from both academic and industrial sectors, while their developmental life cycle has provided investigators with unique opportunities to address fundamental questions relating to bacterial multicellular growth. Much of our understanding of the biology and metabolism of these fascinating bacteria, and many of the tools we use to manipulate these organisms, have stemmed from investigations using the model species Streptomyces coelicolor and Streptomyces venezuelae. Here, we explore the pioneering work in S. coelicolor that established foundational genetic principles relating to specialized metabolism and development, alongside the genomic and cell biology developments that led to the emergence of S. venezuelae as a new model system. We highlight key discoveries that have stemmed from studies of these two systems and discuss opportunities for future investigations that leverage the power and understanding provided by S. coelicolor and S. venezuelae.


Asunto(s)
Streptomyces coelicolor , Streptomyces , Antibacterianos/metabolismo , Streptomyces coelicolor/genética , Streptomyces/metabolismo , Proteínas Bacterianas/genética
17.
Plant J ; 109(5): 1116-1133, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862996

RESUMEN

Plants supply both food and medicinal compounds, which are ascribed to diverse metabolites produced by plants. However, studies on domestication-driven changes in the metabolome and genetic basis of bioactive molecules in perennial fruit trees are generally lacking. Here, we conducted multidimensional analyses revealing a singular domestication event involving the genomic and metabolomic selection of jujube trees (Ziziphus jujuba Mill.). The genomic selection for domesticated genes was highly enriched in metabolic pathways, including carbohydrates and specialized metabolism. Domesticated metabolome profiling indicated that 187 metabolites exhibited significant divergence as a result of directional selection. Malic acid was directly selected during domestication, and the simultaneous selection of specialized metabolites, including triterpenes, consequently lead to edible properties. Cyclopeptide alkaloids (CPAs) were specifically targeted for the divergence between dry and fresh cultivars. We identified 1080 significantly associated loci for 986 metabolites. Among them, 15 triterpenes were directly selected at six major loci, allowing the identification of a homologous cluster containing seven 2,3-oxidosqualene cyclases (OSCs). An OSC gene was found to contribute to the reduction in the content of triterpenes during domestication. The complete pathway for synthesizing ursolic acid was dissected by integration of the metabolome and transcriptome. Additionally, an N-methyltransferase involved in the biosynthesis of CPA and responsible for inter-cultivar content variation was identified. The present study promotes our understanding of the selection process of the global metabolome subsequent to fruit tree domestication and facilitates the genetic manipulation of specialized metabolites to enhance their edible traits.


Asunto(s)
Triterpenos , Ziziphus , Domesticación , Frutas/metabolismo , Metaboloma , Árboles , Triterpenos/metabolismo , Ziziphus/química , Ziziphus/genética , Ziziphus/metabolismo
18.
Plant J ; 109(4): 789-803, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34797933

RESUMEN

The shikimate pathway plays a central role in the biosynthesis of aromatic amino acids and specialized metabolites in plants. The first enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS) serves as a key regulatory point for the pathway in various organisms. These enzymes are important in regulating the shikimate pathway in multiple microbial systems. The mechanism of regulation of DAHPS is poorly understood in plants, and the role of tyrosine (Tyr) with respect to the three DAHPS isozymes from Arabidopsis thaliana was investigated. In vitro enzymatic analyses established that Tyr does not function as an allosteric regulator for the A. thaliana DAHPS isozymes. In contrast, Arabidopsis T-DNA insertional mutants for the DAHPS1 locus, dahps1, are hypersensitive to elevated Tyr. Tyr hypersensitivity can be reversed with tryptophan and phenylalanine supplementation, indicating that Tyr is affecting the shikimate pathway flux in the dahps1 mutant. Tyr treatment of Arabidopsis seedlings showed reduced accumulation of overexpressed DAHPS2 in the chloroplast. Further, bimolecular fluorescence complementation studies revealed that DAHPS2 interacts with a 14-3-3 protein in the cytosol, and this interaction is enhanced with Tyr treatment. This interaction with 14-3-3 may retain DAHPS2 in the cytosol, which prevents its ability to function in the chloroplast with elevated Tyr.


Asunto(s)
Arabidopsis/metabolismo , Citosol/metabolismo , Tirosina/metabolismo , 3-Desoxi-7-Fosfoheptulonato Sintasa/química , 3-Desoxi-7-Fosfoheptulonato Sintasa/genética , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Regulación Alostérica , Arabidopsis/genética , Cristalografía por Rayos X , Fosfatos , Triptófano
19.
BMC Genomics ; 24(1): 352, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365507

RESUMEN

BACKGROUND: Clonostachys rosea is an established biocontrol agent. Selected strains have either mycoparasitic activity against known pathogens (e.g. Fusarium species) and/or plant growth promoting activity on various crops. Here we report outcomes from a comparative 'omics analysis leveraging a temporal variation in the in vitro antagonistic activities of C. rosea strains ACM941 and 88-710, toward understanding the molecular mechanisms underpinning mycoparasitism. RESULTS: Transcriptomic data highlighted specialized metabolism and membrane transport related genes as being significantly upregulated in ACM941 compared to 88-710 at a time point when the ACM941 strain had higher in vitro antagonistic activity than 88-710. In addition, high molecular weight specialized metabolites were differentially secreted by ACM941, with accumulation patterns of some metabolites matching the growth inhibition differences displayed by the exometabolites of the two strains. In an attempt to identify statistically relevant relationships between upregulated genes and differentially secreted metabolites, transcript and metabolomic abundance data were associated using IntLIM (Integration through Linear Modeling). Of several testable candidate associations, a putative C. rosea epidithiodiketopiperazine (ETP) gene cluster was identified as a prime candidate based on both co-regulation analysis and transcriptomic-metabolomic data association. CONCLUSIONS: Although remaining to be validated functionally, these results suggest that a data integration approach may be useful for identification of potential biomarkers underlying functional divergence in C. rosea strains.


Asunto(s)
Fusarium , Hypocreales , Fusarium/fisiología , Hypocreales/metabolismo , Perfilación de la Expresión Génica
20.
BMC Plant Biol ; 23(1): 239, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147560

RESUMEN

BACKGROUND: Aphis gossypii, a strictly phloemophagaous aphid, colonize hundreds of plant families, and a group of clones formed a cucurbit-specialised host-race. Cucurbits are unique in having evolved a specific extra-fascicular phloem (EFP), which carries defence-related metabolites such as cucurbitacin, whereas the fascicular phloem (FP) is common to all higher plants and carries primary metabolites, such as raffinose-family oligosaccharides (RFOs). Both cucurbitacins (in the EFP) and galactinol (in the FP) have been suggested to be toxic to aphids. We investigated these hypotheses in cucurbit-specialized A. gossypii fed on melon plants with or without aphid-resistance conferred by the NLR gene Vat. We selected a plant-aphid system with (i) Vat-mediated resistance not triggered, (ii) Vat-mediated resistance triggered by an aphid clone adapted to the presence of Vat resistant alleles and (iii) Vat-mediated resistance triggered by a non-adapted aphid clone. RESULTS: We quantified cucurbitacin B, its glycosylated derivative, and sugars, in melon plants and aphids that fed on. The level of cucurbitacin in plants was unrelated to both aphid infestation and aphid resistance. Galactinol was present at higher quantities in plants when Vat-mediated resistance was triggered, but its presence did not correlate with aphid performance. Finally, we showed that cucurbit-specialized A. gossypii fed from the FP but could also occasionally access the EFP without sustainably feeding from it. However, the clone not adapted to Vat-mediated resistance were less able to access the FP when the Vat resistance was triggered. CONCLUSION: We concluded that galactinol accumulation in resistant plants does not affect aphids, but may play a role in aphid adaptation to fasting and that Cucurbitacin in planta is not a real threat to Aphis gossypii. Moreover, the specific phloem of Cucurbits is involved neither in A. gossypii cucurbit specialisation nor in adaptation to Vat-dependent resistance.


Asunto(s)
Áfidos , Cucurbitaceae , Animales , Cucurbitacinas , Azúcares , Floema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA