RESUMEN
With the changing times, obesity has become a characteristic epidemic in the context of the current era. Insulin resistance (IR) is most commonly caused by obesity, and IR is a common basis of the pathogenesis of many diseases such as cardiovascular disease, nonalcoholic fatty liver disease, and type 2 diabetes, which seriously threaten human life, as well as health. A major pathogenetic mechanism of obesity-associated IR has been found to be chronic low-grade inflammation in adipose tissue. Specialized pro-resolving mediators (SPMs) are novel lipid mediators that both function as "stop signals" for inflammatory reaction and promote inflammation to subside. In this article, we summarize the pathogenesis of obesity-associated IR and its treatments and outline the classification and biosynthesis of SPMs and their mechanisms and roles in the treatment of obesity-associated IR in order to explore the potential of SPMs for treating metabolic diseases linked with obesity-associated IR.
Asunto(s)
Resistencia a la Insulina , Obesidad , Humanos , Obesidad/metabolismo , Inflamación/metabolismo , Animales , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Diabetes Mellitus Tipo 2/metabolismo , Mediadores de Inflamación/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismoRESUMEN
Protectins, 10,17-dihydroxydocosahexaenoic acids (10,17-DiHDHAs), are belonged to specialized pro-resolving mediators (SPMs). Protectins are generated by polymorphonuclear leukocytes in humans and resolve inflammation and infection in trace amounts. However, the quantitative production of protectin DX 10-epimer (10-epi-PDX, 10R,17S-4Z,7Z,11E,13Z,15E,19Z-DiHDHA) has been not attempted to date. In this study, 10-epi-PDX was quantitatively produced from docosahexaenoic acid (DHA) by serial whole-cell biotransformation of Escherichia coli expressing arachidonate (ARA) 8R-lipoxygenase (8R-LOX) from the coral Plexaura homomalla and E. coli expressing ARA 15S-LOX from the bacterium Archangium violaceum. The optimal bioconversion conditions to produce 10R-hydroxydocosahexaenoic acid (10R-HDHA) and 10-epi-PDX were pH 8.0, 30 °C, 2.0 mM DHA, and 4.0 g/L cells; and pH 8.5, 20 °C, 1.4 mM 10R-HDHA, and 1.0 g/L cells, respectively. Under these optimized conditions, 2.0 mM (657 mg/L) DHA was converted into 1.2 mM (433 mg/L) 10-epi-PDX via 1.4 mM (482 mg/L) 10R-HDHA by the serial whole-cell biotransformation within 90 min, with a molar conversion of 60% and volumetric productivity of 0.8 mM/h (288 mg/L/h). To the best of our knowledge, this is the first quantitative production of 10-epi-PDX. Our results contribute to the efficient biocatalytic synthesis of SPMs.
Asunto(s)
Antozoos , Biotransformación , Ácidos Docosahexaenoicos , Escherichia coli , Ácidos Docosahexaenoicos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Antozoos/microbiología , Antozoos/metabolismo , Animales , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato Lipooxigenasas/metabolismo , Araquidonato Lipooxigenasas/genética , Concentración de Iones de HidrógenoRESUMEN
Chronic pain is a refractory health disease worldwide causing an enormous economic burden on individuals and society. Accumulating evidence suggests that inflammation in the peripheral nervous system (PNS) and central nervous system (CNS) is the major factor in the pathogenesis of chronic pain. The inflammation in the early- and late phase may have distinctive effects on the initiation and resolution of pain, which can be viewed as friend or foe. On the one hand, painful injuries lead to the activation of glial cells and immune cells in the PNS, releasing pro-inflammatory mediators, which contribute to the sensitization of nociceptors, leading to chronic pain; neuroinflammation in the CNS drives central sensitization and promotes the development of chronic pain. On the other hand, macrophages and glial cells of PNS and CNS promote pain resolution via anti-inflammatory mediators and specialized pro-resolving mediators (SPMs). In this review, we provide an overview of the current understanding of inflammation in the deterioration and resolution of pain. Further, we summarize a number of novel strategies that can be used to prevent and treat chronic pain by controlling inflammation. This comprehensive view of the relationship between inflammation and chronic pain and its specific mechanism will provide novel targets for the treatment of chronic pain.
Asunto(s)
Dolor Crónico , Humanos , Inflamación , Sistema Nervioso Central , Sensibilización del Sistema Nervioso Central , NeuroglíaRESUMEN
Lipids are usually viewed as metabolic fuel and structural membrane components. Yet, in recent years, different families of lipids able to act as authentic messengers between cells and/or intracellularly have been discovered. Such lipid signals have been shown to exert their biological activity via specific receptors that, by triggering distinct signal transduction pathways, regulate manifold pathophysiological processes in our body. Here, endogenous bioactive lipids produced from arachidonic acid (AA) and other poly-unsaturated fatty acids will be presented, in order to put into better perspective the relevance of their mutual interactions for health and disease conditions. To this end, metabolism and signal transduction pathways of classical eicosanoids, endocannabinoids and specialized pro-resolving mediators will be described, and the intersections and commonalities of their metabolic enzymes and binding receptors will be discussed. Moreover, the interactions of AA-derived signals with other bioactive lipids such as shingosine-1-phosphate and steroid hormones will be addressed.
Asunto(s)
Eicosanoides , Transducción de Señal , Transducción de Señal/fisiología , Eicosanoides/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácido Araquidónico , Endocannabinoides , Metabolismo de los LípidosRESUMEN
Although many diseases in which reactive oxygen species (ROS) and free radicals are involved in their pathogenesis are known, and antioxidants that effectively capture ROS have been identified and developed, there are only a few diseases for which antioxidants have been used for treatment. Here, we discuss on the following four concepts regarding the development of applications for disease treatment by regulating ROS, free radicals, and lipid oxidation with the findings of our research and previous reports. Concept 1) Utilization of antioxidants for disease treatment. In particular, the importance of the timing of starting antioxidant will be discussed. Concept 2) Therapeutic strategies using ROS and free radicals. Methods of inducing ferroptosis, which has been advocated as an iron-dependent cell death, are mentioned. Concept 3) Treatment with drugs that inhibit the synthesis of lipid mediators. In addition to the reduction of inflammatory lipid mediators by inhibiting cyclooxygenase and leukotriene synthesis, we will introduce the possibility of disease treatment with lipoxygenase inhibitors. Concept 4) Disease treatment by inducing the production of useful lipid mediators for disease control. We describe the treatment of inflammatory diseases utilizing pro-resolving mediators and propose potential compounds that activate lipoxygenase to produce these beneficial mediators.
RESUMEN
11 S, 17S-dihydroxy 7,9,13,15,19 (Z,E,Z,E,Z)-docosapentaenoic acid (DoPE) is a derivative of docosapentaenoic acid, a specialized pro-resolving mediator of inflammation such as lipoxins, resolvins, maresins, and protectins. PM10 is a fine dust particle that induces oxidative stress, DNA damage, inflammation, aging, and cancer. The anti-inflammatory mechanism of DoPE, however, has not yet been elucidated. In these studies, we investigated whether DoPE has anti-inflammatory effects in human keratinocyte HaCaT cells. We demonstrated that DoPE suppressed PM10-induced expressions of IL-6 mRNA and protein in human HaCaT keratinocytes. We also investigated the modulating effects of DoPE on reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK). ROS production, extracellular signal regulated kinase (ERK) phosphorylation, and translocation of nuclear factor-kappa B (NF-kB) p65 and NF-kB activity were suppressed by DoPE in PM10-stimulated HaCaT cells. Collectively, our results demonstrated that DoPE inhibited IL-6 expression by reducing ROS generation, suppressing ERK phosphorylation, and inhibiting translocation of NF-kB p65 and NF-kB activity in PM10-stimulated HaCaT cells, suggesting that DoPE can be useful for the resolution of the inflammation caused by IL-6.
Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , FN-kappa B , Polvo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ácidos Grasos Insaturados , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Queratinocitos , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Inflammation is known to cause pain, and pain is of one of the cardinal signs of inflammation. Mounting evidence suggests that acute inflammation also resolves pain through specialized pro-resolving mediators (SPMs) and macrophage signaling. GPR37 is expressed by neurons and oligodendrocytes in the brain and has been implicated in multiple disorders, such as demyelination, Parkinson's disease, stroke, and cancer. Recent studies have demonstrated that GPR37 is expressed by macrophages and confers protection against infection by bacteria and parasites. Furthermore, GPR37 promotes the resolution of inflammatory pain and infection-induced pain, as the duration of pain after tissue injury and infection is prolonged in mice lacking Gpr37. Mechanistically, activation of GPR37 enhances macrophage phagocytosis, and Gpr37-deficient macrophages exhibit dysregulations of pro-inflammatory and anti-inflammatory cytokines, switching from M2- to M1-like phenotypes. We also discuss novel ligands of GPR37, including neuroprotectin D1 (NPD1), a SPM derived from docosahexaenoic acid (DHA), and bone-derived hormone osteocalcin (OCN), which can suppress oligodendrocyte differentiation and myelination. NPD1 stimulates macrophage phagocytosis via GPR37 and exhibits potent analgesic actions in various animal models of inflammatory and neuropathic pain. Targeting GPR37 may lead to novel therapeutics for treating inflammation, infection, pain, and neurological diseases.
Asunto(s)
Inflamación , Neuralgia , Animales , Ratones , Inflamación/prevención & control , Fagocitosis , Macrófagos , Antiinflamatorios/farmacología , Receptores Acoplados a Proteínas GRESUMEN
OBJECTIVES: Lipid mediators are bioactive lipids which help regulate inflammation. We aimed to develop an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method to quantify 58 pro-inflammatory and pro-resolving lipid mediators in plasma, determine preliminary reference ranges for adolescents, and investigate how total parenteral nutrition (TPN) containing omega-3 polyunsaturated fatty acid (n-3 PUFA) or n-6 PUFA based lipid emulsions influence lipid mediator concentrations in plasma. METHODS: Lipid mediators were extracted from plasma using SPE and measured using UHPLC-MS/MS. EDTA plasma was collected from healthy adolescents between 13 and 17 years of age to determine preliminary reference ranges and from mice given intravenous TPN for seven days containing either an n-3 PUFA or n-6 PUFA based lipid emulsion. RESULTS: We successfully quantified 43 lipid mediators in human plasma with good precision and recovery including several leukotrienes, prostaglandins, resolvins, protectins, maresins, and lipoxins. We found that the addition of methanol to human plasma after blood separation reduces post blood draw increases in 12-hydroxyeicosatetraenoic acid (12-HETE), 12-hydroxyeicosapentaenoic acid (12-HEPE), 12S-hydroxyeicosatrienoic acid (12S-HETrE), 14-hydroxydocosahexaenoic acid (14-HDHA) and thromboxane B2 (TXB2). Compared to the n-6 PUFA based TPN, the n-3 PUFA based TPN increased specialized pro-resolving mediators such as maresin 1 (MaR1), MaR2, protectin D1 (PD1), PDX, and resolvin D5 (RvD5), and decreased inflammatory lipid mediators such as leukotriene B4 (LTB4) and prostaglandin D2 (PGD2). CONCLUSIONS: Our method provides an accurate and sensitive quantification of 58 lipid mediators from plasma samples, which we used to establish a preliminary reference range for lipid mediators in plasma samples of adolescents; and to show that n-3 PUFA, compared to n-6 PUFA rich TPN, leads to a less inflammatory lipid mediator profile in mice.
Asunto(s)
Ácidos Grasos Omega-3 , Espectrometría de Masas en Tándem , Adolescente , Animales , Cromatografía Líquida de Alta Presión , Eicosanoides , Humanos , Inflamación , Ratones , Espectrometría de Masas en Tándem/métodosRESUMEN
The first total synthesis of the n-3 docosapentaenoic derived oxygenated product MaR2n-3 DPA has been achieved. The 13R and 14S stereogenic centers were introduced using 2-deoxy-d-ribose in a chiral pool strategy. The geometry of the Z,E,E-triene moiety was prepared using highly E-selective Wittig- and Takai-olefination reactions as well as the Z-stereoselective Lindlar reduction. LC/MS-MS data of synthetic MaR2n-3 DPA matched data for the biosynthetic formed product that enabled the configurational assignment of this oxygenated natural product to be (7Z,9E,11E,13R,14S,16Z,19Z)-13,14-dihydroxydocosa-7,9,11,16,19-pentaenoic acid.
RESUMEN
BACKGROUND: Asthma is characterized by airway inflammation and obstruction with eosinophil infiltration into the airway. Arachidonic acid, an omega-6 fatty acid, is metabolized into cysteinyl leukotriene with pro-inflammatory properties for allergic inflammation, whereas the omega-3 fatty acid eicosapentaenoic acid (EPA) and its downstream metabolites are known to have anti-inflammatory effects. In this study, we investigated the mechanism underlying the counter-regulatory roles of EPA in inflamed lungs. METHODS: Male C57BL6 mice were sensitized and challenged by ovalbumin (OVA). After EPA treatment, we evaluated the cell count of Bronchoalveolar lavage fluid (BALF), mRNA expressions in the lungs by q-PCR, and the amounts of lipid mediators by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipidomics. We investigated the effect of the metabolite of EPA by in vivo and in vitro studies. RESULTS: Eicosapentaenoic acid treatment reduced the accumulation of eosinophils in the airway and decreased mRNA expression of selected inflammatory mediators in the lung. Lipidomics clarified the metabolomic profile in the lungs. Among EPA-derived metabolites, 12-hydroxy-17,18-epoxyeicosatetraenoic acid (12-OH-17,18-EpETE) was identified as one of the major biosynthesized molecules; the production of this molecule was amplified by EPA administration and allergic inflammation. Intravenous administration of 12-OH-17,18-EpETE attenuated airway eosinophilic inflammation through downregulation of C-C chemokine motif 11 (CCL11) mRNA expression in the lungs. In vitro, this molecule also inhibited the release of CCL11 from human airway epithelial cells stimulated with interleukin-4. CONCLUSION: These results demonstrated that EPA alleviated airway eosinophilic inflammation through its conversion into bioactive metabolites. Additionally, our results suggest that 12-OH-17,18-EpETE is a potential therapeutic target for the management of asthma.
Asunto(s)
Antiinflamatorios/farmacología , Ácidos Araquidónicos/farmacología , Asma/prevención & control , Eosinofilia/prevención & control , Inflamación/fisiopatología , Pulmón/fisiopatología , Animales , Asma/inmunología , Asma/fisiopatología , Modelos Animales de Enfermedad , Eosinofilia/inmunología , Eosinofilia/fisiopatología , Inflamación/inmunología , Pulmón/inmunología , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
Omega-3 fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are found naturally in fish oil and are commonly thought to be anti-inflammatory nutrients, with protective effects in inflammatory diseases including asthma and allergies. The mechanisms of these effects remain mostly unknown but are of great interest for their potential therapeutic applications. Large numbers of epidemiological and observational studies investigating the effect of fish intake or omega-3 fatty acid supplementation during pregnancy, lactation, infancy, childhood, and adulthood on asthmatic and allergic outcomes have been conducted. They mostly indicate protective effects and suggest a causal relationship between decreased intake of fish oil in modernized diets and an increasing number of individuals with asthma or other allergic diseases. Specialized pro-resolving mediators (SPM: protectins, resolvins, and maresins) are generated from omega-3 fatty acids such as EPA and DHA via several enzymatic reactions. These mediators counter-regulate airway eosinophilic inflammation and promote the resolution of inflammation in vivo. Several reports have indicated that the biosynthesis of SPM is impaired, especially in severe asthma, which suggests that chronic inflammation in the lung might result from a resolution defect. This article focuses on the beneficial aspects of omega-3 fatty acids and offers recent insights into their bioactive metabolites including resolvins and protectins.
Asunto(s)
Asma/inmunología , Asma/metabolismo , Ácidos Grasos Omega-3/metabolismo , Hipersensibilidad/inmunología , Hipersensibilidad/metabolismo , Animales , Asma/epidemiología , Modelos Animales de Enfermedad , Humanos , Hipersensibilidad/epidemiología , Mediadores de Inflamación/metabolismo , Metabolismo de los Lípidos , RatonesRESUMEN
Individuals with chronic diseases are more vulnerable to environmental inhalation exposures. Although metabolic syndrome (MetS) is increasingly common and is associated with susceptibility to inhalation exposures such as particulate air pollution, the underlying mechanisms remain unclear. In previous studies, we determined that, compared to a healthy mouse model, a mouse model of MetS exhibited increased pulmonary inflammation 24 h after exposure to AgNPs. This exacerbated response was associated with decreases in pulmonary levels of specific specialized pro-resolving mediators (SPMs). Supplementation with specific SPMs that are known to be dysregulated in MetS may alter particulate-induced inflammatory responses and be useful in treatment strategies. Our current study hypothesized that administration of resolvin E1 (RvE1), protectin D1 (PD1), or maresin (MaR1) following AgNP exposure will differentially regulate inflammatory responses. To examine this hypothesis, healthy and MetS mouse models were exposed to either a vehicle (control) or 50 µg of 20 nm AgNPs via oropharyngeal aspiration. They were then treated 24 h post-exposure with either a vehicle (control) or 400 ng of RvE1, PD1, or MaR1 via oropharyngeal aspiration. Endpoints of pulmonary inflammation and toxicity were evaluated three days following AgNP exposure. MetS mice that were exposed to AgNPs and received PBS treatment exhibited significantly exacerbated pulmonary inflammatory responses compared to healthy mice. In mice exposed to AgNPs and treated with RvE1, neutrophil infiltration was reduced in healthy mice and the exacerbated neutrophil levels were decreased in the MetS model. This decreased neutrophilia was associated with decreases in proinflammatory cytokines' gene and protein expression. Healthy mice treated with PD1 did not demonstrate alterations in AgNP-induced neutrophil levels compared to mice not receiving treat; however, exacerbated neutrophilia was reduced in the MetS model. These PD1 alterations were associated with decreases in proinflammatory cytokines, as well as elevated interleukin-10 (IL-10). Both mouse models receiving MaR1 treatment demonstrated reductions in AgNP-induced neutrophil influx. MaR1 treatment was associated with decreases in proinflammatory cytokines in both models and increases in the resolution inflammatory cytokine IL-10 in both models, which were enhanced in MetS mice. Inflammatory responses to particulate exposure may be treated using specific SPMs, some of which may benefit susceptible subpopulations.
RESUMEN
AIMS: Conjunctival epithelium lines the inside of the eyelids and covers the sclera, thus providing stability to the eye surface. Goblet cells in conjunctival epithelium (CjGCs) are well known for their mucin-secretion function, which wet and protect the ocular surface, but other aspects are still not well understood. To expand our understanding beyond their mucin-secreting function, we investigated CjGC-secreted extracellular vesicles (EVs) and lipid mediators therein. MATERIALS AND METHODS: Using histamine-mediated allergic inflammation in human primary CjGCs (HCjGCs) as a disease model, we quantified using ELISA a proinflammatory mediator PGE2 and two specialized pro-resolving mediators (SPMs) LXA4 and RvD1 in EVs secreted during allergic inflammation. KEY FINDINGS: At 18 h post histamine stimulation, the amount of LXA4 and RvD1 in EVs was notably higher compared to those in unstimulated. Interestingly, this increase was only observed in female EVs but not in males. The mean fold increase of LXA4 and RvD1 in female EVs was 3.9 and 3.4, respectively, but it was only 0.9 and 1.0 in male EVs. Supplying docosahexaenoic acid (DHA, the source of RvD1 and other SPMs) to the culture medium during the allergic inflammation resulted in even higher mean fold increase of 5.3 and 6.9 for LXA4 and RvD1 in female EVs, respectively, but it was only 0.5 and 0.8 in male EVs. SIGNIFICANCE: We conclude that HCjGCs show a clear sex difference in allergic response. Our results may also provide a new insight into the male predisposition to severe forms of allergic conjunctivitis and potential improvement in disease care in the clinic.
Asunto(s)
Conjuntiva , Ácidos Docosahexaenoicos , Vesículas Extracelulares , Células Caliciformes , Inflamación , Lipoxinas , Humanos , Femenino , Vesículas Extracelulares/metabolismo , Masculino , Células Caliciformes/metabolismo , Células Caliciformes/patología , Conjuntiva/metabolismo , Conjuntiva/patología , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Lipoxinas/metabolismo , Inflamación/metabolismo , Inflamación/patología , Hipersensibilidad/metabolismo , Células Cultivadas , Factores Sexuales , Caracteres Sexuales , Dinoprostona/metabolismoRESUMEN
[This corrects the article DOI: 10.3389/fimmu.2023.1248547.].
RESUMEN
OBJECTIVE: Little is known about the effects of over-the-counter fish oil (FO) supplements on circulating omega-3 polyunsaturated fatty acid (n-3 PUFA)-derived specialized pro-resolving mediators (SPMs), nor about whether having a chronic inflammatory disease such as rheumatoid arthritis (RA) influences SPM levels. We investigated associations between over-the-counter n-3 PUFA FO supplementation and circulating SPMs among patients with vs. without RA. METHODS: We studied 104 participants: 26 with RA taking FO matched by age and sex to 26 with RA not taking FO, 26 without RA taking FO, and 26 without RA not taking FO. Targeted-liquid chromatography-tandem mass spectroscopy was performed on patient plasma to identify and quantify 27 lipid mediators (including eicosanoids and SPMs). We performed t-tests and then multivariable linear regression analyses to assess whether having RA or taking FO supplements was associated with circulating lipid mediator concentrations, adjusting for age, race, sex, smoking, body mass index, and current medication use (statins, prednisone and immunomodulators among RA cases only). We tested for interactions between FO supplementation and RA status. We also conducted Spearman's correlations between EPA, DHA, and ARA and their downstream metabolites. RESULTS: Among patients who were taking FO compared to those who were not, in multivariable- adjusted analyses, SPM substrates EPA and DHA were both elevated as were several of their pro-resolving bioactive products, including 15- and 18-HEPE from EPA, and 14- and 17-HDHA from DHA, which are substrates for specific SPMs. While E-series and D-series resolvins were present and identified, we did not find statistical elevations of other SPMs. Results were similar among patients with RA and patients without RA, taking vs. not taking FO supplementation (no formal statistical interaction observed). There was a strong positive correlation between EPA and DHA and their immediate downstream SPM precursors (18-HEPE and15-HEPE from EPA; 17-HDHA and 14-HDHA from DHA) among all patients. CONCLUSION: Patients taking FO supplements, regardless of RA status, not only had higher blood levels of EPA and DHA, but also of their enzymatic products 18-HEPE (E-series resolvin precursors), 15-HEPE and 17-HDHA (D-series resolvin and protectin precursors). Patients with RA, an inflammatory autoimmune disease, may be able to augment some SPM precursor reserves, similarly to matched controls without RA, by taking oral FO supplements.
Asunto(s)
Artritis Reumatoide , Ácidos Grasos Omega-3 , Humanos , Aceites de Pescado , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Suplementos Dietéticos , Ácidos GrasosRESUMEN
Introduction: Prenatal alcohol exposure (PAE) causes neuroinflammation that may contribute to the pathophysiology underlying Fetal Alcohol Spectrum Disorder. Supplementation with omega-3 polyunsaturated fatty acids (PUFAs) has shown success in mitigating effects of PAE in animal models, however, the underlying mechanisms are unknown. Some PUFA metabolites, specialized pro-resolving mediators (SPMs), play a role in the resolution phase of inflammation, and receptors for these are in the brain. Methods: To test the hypothesis that the SPM receptors FPR2 and ChemR23 play a role in PAE-induced behavioral deficits, we exposed pregnant wild-type (WT) and knockout (KO) mice to alcohol in late gestation and behaviorally tested male and female offspring as adolescents and young adults. Results: Maternal and fetal outcomes were not different among genotypes, however, growth and behavioral phenotypes in the offspring did differ and the effects of PAE were unique to each line. In the absence of PAE, ChemR23 KO animals showed decreased anxiety-like behavior on the elevated plus maze and FPR2 KO had poor grip strength and low activity compared to age-matched WT mice. WT mice showed improved performance on fear conditioning between adolescence and young adulthood, this was not seen in either KO. Discussion: This PAE model has subtle effects on WT behavior with lower activity levels in young adults, decreased grip strength in males between test ages, and decreased response to the fear cue indicating an effect of alcohol exposure on learning. The PAE-mediated decreased response to the fear cue was also seen in ChemR23 KO but not FPR2 KO mice, and PAE worsened performance of adolescent FPR2 KO mice on grip strength and activity. Collectively, these findings provide mechanistic insight into how PUFAs could act to attenuate cognitive impairments caused by PAE.
RESUMEN
Activation of pancreatic stellate cells (PSCs) to cancer-associated fibroblasts (CAFs) is responsible for the extensive desmoplastic reaction observed in PDAC stroma: a key driver of pancreatic ductal adenocarcinoma (PDAC) chemoresistance leading to poor prognosis. Specialized pro-resolving mediators (SPMs) are prime modulators of inflammation and its resolution, traditionally thought to be produced by immune cells. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipid mediator profiling PSCs as well as primary human CAFs express enzymes and receptors to produce and respond to SPMs. Human PSC/CAF SPM secretion profile can be modulated by rendering these cells activated [transforming growth factor beta (TGF-ß)] or quiescent [all-trans retinoic acid (ATRA)]. ATRA-induced nuclear translocation of arachidonate-15-lipoxygenase (ALOX15) was linked to increased production of n-3 docosapentaenoic acid-derived Resolvin D5 (RvD5n-3 DPA), among other SPMs. Inhibition of RvD5n-3 DPA formation increases cancer cell invasion, whereas addback of this molecule reduced activated PSC-mediated cancer cell invasion. We also observed that circulating concentrations of RvD5n-3 DPA levels were decreased in peripheral blood of metastatic PDAC patients when compared with those measured in plasma of non-metastatic PDAC patients. Together, these findings indicate that RvD5n-3 DPA may regulate cancer-stroma cross-talk and invasion.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Araquidonato 15-Lipooxigenasa/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/patología , Cromatografía Liquida , Espectrometría de Masas en Tándem , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Tretinoina/metabolismo , Invasividad Neoplásica/patologíaRESUMEN
Neutrophils are key players in inflammation initiation and resolution. Little attention has been paid to the detailed biosynthesis of specialized pro-resolving mediators (SPM) in these cells. We investigated SPM formation in human polymorphonuclear leukocytes (PMNL), in broken PMNL preparations and recombinant human 5-lipoxygenase (5-LO) supplemented with the SPM precursor lipids 15-Hydroxyeicosatetraenoic acid (15-HETE), 18-Hydroxyeicosapentaenoic acid (18-HEPE) or 17-Hydroxydocosahexaenoic acid (17-HDHA). In addition, the influence of 5-LO activating protein (FLAP) inhibition on SPM formation in PMNL was assessed. Intact human PMNL preferred ARA over DHA for lipid mediator formation. In contrast, in incubations supplemented with the SPM precursor lipids DHA-derived 17-HDHA was preferred over 15-HETE and 18-HEPE. SPM formation in the cells was dominated by 5(S),15(S)-diHETE (800 pmol/20 mio cells) and Resolvin D5 (2300 pmol/20 mio cells). Formation of lipoxins (<10 pmol/20 mio cells), E-series (<70 pmol/20 mio cells) and other D-series resolvins (<20 pmol/20 mio cells) was low and only detected after addition of the precursor lipids. Upon destruction of cell integrity, formation of lipoxins and 5(S),15(S)-diHETE increased while formation of 17-HDHA- and 18-HEPE-derived SPMs was attenuated. Recombinant 5-LO did not accept the precursors for SPM formation and FLAP inhibition prevented the formation of the 5-LO-dependent SPMs. Together with the data on FLAP inhibition our results point to unknown factors that control SPM formation in human neutrophils and also render lipoxin and 5(S),15(S)-diHETE formation independent of membrane association and FLAP when cellular integrity is destroyed.
Asunto(s)
Ácidos DocosahexaenoicosRESUMEN
In this review it is attempted to summarize current studies about formation of eicosanoids and other oxylipins in different human macrophages. There are several reports on M1 and M2 cells, also other phenotypes have been described. The eicosanoids formed in the largest amounts are the COX products TxB2 and PGE2. Thus shortlived bioactive TxA2 is a dominating product both in M1- and in M2-lineages, one exception seems to be MGM-CSF, TGFß cells. 5-LOX products are produced in both M1 and M2 macrophages, as well as in not fully polarized cells of both lineages. MM-CSF as well as M2 macrophages produced LTC4 more readily compared to M1 lineage cells. In MGM-CSF, TGFß cells LTB4 is a major eicosanoid, in line with high expression of LTA4 hydrolase. Recent reports described increased formation of leukotrienes in macrophages subjected to trained immunity with inflammatory transcriptional reprogramming. Also in macrophages derived from monocytes collected from post-COVID-19 patients. 15-LOX-1 is strongly upregulated in CD206+ M2 cells (M2a), differentiated in presence of IL-4. These macrophages also express 15-LOX-2. In incubations with pathogenic E. coli as well as other stimuli 15(S)-HETE and 17(S)-HDHA were major oxylipins formed. Also, the SPM precursor 5,15-diHETE and the SPM RvD5 were produced in considerable amounts, while other SPMs were less abundant. In M2 macrophages incubated with E. coli or S. aureus the cytosolic 15-LOX-1 enzyme accumulated to punctuate structures in a Ca2+ dependent manner with a relatively slow time course, leading to formation of mediators from endogenous substrate. Chalcones, flavone-like anti-inflammatory natural products, induced translocation of 15-LOX-1 in M2 cells, with high formation of 15-LOX derived oxylipins.
Asunto(s)
Productos Biológicos , Eicosanoides , Macrófagos , Oxilipinas , Araquidonato 5-Lipooxigenasa/metabolismo , Productos Biológicos/metabolismo , COVID-19 , Chalconas , Ciclooxigenasa 2/metabolismo , Eicosanoides/metabolismo , Escherichia coli/metabolismo , Flavonas , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Hidrolasas/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Interleucina-4/metabolismo , Leucotrienos , Factor Estimulante de Colonias de Macrófagos , Macrófagos/metabolismo , Oxilipinas/metabolismo , Prostaglandinas E/metabolismo , Receptores Depuradores de Clase E/metabolismo , Staphylococcus aureus , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
BACKGROUND AND PURPOSE: Gouty arthritis is characterized by an intense inflammatory response to monosodium urate crystals (MSU), which induces severe pain. Current therapies are often ineffective in reducing gout-related pain. Resolvin D1 (RvD1) is a specialized pro-resolving lipid mediator with anti-inflammatory and analgesic proprieties. In this study, we evaluated the effects and mechanisms of action of RvD1 in an experimental mouse model of gouty arthritis, an aim that was not pursued previously in the literature. EXPERIMENTAL APPROACH: Male mice were treated with RvD1 (intrathecally or intraperitoneally) before or after intraarticular stimulation with MSU. Mechanical hyperalgesia was assessed using an electronic von Frey aesthesiometer. Leukocyte recruitment was determined by knee joint wash cell counting and immunofluorescence. IL-1ß production was measured by ELISA. Phosphorylated NF-kB and apoptosis-associated speck-like protein containing CARD (ASC) were detected by immunofluorescence, and mRNA expression was determined by RT-qPCR. CGRP release was determined by EIA and immunofluorescence. MSU crystal phagocytosis was evaluated by confocal microscopy. KEY RESULTS: RvD1 inhibited MSU-induced mechanical hyperalgesia in a dose- and time-dependent manner by reducing leukocyte recruitment and IL-1ß production in the knee joint. Intrathecal RvD1 reduced the activation of peptidergic neurons and macrophages as well as silenced nociceptor to macrophage communication and macrophage function. CGRP stimulated MSU phagocytosis and IL-1ß production by macrophages. RvD1 downmodulated this phenomenon directly by acting on macrophages, and indirectly by inhibiting CGRP release and CGRP-dependent activation of macrophages. CONCLUSIONS AND IMPLICATIONS: This study reveals a hitherto unknown neuro-immune axis in gouty arthritis that is targeted by RvD1.