RESUMEN
BACKGROUND: Splicing variants are a major class of pathogenic mutations, with their severity equivalent to nonsense mutations. However, redundant and degenerate splicing signals hinder functional assessments of sequence variations within introns, particularly at branch sites. We have established a massively parallel splicing assay to assess the impact on splicing of 11,191 disease-relevant variants. Based on the experimental results, we then applied regression-based methods to identify factors determining splicing decisions and their respective weights. RESULTS: Our statistical modeling is highly sensitive, accurately annotating the splicing defects of near-exon intronic variants, outperforming state-of-the-art predictive tools. We have incorporated the algorithm and branchpoint information into a web-based tool, SpliceAPP, to provide an interactive application. This user-friendly website allows users to upload any genetic variants with genome coordinates (e.g., chr15 74,687,208 A G), and the tool will output predictions for splicing error scores and evaluate the impact on nearby splice sites. Additionally, users can query branch site information within the region of interest. CONCLUSIONS: In summary, SpliceAPP represents a pioneering approach to screening pathogenic intronic variants, contributing to the development of precision medicine. It also facilitates the annotation of splicing motifs. SpliceAPP is freely accessible using the link https://bc.imb.sinica.edu.tw/SpliceAPP . Source code can be downloaded at https://github.com/hsinnan75/SpliceAPP .
Asunto(s)
Internet , Mutación , Empalme del ARN , Programas Informáticos , Humanos , Algoritmos , Intrones/genética , Sitios de Empalme de ARN/genética , Biología Computacional/métodosRESUMEN
Developmental and epileptic encephalopathy (DEEs) (OMIM#618,328) is characterized by seizures, hypotonia, and brain abnormalities, often arising from mutations in genes crucial for brain function. Among these genes, GLS stands out due to its vital role in the central nervous system (CNS), with homozygous variants potentially causing DEE type 71. Using Whole Exome Sequencing (WES) on a patient exhibiting symptoms of epileptic encephalopathy, we identified a novel homozygous variant, NM_014905.5:c.1849G > T; p.(Asp617Tyr), in the GLS gene. The 5-year-old patient, born to consanguineous parents, presented with developmental delay, encephalopathy, frequent seizures, and hypotonia. Sanger sequencing further validated the GLS gene variant in both the patient and his family. Furthermore, our bioinformatics analysis indicated that this missense variant could lead to alteration of splicing, resulting in the activation of a cryptic donor site and potentially causing loss of protein function. Our finding highlights the pathogenic significance of the GLS gene, particularly in the context of brain disorders, specifically DEE71.
Asunto(s)
Secuenciación del Exoma , Homocigoto , Humanos , Masculino , Preescolar , Mutación Missense , Linaje , Discapacidades del Desarrollo/genética , Epilepsia/genética , Consanguinidad , Femenino , Espasmos Infantiles/genéticaRESUMEN
Cancers are caused by accumulated DNA mutations. This recognition of the central role of mutations in cancer and recent advances in next-generation sequencing, has initiated the massive screening of clinical samples and the identification of 1000s of cancer-associated gene mutations. However, proteomic analysis of the expressed mutation products lags far behind genomic (transcriptomic) analysis. With comprehensive global proteomics analysis, only a small percentage of single nucleotide variants detected by DNA and RNA sequencing have been observed as single amino acid variants due to current technical limitations. Proteomic analysis of mutations is important with the potential to advance cancer biomarker development and the discovery of new therapeutic targets for more effective disease treatment. Targeted proteomics using selected reaction monitoring (also known as multiple reaction monitoring) and parallel reaction monitoring, has emerged as a powerful tool with significant advantages over global proteomics for analysis of protein mutations in terms of detection sensitivity, quantitation accuracy and overall practicality (e.g., reliable identification and the scale of quantification). Herein we review recent advances in the targeted proteomics technology for enhancing detection sensitivity and multiplexing capability and highlight its broad biomedical applications for analysis of protein mutations in human bodily fluids, tissues, and cell lines. Furthermore, we review recent applications of top-down proteomics for analysis of protein mutations. Unlike the commonly used bottom-up proteomics which requires digestion of proteins into peptides, top-down proteomics directly analyzes intact proteins for more precise characterization of mutation isoforms. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale targeted detection and quantification of important protein mutations are discussed.
Asunto(s)
Proteínas , Proteómica , Humanos , Espectrometría de Masas , Péptidos/química , MutaciónRESUMEN
Non-obstructive azoospermia (NOA) is the most severe form of human male infertility, and the genetic causes of NOA with meiotic arrest remain largely unclear. In this study, we identified novel compound heterozygous MEIOB variants (c.814C > T: p.R272X and c.976G > A: p.A326T) and a previously undescribed homozygous non-canonical splicing variant of MEIOB (c.528 + 3A > C) in two NOA-affected individuals from two irrelevant Chinese families. MEIOB missense variant (p.A326T) significantly reduced protein abundance and nonsense variant (p.R272X) produced a truncated protein. Both of two variants impaired the MEIOB-SPATA22 interaction. The MEIOB non-canonical splicing variant resulted in whole Exon 6 skipping by minigene assay, which was predicted to produce a frameshift truncated protein (p.S111Rfs*32). Histological and immunostaining analysis indicated that both patients exhibited a similar phenotype as we previously reported in Meiob mutant mice, that is, absence of spermatids in seminiferous tubules and meiotic arrest. Our study identified three novel pathogenic variants of MEIOB in NOA patients, extending the mutation spectrum of the MEIOB and highlighting the contribution of meiotic recombination related genes in human fertility.
Asunto(s)
Azoospermia , Infertilidad Masculina , Humanos , Masculino , Ratones , Animales , Azoospermia/genética , Azoospermia/patología , Infertilidad Masculina/genética , Mutación/genética , Proteínas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Meiosis/genética , Proteínas de Unión al ADN/genéticaRESUMEN
The phenotypes associated with MED12 pathogenic variants are diverse. Male patients usually have missense variants, but the effects of base substitutions on mRNA splicing have not been investigated. Here, we report a Japanese brother with intellectual disability, characteristic facial appearance with blepharophimosis, cleft palate, Fallot tetralogy, vesicoureteral reflux, and deafness. A known missense pathogenic variant was detected in MED12, NM_005120.3:c.887G>A p.(Arg296Gln), and X-linked Ohdo syndrome was diagnosed in combination with their phenotype. mRNA splicing of MED12 was evaluated qualitatively and quantitatively using long-range PCR-based targeted RNA sequencing (reverse transcribed long amplicon sequencing), and it was shown that this missense variant simultaneously causes aberrant splicing of the 42-bp in-frame deletion in exon 7, r.847_888del, which accounts for approximately 30% of the mRNAs in both siblings. The X chromosome inactivation study showed that the X chromosome carrying the mutant allele was 100% inactivated in the carrier mothers. mRNA level analysis is essential for the accurate interpretation of the effects of variants. In this case, the MED12 protein function may be reduced by more than just an amino acid substitution, resulting in the patients with the most severe phenotype of MED12-related syndrome in males.
Asunto(s)
Blefarofimosis , Complejo Mediador , Empalme del ARN , Niño , Femenino , Humanos , Masculino , Anomalías Múltiples , Blefarofimosis/genética , Blefarofimosis/patología , Blefaroptosis , Fisura del Paladar/genética , Fisura del Paladar/patología , Sordera/genética , Sordera/patología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Cardiopatías Congénitas , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Complejo Mediador/genética , Mutación Missense , Linaje , Fenotipo , Empalme del ARN/genética , Reflujo Vesicoureteral/genética , Reflujo Vesicoureteral/patología , Inactivación del Cromosoma X/genéticaRESUMEN
BACKGROUND: Cutis laxa is a connective tissue disease caused by abnormal synthesis or secretion of skin elastic fibers, leading to skin flabby and saggy in various body parts. It can be divided into congenital cutis laxa and acquired cutis laxa, and inherited cutis laxa syndromes is more common in clinic. METHODS: In this study, we reported a case of a Han-Chinese male newborn with ATP6V0A2 gene variant leading to cutis laxa. The proband was identified by whole-exome sequencing to determine the novel variant, and their parents were verified by Sanger sequencing. Bioinformatics analysis and minigene assay were used to verify the effect of this variant on splicing function. RESULTS: The main manifestations of the proband are skin laxity, abnormal facial features, and enlargement of the anterior fontanelle. Whole-exome sequencing showed that the newborn carried a non-canonical splicing-site variant c.117 + 5G > T, p. (?) in ATP6V0A2 gene. Sanger sequencing showed that both parents of the proband carried the heterozygous variant. The results of bioinformatics analysis and minigene assay displayed that the variant site affected the splicing function of pre-mRNA of the ATP6V0A2 gene. CONCLUSIONS: In this study, it was identified that ATP6V0A2 gene c. 117 + 5G > T may be the cause of the disease. The non-canonical splicing variants of ATP6V0A2 gene were rarely reported in the past, and this variant expanded the variants spectrum of the gene. The functional study of minigene assay plays a certain role in improving the level of evidence for the pathogenicity of splicing variants, which lays a foundation for prenatal counseling and follow-up gene therapy.
Asunto(s)
Cutis Laxo , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Pueblo Asiatico/genética , China , Cutis Laxo/genética , ATPasas de Translocación de Protón , Empalme del ARN/genética , PielRESUMEN
BACKGROUND: Bartter syndrome type 1, an autosomal recessive genetic disorder, is caused by pathogenic loss-of-function variants in the SLC12A1 gene. It is characterized by metabolic alkalosis and prenatal-onset polyuria leading to polyhydramnios. METHODS: We identified pathogenic gene in a 12-day-old newborn boy with Bartter syndrome type 1 using whole-exome sequencing. Sanger sequencing validated the identified variants. A minigene assay was performed to investigate the effect of a novel splice site variant on pre-mRNA splicing. RESULTS: We found a compound heterozygous variants in the SLC12A1 gene, consisting of a known pathogenic missense mutation (NM_000338: c.769 G>A; p.Gly257Ser) and a novel splice site variant (c.1684+1 G>A). In silico predictions and an in vitro minigene splicing assay demonstrated that the splicing variant c.1684+1 G>A abolished a consensus splice donor site of SLC12A1 intron 13, resulting in complete exon 13 skipping, translational frameshift, and premature termination codon, ultimately leading to loss of SLC12A1 function. CONCLUSION: Using a cell-based in vitro assay, we revealed the aberrant effect of the pathogenic splicing variant SLC12A1 c.1684+1 G>A on pre-mRNA splicing. Our findings expand the gene mutation spectrum of Bartter syndrome type 1, providing a basis for genetic diagnosis and the development of genetic medicines.
RESUMEN
CNOT3 is the central component of the CCR4-NOT protein complex, which is a global regulator of RNA polymerase II transcription. Loss of function mutations in CNOT3 lead to intellectual developmental disorder with speech delay, autism, and dysmorphic facies (IDDSADF), which is very rare. Herein, we reported two novel heterozygous frameshift mutations (c.1058_1059insT and c.724delT) and one novel splice site variant (c.387 + 2 T > C) in CNOT3 (NM_014516.3) gene in three Chinese patients with dysmorphic features, developmental delay, and behavior anomalies. The functional study showed that the CNOT3 mRNA levels were significantly decreased in the peripheral blood of two patients with c.1058_1059insT and c.387 + 2 T > C variants, respectively, and minigene assay demonstrated that the splice variant (c.387 + 2 T > C) resulted in exon skipping. We also found that CNOT3 deficiency was linked to alterations of expression levels of other CCR4-NOT complex subunits in mRNA level in the peripheral blood. By analyzing the clinical manifestations of all these patients with CNOT3 variants, including our three cases and 22 patients previously reported, we did not observe a correlation between genotypes and phenotypes. In summary, this is the first time to report cases with IDDSADF in the Chinese population, and three novel CNOT3 variants in these patients expand its mutational spectrum.
Asunto(s)
Pueblos del Este de Asia , Trastornos del Neurodesarrollo , Humanos , Factores de Transcripción/genética , Trastornos del Neurodesarrollo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , FenotipoRESUMEN
Standard agarose gel electrophoresis is a widely used method to analyse diversity of nucleic acids. Certain conditions, however, may give rise to artefactual bands. We report on artefactual bands frequently occurring, especially when partially homologous nucleic acids, such as splicing variants of DNA transcripts, are analysed simultaneously. Interestingly, to some extent agarose concentration may influence the occurrence of artefactual bands.
Asunto(s)
ADN , Ácidos Nucleicos , Sefarosa , Electroforesis en Gel de Agar/métodosRESUMEN
We designed and synthesized novel 4-acetoxypentanamide derivatives of spliceostatin A, whose 4-acetoxypentenamide moiety is reduced (7), isomerized (8), or substituted with methyl at the α-position (9). The results of biological evaluation against AR-V7 and the docking analysis of each derivative suggest that the geometry of the 4-acetoxypentenamide moiety of spliceostatin A is important for its biological activity.
Asunto(s)
Neoplasias de la Próstata , Compuestos de Espiro , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Piranos , Receptores Androgénicos , Isoformas de ProteínasRESUMEN
PURPOSE: Non-obstructive azoospermia (NOA) is an essential cause of male infertility for which treatment options are limited. The pathogenic mechanism of NOA, especially idiopathic NOA, remains unclear. Gene variations are associated with the occurrence of NOA. Our study was performed to investigate the genetic causes of NOA. METHODS: Whole exome sequencing (WES) was performed in two probands diagnosed with NOA from a Chinese family. Sanger sequencing was applied to verify the pathogenic variants. A minigene assay was carried out to identify the effect of the splicing variants. RESULTS: We detected a novel homozygous variant (c.2681-3 T > A) in the HFM1 gene in the two siblings diagnosed with NOA, and their parents carried heterozygous mutations in the same gene. The results of the minigene assay revealed this splicing variant results in exon25 of HFM1 being skipped, leading to a protein truncation (p.Trp894Cysfs*44). CONCLUSION: Our results showed that a deleterious splicing variant in HFM1 was related to NOA in these two patients. This novel variant of HFM1 may serve as a potential genetic biomarker for NOA patients.
Asunto(s)
Azoospermia , Infertilidad Masculina , Humanos , Masculino , Azoospermia/patología , Infertilidad Masculina/genética , Mutación/genética , Meiosis/genéticaRESUMEN
Biallelic mutations in the BRAT1 gene, encoding BRCA1-associated ATM activator 1, result in variable phenotypes, from rigidity and multifocal seizure syndrome, lethal neonatal to neurodevelopmental disorder, and cerebellar atrophy with or without seizures, without obvious genotype-phenotype associations. We describe two families at the mildest end of the spectrum, differing in clinical presentation despite a common genotype at the BRAT1 locus. Two siblings displayed nonprogressive congenital ataxia and shrunken cerebellum on magnetic resonance imaging. A third unrelated patient showed normal neurodevelopment, adolescence-onset seizures, and ataxia, shrunken cerebellum, and ultrastructural abnormalities on skin biopsy, representing the mildest form of NEDCAS hitherto described. Exome sequencing identified the c.638dup and the novel c.1395G>A BRAT1 variants, the latter causing exon 10 skippings. The p53-MCL test revealed normal ATM kinase activity. Our findings broaden the allelic and clinical spectrum of BRAT1-related disease, which should be suspected in presence of nonprogressive cerebellar signs, even without a neurodevelopmental disorder.
Asunto(s)
Proteínas Nucleares , Convulsiones , Estudios de Asociación Genética , Genotipo , Humanos , Mutación , Proteínas Nucleares/genética , Fenotipo , Convulsiones/genéticaRESUMEN
Rothmund-Thomson syndrome (RTS) is an autosomal-recessive disorder characterized by poikiloderma, sparse hair, short stature, and skeletal anomalies. Type 2 RTS, which is defined by the presence of bi-allelic mutations in RECQL4, is characterized by increased cancer susceptibility and skeletal anomalies, whereas the genetic basis of RTS type 1, which is associated with juvenile cataracts, is unknown. We studied ten individuals, from seven families, who had RTS type 1 and identified a deep intronic splicing mutation of the ANAPC1 gene, a component of the anaphase-promoting complex/cyclosome (APC/C), in all affected individuals, either in the homozygous state or in trans with another mutation. Fibroblast studies showed that the intronic mutation causes the activation of a 95 bp pseudoexon, leading to mRNAs with premature termination codons and nonsense-mediated decay, decreased ANAPC1 protein levels, and prolongation of interphase. Interestingly, mice that were heterozygous for a knockout mutation have an increased incidence of cataracts. Our results demonstrate that deficiency in the APC/C is a cause of RTS type 1 and suggest a possible link between the APC/C and RECQL4 helicase because both proteins are involved in DNA repair and replication.
Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/genética , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/genética , Mutación , Síndrome Rothmund-Thomson/genética , HumanosRESUMEN
Cellular senescence is a state of permanent growth arrest that can ultimately contribute to aging. Senescence can be induced by various stressors and is associated with a myriad of cellular functions and phenotypic markers. Alternative splicing is emerging as a critical contributor to senescence and aging. However, it is unclear how the composition and function of the spliceosome are involved in senescence. Here, using replicative and oxidative stress-induced senescence models in primary human fibroblasts, we report a common shift in the expression of 58 spliceosomal genes at the pre-senescence stage, prior to the detection of senescence-associated ß-galactosidase (SA-ß-gal) activity. Spliceosomal perturbation, induced by pharmacologic and genetic inhibition of splicesomal genes, triggered cells to enter senescence, suggesting a key role as a gatekeeper. Association analysis of transcription factors based on the 58 splicesomal genes revealed Sp1 as a key regulator of senescence entry. Indeed, Sp1 depletion suppressed the expression of downstream spliceosomal genes (HNRNPA3, SRSF7, and SRSF4) and effectively induced senescence. These results indicate that spliceosomal gene sets, rather than a single spliceosomal gene, regulate the early transition into senescence prior to SA-ß-gal expression. Furthermore, our study provides a spliceosome signature that may be used as an early senescence marker.
Asunto(s)
Senescencia Celular , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Empalmosomas/metabolismo , Línea Celular , Humanos , Empalmosomas/genéticaRESUMEN
As a member of the tumor necrosis factor receptor-associated factor (TRAF) family, TRAF5 acts as a crucial adaptor molecule and plays important roles in the host innate immune responses. In the present study, the typical form and a splicing variant of TRAF5, termed Lc-TRAF5_tv1 and Lc-TRAF5_tv2 were characterized in large yellow croaker (Larimichthys crocea). The putative Lc-TRAF5_tv1 protein is constituted of 577 aa, contains a RING finger domain, two zinc finger domains, a coiled-coil domain, and a MATH domain, whereas Lc-TRAF5_tv2 protein is constituted of 236 aa and only contains a RING finger domain due to a premature stop resulted from the intron retention. Subcellular localization analysis revealed that both of Lc-TRAF5_tv1 and Lc-TRAF5_tv2 were localized in the cytoplasm, with Lc-TRAF5_tv2 found to aggregate around the nucleus. It was revealed that Lc-TRAF5_tv1 mRNA was broadly expressed in examined organs/tissues and showed extremely higher level than that of Lc-TRAF5_tv2, and both of them could be up-regulated under poly I:C, LPS, PGN, and Pseudomonas plecoglossicida stimulations in vivo. Interestingly, overexpression of Lc-TRAF5_tv1 and Lc-TRAF5_tv2 could significantly induce NF-κB but not IFN1 activation, whereas co-expression of them remarkably induced IFN1 activation but impaired NF-κB activation. In addition, both Lc-TRAF5_tv1 and Lc-TRAF5_tv2 were associated with TRAF3 and RIP1 in IFN1 activation, whereas only Lc-TRAF5_tv1 cooperated with TRAF3 and RIP1 in NF-κB activation. These results collectively indicated that the splicing variant together with the typical form of TRAF5 function importantly in the regulation of host immune signaling in teleosts.
Asunto(s)
FN-kappa B , Perciformes , Secuencia de Aminoácidos , Animales , Lipopolisacáridos/farmacología , FN-kappa B/genética , FN-kappa B/metabolismo , Poli I , ARN Mensajero , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Factor 5 Asociado a Receptor de TNFRESUMEN
BACKGROUND: Allan-Herndon-Dudley syndrome (AHDS) is an X-linked recessive neurodegenerative disorder caused by mutations in the SLC16A2 gene that encodes thyroid hormone transporter. AHDS has been rarely reported in China. CASE PRESENTATION: This study reported a novel splicing mutation in the SLC16A2 gene in an 18-month-old male patient with AHDS. The patient was born to non-consanguineous, healthy parents of Chinese origin. He passed new-born screening for hypothyroidism, but failed to reach developmental milestones. He presented with hypotonia, severe mental retardation, dysarthria and ataxia. Genetic analysis identified a novel splicing mutation, NM_006517.4: c.431-2 A > G, in the SLC16A2 gene inherited from his mother. The patient received Triac treatment, (triiodothyroacetic acid), a thyroid hormone analogue for 3 months. Triac treatment effectively reduced serum TSH concentrations and normalized serum T3 concentrations in the patient. CONCLUSIONS: This study reported the first case of AHDS treated by Triac in China. And the study expanded the mutational spectrum of the SLC16A2 gene in AHDS patients.
Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Simportadores , Humanos , Lactante , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/complicaciones , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Discapacidad Intelectual Ligada al Cromosoma X/genética , Transportadores de Ácidos Monocarboxílicos/genética , Hipotonía Muscular/genética , Atrofia Muscular/complicaciones , Atrofia Muscular/diagnóstico , Atrofia Muscular/genética , Mutación , Simportadores/genéticaRESUMEN
BACKGROUND: Variants in the endosomal solute carrier family 9 member A6 (SLC9A6)/(Na+ ,K+ )/H+ exchanger 6 (NHE6) gene have been linked to epilepsy, speech loss, truncal ataxia, hyperkinesia, and postnatal microcephaly. METHODS: In the present study, we evaluated genetic alterations in a 3-year-old Chinese boy displayed features of epilepsy, psychomotor retardation, microcephaly, low body weight, difficulty in feeding, excessive movement, attention loss, ataxia, and cerebellar atrophy and his healthy family using WES method. The identified variant was further confirmed by Sanger sequencing method. Finally, minigene assays were used to verify whether the novel SLC9A6 intronic variant influenced the normal splicing of mRNA. RESULTS: We identified a novel hemizygous splicing variant [NM_001042537.1: c.1463-1G>A] in SLC9A6 by trio-based exome sequencing. The minigene expression in vitro confirmed the splicing variant altered a consensus splice acceptor site of SLC9A6 intron 11, resulting in skipping over exon 12. CONCLUSIONS: Our finding extends the catalog of pathogenic intronic variants affecting SLC9A6 pre-mRNA splicing and provides a basis for the genetic diagnosis of CS.
Asunto(s)
Ataxia/genética , Epilepsia/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Discapacidad Intelectual/genética , Microcefalia/genética , Trastornos de la Motilidad Ocular/genética , Intercambiadores de Sodio-Hidrógeno/genética , Preescolar , China , Humanos , Masculino , Isoformas de Proteínas/genética , Secuenciación del ExomaRESUMEN
Glioblastoma (GBM) is the most malignant and lethal brain tumor. Current standard treatment consists of surgery followed by radiotherapy/chemotherapy; however, this is only a palliative approach with a mean post-operative survival of scarcely ~12-15 months. Thus, the identification of novel therapeutic targets to treat this devastating pathology is urgently needed. In this context, the truncated splicing variant of the somatostatin receptor subtype 5 (sst5TMD4), which is produced by aberrant alternative splicing, has been demonstrated to be overexpressed and associated with increased aggressiveness features in several tumors. However, the presence, functional role, and associated molecular mechanisms of sst5TMD4 in GBM have not been yet explored. Therefore, we performed a comprehensive analysis to characterize the expression and pathophysiological role of sst5TMD4 in human GBM. sst5TMD4 was significantly overexpressed (at mRNA and protein levels) in human GBM tissue compared to non-tumor (control) brain tissue. Remarkably, sst5TMD4 expression was significantly associated with poor overall survival and recurrent tumors in GBM patients. Moreover, in vitro sst5TMD4 overexpression (by specific plasmid) increased, whereas sst5TMD4 silencing (by specific siRNA) decreased, key malignant features (i.e., proliferation and migration capacity) of GBM cells (U-87 MG/U-118 MG models). Furthermore, sst5TMD4 overexpression in GBM cells altered the activity of multiple key signaling pathways associated with tumor aggressiveness/progression (AKT/JAK-STAT/NF-κB/TGF-ß), and its silencing sensitized GBM cells to the antitumor effect of pasireotide (a somatostatin analog). Altogether, these results demonstrate that sst5TMD4 is overexpressed and associated with enhanced malignancy features in human GBMs and reveal its potential utility as a novel diagnostic/prognostic biomarker and putative therapeutic target in GBMs.
Asunto(s)
Empalme Alternativo , Neoplasias Encefálicas/mortalidad , Resistencia a Antineoplásicos , Glioblastoma/mortalidad , Receptores de Somatostatina/genética , Somatostatina/análogos & derivados , Regulación hacia Arriba , Adulto , Anciano , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Pronóstico , Transducción de SeñalRESUMEN
ß-transducin repeats-containing protein-1 (ß-TrCP1) serves as the substrate recognition subunit for SCFß-TrCP E3 ubiquitin ligases, which specifically ubiquitinate phosphorylated substrates. Three variants of ß-TrCP1 are known and act as homodimer or heterodimer complexes. Here, we identified a novel full-sequenced variant, ß-TrCP1-variant 4, which harbours exon II instead of exon III of variant 1, with no change in the open reading frame. The expression of ß-TrCP1-variant 4 is lower than that of variant 1 or 2 in ovarian cancer cell lines, whereas it is abundantly expressed in normal and cancerous ovarian tissues. Moreover, ß-TrCP1-variant 2 was aberrantly expressed more than variant 1 in ovarian cancer tissues whereas variant 1 was expressed more in normal tissues. Similar to variants 1 and 2, ß-TrCP1-variant 4 directly interacts with ß-catenin, one of the substrates of SCFß-TrCP E3 ubiquitin ligase and down-regulates the transcriptional activity and protein expression of ß-catenin with a significantly weaker effect than that by variants 1 and 2. However, the co-expression of ß-TrCP1-variant 4 with variant 1 in same proportion has no effect, whereas other combinations effectively down-regulate the activity of ß-catenin, indicating that the heterodimer of variants 1 and 4 has no function. Thus, ß-TrCP1-variant 4 could play a critical role in SCFß-TrCP E3 ligase-mediated ubiquitination by acting as a negative regulator of ß-TrCP1-variant 1.
RESUMEN
It is widely accepted that cellular processes are controlled by protein phosphorylation and has become increasingly clear that protein degradation, localization and conformation as well as protein-protein interaction are the examples of subsequent cellular events modulated by protein phosphorylation. Enamel matrix proteins belong to members of the secretory calcium binding phosphoprotein (SCPP) family clustered on chromosome 4q21, and most of the SCPP phosphoproteins have at least one S-X-E motifs (S; serine, X; any amino acid, E; glutamic acid). It has been reported that mutations in C4orf26 gene, located on chromosome 4q21, are associated with autosomal recessive type of Amelogenesis Imperfecta (AI), a hereditary condition that affects enamel formation/mineralization. The enamel phenotype observed in patients with C4orf26 mutations is hypomineralized and partially hypoplastic, indicating that C4orf26 protein may function at both secretory and maturation stages of amelogenesis. The previous in vitro study showed that the synthetic phosphorylated peptide based on C4orf26 protein sequence accelerates hydroxyapatite nucleation. Here we show the molecular cloning of Gm1045, mouse homologue of C4orf26, which has 2 splicing isoforms. Immunohistochemical analysis demonstrated that the immunolocalization of Gm1045 is mainly observed in enamel matrix in vivo. Our report is the first to show that FAM20C, the Golgi casein kinase, phosphorylates C4orf26 and Gm1045 in cell cultures. The extracellular localization of C4orf26/Gm1045 was regulated by FAM20C kinase activity. Thus, our data point out the biological importance of enamel matrix-kinase control of SCPP phosphoproteins and may have a broad impact on the regulation of amelogenesis and AI.