Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(32): e2200567119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914131

RESUMEN

Evolution of resistance is a major barrier to successful deployment of gene-drive systems to suppress natural populations, which could greatly reduce the burden of many vector-borne diseases. Multiplexed guide RNAs (gRNAs) that require resistance mutations in all target cut sites are a promising antiresistance strategy since, in principle, resistance would only arise in unrealistically large populations. Using stochastic simulations that accurately model evolution at very large population sizes, we explore the probability of resistance due to three important mechanisms: 1) nonhomologous end-joining mutations, 2) single-nucleotide mutants arising de novo, or 3) single-nucleotide polymorphisms preexisting as standing variation. Our results explore the relative importance of these mechanisms and highlight a complexity of the mutation-selection-drift balance between haplotypes with complete resistance and those with an incomplete number of resistant alleles. We find that this leads to a phenomenon where weakly deleterious naturally occurring variants greatly amplify the probability of multisite resistance compared to de novo mutation. This key result provides design criterion for antiresistance multiplexed systems, which, in general, will need a larger number of gRNAs compared to de novo expectations. This theory may have wider application to the evolution of resistance or evolutionary rescue when multiple changes are required before selection can act.


Asunto(s)
Tecnología de Genética Dirigida , Variación Genética , Modelos Genéticos , Alelos , Flujo Genético , Variación Genética/genética , Haplotipos , Mutación , Polimorfismo de Nucleótido Simple/genética , ARN Guía de Kinetoplastida/genética , Selección Genética , Procesos Estocásticos
2.
J Physiol ; 602(11): 2601-2614, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38194279

RESUMEN

Darwin recognized that 'a grand and almost untrodden field of inquiry will be opened, on the causes and laws of variation.' However, because the Modern Synthesis assumes that the intrinsic probability of any individual mutation is unrelated to that mutation's potential adaptive value, attention has been focused on selection rather than on the intrinsic generation of variation. Yet many examples illustrate that the term 'random' mutation, as widely understood, is inaccurate. The probabilities of distinct classes of variation are neither evenly distributed across a genome nor invariant over time, nor unrelated to their potential adaptive value. Because selection acts upon variation, multiple biochemical mechanisms can and have evolved that increase the relative probability of adaptive mutations. In effect, the generation of heritable variation is in a feedback loop with selection, such that those mechanisms that tend to generate variants that survive recurring challenges in the environment would be captured by this survival and thus inherited and accumulated within lineages of genomes. Moreover, because genome variation is affected by a wide range of biochemical processes, genome variation can be regulated. Biochemical mechanisms that sense stress, from lack of nutrients to DNA damage, can increase the probability of specific classes of variation. A deeper understanding of evolution involves attention to the evolution of, and environmental influences upon, the intrinsic variation generated in gametes, in other words upon the biochemical mechanisms that generate variation across generations. These concepts have profound implications for the types of questions that can and should be asked, as omics databases become more comprehensive, detection methods more sensitive, and computation and experimental analyses even more high throughput and thus capable of revealing the intrinsic generation of variation in individual gametes. These concepts also have profound implications for evolutionary theory, which, upon reflection it will be argued, predicts that selection would increase the probability of generating adaptive mutations, in other words, predicts that the ability to evolve itself evolves.


Asunto(s)
Variación Genética , Genoma , Animales , Humanos , Evolución Biológica , Ambiente , Selección Genética , Mutación
3.
Theor Popul Biol ; 157: 129-137, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643838

RESUMEN

We consider how a population of N haploid individuals responds to directional selection on standing variation, with no new variation from recombination or mutation. Individuals have trait values z1,…,zN, which are drawn from a distribution ψ; the fitness of individual i is proportional to [Formula: see text] . For illustration, we consider the Laplace and Gaussian distributions, which are parametrised only by the variance V0, and show that for large N, there is a scaling limit which depends on a single parameter NV0. When selection is weak relative to drift (NV0≪1), the variance decreases exponentially at rate 1/N, and the expected ultimate gain in log fitness (scaled by V0), is just NV0, which is the same as Robertson's (1960) prediction for a sexual population. In contrast, when selection is strong relative to drift (NV0≫1), the ultimate gain can be found by approximating the establishment of alleles by a branching process in which each allele competes independently with the population mean and the fittest allele to establish is certain to fix. Then, if the probability of survival to time t∼1/V0 of an allele with value z is P(z), with mean P¯, the winning allele is the fittest of NP¯ survivors drawn from a distribution ψP/P¯. The expected ultimate change is ∼2log(1.15NV0) for a Gaussian distribution, and ∼-12log0.36NV0-log-log0.36NV0 for a Laplace distribution. This approach also predicts the variability of the process, and its dynamics; we show that in the strong selection regime, the expected genetic variance decreases as ∼t-3 at large times. We discuss how these results may be related to selection on standing variation that is spread along a linear chromosome.


Asunto(s)
Selección Genética , Reproducción Asexuada/genética , Modelos Genéticos , Variación Genética , Haploidia , Genética de Población , Alelos , Flujo Genético
4.
J Evol Biol ; 37(5): 538-547, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38520391

RESUMEN

When competitive traits are costly, negative frequency dependence can maintain genetic variance. Most theoretical studies examining this problem assume binary polymorphisms, yet most trait variation in wild populations is continuous. We propose that continuous trait variation can result from continuous variation in resource quality and that, specifically, the shape of the resource distribution determines trait maintenance. We used an individual-based model to test which conditions favour the stable maintenance of variation and which cause temporal fluctuations in trait values. This approach, inspired by contrasting outcomes of previous studies regarding variance and fluctuations in trait values, clearly showed a decisive role played by the shape of resource distributions. Under extreme conditions, e.g., the absence of resource variation or with very scarce resources for weak competitors, traits evolved to a single non-competitive or highly competitive strategy, respectively. Most other distributions led to strong temporal fluctuations on trait values or the maintenance of stable, standing variation. Our results thus explain the contradicting outcomes of previous theoretical studies and, at the same time, provide hypotheses to explain the maintenance of genetic variation and individual differences. We suggest ways to empirically test the proposed effects of resource variation on trait maintenance.


Asunto(s)
Evolución Biológica , Variación Genética , Modelos Genéticos , Animales , Fenotipo , Conducta Competitiva , Modelos Biológicos
5.
Trends Genet ; 36(6): 415-428, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32396835

RESUMEN

Modern humans inhabit a variety of environments and are exposed to a plethora of selective pressures, leading to multiple genetic adaptations to local environmental conditions. These include adaptations to climate, UV exposure, disease, diet, altitude, or cultural practice and have generated important genetic and phenotypic differences amongst populations. In recent years, new methods to identify the genomic signatures of natural selection underlying these adaptations, combined with novel types of genetic data (e.g., ancient DNA), have provided unprecedented insights into the origin of adaptive alleles and the modes of adaptation. As a result, numerous instances of local adaptation have been identified in humans. Here, we review the most exciting recent developments and discuss, in our view, the future of this field.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Variación Genética , Genómica/métodos , Selección Genética , Animales , Humanos
6.
Mol Biol Evol ; 38(5): 1980-1994, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33502506

RESUMEN

A sudden shift in environment or cellular context necessitates rapid adaptation. A dramatic example is genome duplication, which leads to polyploidy. In such situations, the waiting time for new mutations might be prohibitive; theoretical and empirical studies suggest that rapid adaptation will largely rely on standing variation already present in source populations. Here, we investigate the evolution of meiosis proteins in Arabidopsis arenosa, some of which were previously implicated in adaptation to polyploidy, and in a diploid, habitat. A striking and unexplained feature of prior results was the large number of amino acid changes in multiple interacting proteins, especially in the relatively young tetraploid. Here, we investigate whether selection on meiosis genes is found in other lineages, how the polyploid may have accumulated so many differences, and whether derived variants were selected from standing variation. We use a range-wide sample of 145 resequenced genomes of diploid and tetraploid A. arenosa, with new genome assemblies. We confirmed signals of positive selection in the polyploid and diploid lineages they were previously reported in and find additional meiosis genes with evidence of selection. We show that the polyploid lineage stands out both qualitatively and quantitatively. Compared with diploids, meiosis proteins in the polyploid have more amino acid changes and a higher proportion affecting more strongly conserved sites. We find evidence that in tetraploids, positive selection may have commonly acted on de novo mutations. Several tests provide hints that coevolution, and in some cases, multinucleotide mutations, might contribute to rapid accumulation of changes in meiotic proteins.


Asunto(s)
Adaptación Biológica/genética , Arabidopsis/genética , Evolución Molecular , Meiosis/genética , Tetraploidía , Coevolución Biológica , Mutación
7.
Proc Biol Sci ; 289(1976): 20220439, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35642362

RESUMEN

Populations threatened by an abrupt environmental change-due to rapid climate change, pathogens or invasive competitors-may survive if they possess or generate genetic combinations adapted to the novel, challenging condition. If these genotypes are initially rare or non-existent, the emergence of lineages that allow a declining population to survive is known as 'evolutionary rescue'. By contrast, the genotypes required for survival could, by chance, be common before the environmental change. Here, considering both of these possibilities, we find that the risk of extinction can be lower in very small or very large populations, but peaks at intermediate population sizes. This pattern occurs when the survival genotype has a small deleterious effect before the environmental change. Since mildly deleterious mutations constitute a large fraction of empirically measured fitness effects, we suggest that this unexpected result-an intermediate size that puts a population at a greater risk of extinction-may not be unusual in the face of environmental change.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Adaptación Fisiológica/genética , Cambio Climático , Genotipo , Densidad de Población
8.
Proc Natl Acad Sci U S A ; 116(6): 2152-2157, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659151

RESUMEN

What kind of genetic variation contributes the most to adaptation is a fundamental question in evolutionary biology. By resequencing genomes of 80 individuals, we inferred the origin of genomic variants associated with a complex adaptive syndrome involving multiple quantitative traits, namely, adaptation between high and low altitudes, in the vinous-throated parrotbill (Sinosuthora webbiana) in Taiwan. By comparing these variants with those in the Asian mainland population, we revealed standing variation in 24 noncoding genomic regions to be the predominant genetic source of adaptation. Parrotbills at both high and low altitudes exhibited signatures of recent selection, suggesting that not only the front but also the trailing edges of postglacial expanding populations could be subjected to environmental stresses. This study verifies and quantifies the importance of standing variation in adaptation in a cohort of genes, illustrating that the evolutionary potential of a population depends significantly on its preexisting genetic diversity. These findings provide important context for understanding adaptation and conservation of species in the Anthropocene.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Variación Genética , Pájaros Cantores/genética , Animales , Ambiente , Genética de Población , Genoma , Genómica/métodos , Polimorfismo de Nucleótido Simple , ARN no Traducido , Selección Genética , Taiwán
9.
New Phytol ; 231(3): 1056-1072, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33892513

RESUMEN

The improvement of cold adaptation has contributed to the increased growing area of rice. Standing variation and de novo mutation are distinct natural sources of beneficial alleles in plant adaptation. However, the genetic mechanisms and evolutionary patterns underlying these sources in a single population during crop domestication remain elusive. Here we cloned the CTB2 gene, encoding a UDP-glucose sterol glucosyltransferase, for cold tolerance in rice at the booting stage. A single standing variation (I408V) in the conserved UDPGT domain of CTB2 originated from Chinese Oryza rufipogon and contributed to the cold adaptation of Oryza sativa ssp. japonica. CTB2 is located in a 56.8 kb region, including the previously reported gene CTB4a in which de novo mutation arose c. 3200 yr BP in Yunnan province, China, conferring cold tolerance. Standing variation of CTB2 and de novo mutation of CTB4a underwent stepwise selection to facilitate cold adaptation to expand rice cultivation from high-altitude to high-latitude regions. These results provide an example of stepwise selection on two kinds of variation and describe a new molecular mechanism of cold adaptation in japonica rice.


Asunto(s)
Oryza , Alelos , China , Domesticación , Genes de Plantas , Oryza/genética , Selección Genética
10.
Mol Ecol ; 30(17): 4162-4172, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34133810

RESUMEN

Biologists have long been intrigued by apparently predictable and repetitive evolutionary trajectories inferred across a variety of lineages and systems. In recent years, high-throughput sequencing analyses have started to transform our understanding of such repetitive shifts. While researchers have traditionally categorized such shifts as either "convergent" or "parallel," based on relatedness of the lineages involved, emerging genomic insights provide an opportunity to better describe the actual evolutionary mechanisms at play. A synthesis of recent genomic analyses confirms that convergence is the predominant driver of repetitive evolution among species, whereas repeated sorting of standing variation is the major driver of repeated shifts within species. However, emerging data reveal numerous notable exceptions to these expectations, with recent examples of de novo mutations underpinning convergent shifts among even very closely related lineages, while repetitive sorting processes have occurred among even deeply divergent taxa, sometimes via introgression. A number of very recent analyses have found evidence for both processes occurring on different scales within taxa. We suggest that the relative importance of convergent versus sorting processes depends on the interplay between gene flow among populations, and phylogenetic relatedness of the lineages involved.


Asunto(s)
Evolución Molecular , Flujo Génico , Evolución Biológica , Genoma , Genómica , Filogenia
11.
Proc Biol Sci ; 286(1896): 20182541, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30963935

RESUMEN

A fundamental question about adaptation in a population is the time of onset of the selective pressure acting on beneficial alleles. Inferring this time, in turn, depends on the selection model. We develop a framework of approximate Bayesian computation (ABC) that enables the use of the full site frequency spectrum and haplotype structure to test the goodness-of-fit of selection models and estimate the timing of selection under varying population size scenarios. We show that our method has sufficient power to distinguish natural selection from neutrality even if relatively old selection increased the frequency of a pre-existing allele from 20% to 50% or from 40% to 80%. Our ABC can accurately estimate the time of onset of selection on a new mutation. However, estimates are prone to bias under the standing variation model, possibly due to the uncertainty in the allele frequency at the onset of selection. We further extend our approach to take advantage of ancient DNA data that provides information on the allele frequency path of the beneficial allele. Applying our ABC, including both modern and ancient human DNA data, to four pigmentation alleles in Europeans, we detected selection on standing variants that occurred after the dispersal from Africa even though models of selection on a new mutation were initially supported for two of these alleles without the ancient data.


Asunto(s)
ADN Antiguo/análisis , Frecuencia de los Genes , Haplotipos/genética , Migración Humana , Selección Genética , Pigmentación de la Piel/genética , Teorema de Bayes , Europa (Continente) , Humanos , Modelos Genéticos , Densidad de Población , Factores de Tiempo
12.
Mol Ecol ; 28(6): 1210-1223, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30770610

RESUMEN

Recent studies have highlighted an important role of structural variation (SV) in ecological and evolutionary processes, but few have studied nonmodel species in the wild. As part of our long-term research programme on the nonmodel teleost fish Australasian snapper (Chrysophrys auratus), we aim to build one of the first catalogues of genomic variants (SNPs and indels, and deletions, duplications and inversions) in fishes and evaluate overlap of genomic variants with regions under putative selection (Tajima's D and π), and coding sequences (genes). For this, we analysed six males and six females from three locations in New Zealand and generated a high-resolution genomic variation catalogue. We characterized 20,385 SVs and found they intersected with almost a third of all annotated genes. Together with small indels, SVs account for three times more variation in the genome in terms of bases affected compared to SNPs. We found that a sizeable portion of detected SVs was in the upper and lower genomic regions of Tajima's D and π, indicating that some of these have an effect on the phenotype. Together, these results shed light on the often neglected genomic variation that is produced by SVs and highlights the need to go beyond the mere measure of SNPs when investigating evolutionary processes, such as species diversification and adaptation.


Asunto(s)
Organismos Acuáticos/genética , Evolución Molecular , Peces/genética , Variación Estructural del Genoma/genética , Animales , Genoma/genética , Genómica/métodos , Mutación INDEL/genética , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN
13.
Mol Ecol ; 28(6): 1460-1475, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30346101

RESUMEN

Copy number variation (CNV) is a major part of the genetic diversity segregating within populations, but remains poorly understood relative to single nucleotide variation. Here, we report on a tRNA ligase gene (Migut.N02091; RLG1a) exhibiting unprecedented, and fitness-relevant, CNV within an annual population of the yellow monkeyflower Mimulus guttatus. RLG1a variation was associated with multiple traits in pooled population sequencing (PoolSeq) scans of phenotypic and phenological cohorts. Resequencing of inbred lines revealed intermediate-frequency three-copy variants of RLG1a (trip+; 5/35 = 14%), and trip+ lines exhibited elevated RLG1a expression under multiple conditions. trip+ carriers, in addition to being over-represented in late-flowering and large-flowered PoolSeq populations, flowered later under stressful conditions in a greenhouse experiment (p < 0.05). In wild population samples, we discovered an additional rare RLG1a variant (high+) that carries 250-300 copies of RLG1a totalling ~5.7 Mb (20-40% of a chromosome). In the progeny of a high+ carrier, Mendelian segregation of diagnostic alleles and qPCR-based copy counts indicate that high+ is a single tandem array unlinked to the single-copy RLG1a locus. In the wild, high+ carriers had highest fitness in two particularly dry and/or hot years (2015 and 2017; both p < 0.01), while single-copy individuals were twice as fecund as either CNV type in a lush year (2016: p < 0.005). Our results demonstrate fluctuating selection on CNVs affecting phenological traits in a wild population, suggest that plant tRNA ligases mediate stress-responsive life-history traits, and introduce a novel system for investigating the molecular mechanisms of gene amplification.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Aptitud Genética , Mimulus/genética , ARN Ligasa (ATP)/genética , Mapeo Cromosómico , Genética de Población , Mimulus/fisiología , Fenotipo , Sitios de Carácter Cuantitativo/genética
14.
Proc Natl Acad Sci U S A ; 113(48): 13911-13916, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27849572

RESUMEN

Mating system shifts recurrently drive specific changes in organ dimensions. The shift in mating system from out-breeding to selfing is one of the most frequent evolutionary transitions in flowering plants and is often associated with an organ-specific reduction in flower size. However, the evolutionary paths along which polygenic traits, such as size, evolve are poorly understood. In particular, it is unclear how natural selection can specifically modulate the size of one organ despite the pleiotropic action of most known growth regulators. Here, we demonstrate that allelic variation in the intron of a general growth regulator contributed to the specific reduction of petal size after the transition to selfing in the genus Capsella Variation within this intron affects an organ-specific enhancer that regulates the level of STERILE APETALA (SAP) protein in the developing petals. The resulting decrease in SAP activity leads to a shortening of the cell proliferation period and reduced number of petal cells. The absence of private polymorphisms at the causal region in the selfing species suggests that the small-petal allele was captured from standing genetic variation in the ancestral out-crossing population. Petal-size variation in the current out-crossing population indicates that several small-effect mutations have contributed to reduce petal-size. These data demonstrate how tissue-specific regulatory elements in pleiotropic genes contribute to organ-specific evolution. In addition, they provide a plausible evolutionary explanation for the rapid evolution of flower size after the out-breeding-to-selfing transition based on additive effects of segregating alleles.


Asunto(s)
Capsella/genética , Magnoliopsida/genética , Sitios de Carácter Cuantitativo/genética , Reproducción/genética , Selección Genética/genética , Evolución Biológica , Capsella/crecimiento & desarrollo , Elementos de Facilitación Genéticos/genética , Flores/genética , Flores/crecimiento & desarrollo , Magnoliopsida/crecimiento & desarrollo , Especificidad de Órganos , Fenotipo , Polinización/genética , Autofecundación/genética
15.
J Dairy Sci ; 102(6): 5230-5241, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30928270

RESUMEN

The variation in the casein genes has a major impact on the milk composition of goats. Even though many casein polymorphisms have been identified so far, we do not know yet whether they are evolutionarily ancient (i.e., they existed before domestication) or young (i.e., they emerged after domestication). Herewith, we identified casein polymorphisms in a data set of 106 caprine whole-genome sequences corresponding to bezoars (Capra aegagrus, the ancestor of domestic goats) and 4 domestic goat (Capra hircus) populations from Europe, Africa, the Far East, and the Near East. Domestic and wild goat populations shared a substantial number of casein SNP, from 36.1% (CSN2) to 55.1% (CSN1S2). The comparison of casein variation among bezoars and the 4 domestic goat populations demonstrated that more than 50% of the casein SNP are shared by 2 or more populations, and 18 to 44% are shared by all populations. Moreover, the majority of casein alleles reported in domestic goats also segregate in the bezoar, including several alleles displaying significant associations with milk composition (e.g., the A/B alleles of the CSN1S1 and CSN3 genes, the A allele of the CSN2 gene). We conclude that much of the current diversity of the caprine casein genes comes from ancient standing variation segregating in the ancestor of modern domestic goats.


Asunto(s)
Caseínas/genética , Genómica , Cabras/genética , Polimorfismo Genético , Distribución Animal , Animales , Evolución Biológica , Caseínas/química , Variación Genética , Cabras/fisiología , Leche/química
16.
Theor Popul Biol ; 122: 12-21, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29704515

RESUMEN

We consider inference about the history of a sample of DNA sequences, conditional upon the haplotype counts and the number of segregating sites observed at the present time. After deriving some theoretical results in the coalescent setting, we implement rejection sampling and importance sampling schemes to perform the inference. The importance sampling scheme addresses an extension of the Ewens Sampling Formula for a configuration of haplotypes and the number of segregating sites in the sample. The implementations include both constant and variable population size models. The methods are illustrated by two human Y chromosome datasets.


Asunto(s)
Haplotipos , Modelos Genéticos , Mutación , Algoritmos , Simulación por Computador , Bases de Datos Genéticas , Evolución Molecular , Genealogía y Heráldica , Genética de Población , Humanos , Probabilidad
17.
Mol Biol Evol ; 32(4): 978-97, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25556236

RESUMEN

Major challenges for illuminating the genetic basis of phenotypic evolution are to identify causative mutations, to quantify their functional effects, to trace their origins as new or preexisting variants, and to assess the manner in which segregating variation is transduced into species differences. Here, we report an experimental analysis of genetic variation in hemoglobin (Hb) function within and among species of Peromyscus mice that are native to different elevations. A multilocus survey of sequence variation in the duplicated HBA and HBB genes in Peromyscus maniculatus revealed that function-altering amino acid variants are widely shared among geographically disparate populations from different elevations, and numerous amino acid polymorphisms are also shared with closely related species. Variation in Hb-O2 affinity within and among populations of P. maniculatus is attributable to numerous amino acid mutations that have individually small effects. One especially surprising feature of the Hb polymorphism in P. maniculatus is that an appreciable fraction of functional standing variation in the two transcriptionally active HBA paralogs is attributable to recurrent gene conversion from a tandemly linked HBA pseudogene. Moreover, transpecific polymorphism in the duplicated HBA genes is not solely attributable to incomplete lineage sorting or introgressive hybridization; instead, it is mainly attributable to recurrent interparalog gene conversion that has occurred independently in different species. Partly as a result of concerted evolution between tandemly duplicated globin genes, the same amino acid changes that contribute to variation in Hb function within P. maniculatus also contribute to divergence in Hb function among different species of Peromyscus. In the case of function-altering Hb mutations in Peromyscus, there is no qualitative or quantitative distinction between segregating variants within species and fixed differences between species.


Asunto(s)
Evolución Molecular , Subunidades de Hemoglobina/genética , Familia de Multigenes , Mutación , Peromyscus/genética , Polimorfismo Genético , Secuencia de Aminoácidos , Animales , Conversión Génica , Datos de Secuencia Molecular
18.
Mol Biol Evol ; 31(7): 1793-802, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24732957

RESUMEN

Evolution of resistance to drugs and pesticides poses a serious threat to human health and agricultural production. CYP51 encodes the target site of azole fungicides, widely used clinically and in agriculture. Azole resistance can evolve due to point mutations or overexpression of CYP51, and previous studies have shown that fungicide-resistant alleles have arisen by de novo mutation. Paralogs CYP51A and CYP51B are found in filamentous ascomycetes, but CYP51A has been lost from multiple lineages. Here, we show that in the barley pathogen Rhynchosporium commune, re-emergence of CYP51A constitutes a novel mechanism for the evolution of resistance to azoles. Pyrosequencing analysis of historical barley leaf samples from a unique long-term experiment from 1892 to 2008 indicates that the majority of the R. commune population lacked CYP51A until 1985, after which the frequency of CYP51A rapidly increased. Functional analysis demonstrates that CYP51A retains the same substrate as CYP51B, but with different transcriptional regulation. Phylogenetic analyses show that the origin of CYP51A far predates azole use, and newly sequenced Rhynchosporium genomes show CYP51A persisting in the R. commune lineage rather than being regained by horizontal gene transfer; therefore, CYP51A re-emergence provides an example of adaptation to novel compounds by selection from standing genetic variation.


Asunto(s)
Ascomicetos/genética , Sistema Enzimático del Citocromo P-450/genética , Farmacorresistencia Fúngica , Proteínas Fúngicas/genética , Ascomicetos/clasificación , Ascomicetos/efectos de los fármacos , Azoles/farmacología , Evolución Molecular , Fungicidas Industriales/farmacología , Hordeum/microbiología , Filogenia , Selección Genética , Análisis de Secuencia de ADN
19.
Mol Biol Evol ; 31(2): 288-302, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24177185

RESUMEN

Bitter taste perception influences human nutrition and health, and the genetic variation underlying this trait may play a role in disease susceptibility. To better understand the genetic architecture and patterns of phenotypic variability of bitter taste perception, we sequenced a 996 bp region, encompassing the coding exon of TAS2R16, a bitter taste receptor gene, in 595 individuals from 74 African populations and in 94 non-Africans from 11 populations. We also performed genotype-phenotype association analyses of threshold levels of sensitivity to salicin, a bitter anti-inflammatory compound, in 296 individuals from Central and East Africa. In addition, we characterized TAS2R16 mutants in vitro to investigate the effects of polymorphic loci identified at this locus on receptor function. Here, we report striking signatures of positive selection, including significant Fay and Wu's H statistics predominantly in East Africa, indicating strong local adaptation and greater genetic structure among African populations than expected under neutrality. Furthermore, we observed a "star-like" phylogeny for haplotypes with the derived allele at polymorphic site 516 associated with increased bitter taste perception that is consistent with a model of selection for "high-sensitivity" variation. In contrast, haplotypes carrying the "low-sensitivity" ancestral allele at site 516 showed evidence of strong purifying selection. We also demonstrated, for the first time, the functional effect of nonsynonymous variation at site 516 on salicin phenotypic variance in vivo in diverse Africans and showed that most other nonsynonymous substitutions have weak or no effect on cell surface expression in vitro, suggesting that one main polymorphism at TAS2R16 influences salicin recognition. Additionally, we detected geographic differences in levels of bitter taste perception in Africa not previously reported and infer an East African origin for high salicin sensitivity in human populations.


Asunto(s)
Alcoholes Bencílicos/química , Población Negra/genética , Glucósidos/química , Receptores Acoplados a Proteínas G/genética , Gusto/genética , Alelos , Evolución Molecular , Exones , Estudios de Asociación Genética , Variación Genética , Haplotipos , Humanos , Malaria/epidemiología , Malaria/genética , Modelos Genéticos , Filogenia , Filogeografía , Polimorfismo de Nucleótido Simple , Receptores Acoplados a Proteínas G/metabolismo , Selección Genética
20.
Mol Biol Evol ; 30(11): 2383-400, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23927992

RESUMEN

Distinct populations of Astyanax mexicanus cavefish offer striking examples of repeatable convergence or parallelism in their independent evolutions from surface to cave phenotypes. However, the extent to which the repeatability of evolution occurred at the genetic level remains poorly understood. To address this, we first characterized the genetic diversity of 518 single-nucleotide polymorphisms (SNPs), obtained through RAD tag sequencing and distributed throughout the genome, in seven cave and three groups of surface populations. The cave populations represented two distinct lineages (old and new). Thirty-one SNPs were significantly differentiated between surface and old cave populations, two SNPs were differentiated between surface and new cave populations, and 44 SNPs were significantly differentiated in both old and new cave populations. In addition, we determined whether these SNPs map to the same locations of previously described quantitative trait loci (QTL) between surface and cave populations. A total of 25 differentiated SNPs co-map with several QTL, such as one containing a fibroblast growth factor gene (Fgf8) involved in eye development and lens size. Further, the identity of many SNPs that co-mapped with QTL was the same in independently derived cave populations. These conclusions were further confirmed by haplotype analyses of SNPs within QTL regions. Our findings indicate that the repeatability of evolution at the genetic level is substantial, suggesting that ancestral standing genetic variation significantly contributed to the population genetic variability used in adaptation to the cave environment.


Asunto(s)
Cipriniformes/genética , Evolución Molecular , Metagenómica/métodos , Polimorfismo de Nucleótido Simple , Adaptación Biológica , Animales , Evolución Biológica , Cuevas , Cipriniformes/clasificación , Variación Genética , Genoma , Guatemala , Haplotipos , México , Fenotipo , Filogenia , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA