Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 27(14): 3350-3357, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33864334

RESUMEN

Spatiotemporal redistribution of incident rainfall in vegetated ecosystems results from the partitioning by plants into intercepted, stemflow, and throughfall fractions. However, variation in patterns and drivers of rainfall partitioning across global biomes remains poorly understood, which limited the ability of climate models to improve the predictions of biome hydrological cycle under global climate change scenario. Here, we synthesized and analyzed the partitioning of incident rainfall into interception, stemflow, and throughfall by trees and shrubs at the global scale using 2430 observations from 236 independent publications. We found that (1) globally, median levels of relative interception, stemflow, and throughfall accounted for 21.8%, 3.2%, and 73.0% of total incident rainfall, respectively; (2) rainfall partitioning varied among different biomes, due to variation in plant composition, canopy structure, and macroclimate; (3) relative stemflow tended to be driven by plant traits, such as crown height:width ratio, basal area, and height, while relative interception and throughfall tended to be driven by plant traits as well as meteorological variables. Our global assessment of patterns and drivers of rainfall partitioning underpins the role of meteorological factors and plant traits in biome-specific ecohydrological cycles. We suggest to include these factors in climate models to improve the predictions of local hydrological cycles and associated biodiversity and function responses to changing climate conditions.


Asunto(s)
Lluvia , Árboles , Ecosistema , Ciclo Hidrológico
2.
Ecotoxicol Environ Saf ; 215: 112137, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33740490

RESUMEN

In the past few decades, industrialization has caused a large number of pollutants to be released into the atmosphere. Forest ecosystems play an important function in regulating the biogeochemistry and the circulation of metal ions pollutants. Forest ecosystems affect the absorption of pollutants and dissolution of nutrients from the atmosphere and vegetation canopy, thereby influencing the content and composition of forest floor leachate and soil solution. This study examined changes in acid anions (NO3-, SO42-, Cl-) and metal cations (K+, Ca2+, Na2+, Mg2+, Fe3+, Pb2+, Cu2+, Cd2+) in rainfall, throughfall, stemflow, and forest floor leachate for five different forests (Larix principis-rupprechtii, Picea wilsonii, Picea crassifolia, Betula platyphylla and Rhododendron communities). The results showed that the enrichment capacity of acid anions and metal cations in the vegetation canopy of the coniferous forests (L. principis-rupprechtii, P. wilsonii, P. crassifolia) was stronger than that of the broad-leaved forests (B. platyphylla and Rhododendron communities). The content of acid anions and metal cations in stemflow of coniferous forests were 3.7-5.6 times and 0-9.3 times higher than those of broad-leaved forests, respectively. Corresponding values in throughfall were 1-1.4 times and 0.3-2.4 times, respectively. The contents of NO3-, Cl-, K+, Mg2+, Fe3+, Pb2+, Cu2+, and Cd2+ in leachate filtered from the soil layers that are deepening gradually showed consistent decreasing trend for all the forest stands. In addition, NO3-, Cl-, K+, Mg2+, Fe3+, and Pb2+ were also concentrated in the topsoil, except for Cu2+ and Cd2+. Nevertheless, SO42- and Na+ were concentrated in the subsoil, whereas Ca2+ was concentrated in the upper soil layers. Soil organic carbon (SOC) and total nitrogen (TN) contents in coniferous forest stands were 20-37% and 34-63% higher than those in broad-leaved forest stands, respectively. This results also shown that the contents of OC and TN has a strong correlation with the content of partial metal cations in soil and litter, indicating that coniferous forest stands had stronger ion scavenging and adsorption capacity in soil layer and litter layer than broad-leaved forest stands. Therefore, L. principis-rupprechtii, P. wilsonii, P. crassifolia had higher air pollutant adsorption and soil pollution remediation capacities than the other two forests. Thus, we recommend planting coniferous tree species (L. principis-rupprechtii, P. wilsonii and P. crassifolia) for eco-rehabilitation and water purification to improve the ecological service function of forest ecosystems.


Asunto(s)
Restauración y Remediación Ambiental , Bosques , Tracheophyta/fisiología , Adsorción , Betula , Carbono/química , China , Ecosistema , Iones , Nitrógeno/análisis , Picea , Suelo/química , Árboles
3.
Environ Monit Assess ; 193(8): 468, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34226956

RESUMEN

Bamboos due to high soil water conservation potential are gaining increased attention in plantation programs across the globe. Large-scale plantation of fast-growing bamboo, however, can have important hydrological consequences. The study aims to quantify the eco-hydrological parameters, viz., throughfall (TF), stemflow (SF), and interception (I) in seven important sympodial bamboo species in north western Himalayan foothills of India. The species selected include Bambusa balcooa, Bambusa bambos, Bambusa vulgaris., Bambusa nutans, Dendrocalamus hamiltonii, Dendrocalamus stocksii, and Dendrocalamus strictus. Throughfall versus gross rainfall (GR) relationship in different species indicated high throughfall production during high rainfall events with r2 > 0.90. Average throughfall was lowest (62.1%) in D. hamiltonii and highest in B. vulgaris (74.6%). SF ranged from 1.32% in B. nutans to 3.39% in D. hamiltonii. The correlation coefficient (r) between leaf area index (LAI), number of culms, and crown area with the interception were 0.746, 0.691, and 0.585, respectively. The funneling ratio (F) was highest (27.0) in D. hamiltonii and least in B. nutans. Canopy storage capacity was highest in D. strictus (3.57 mm) and least in D. hamiltonii (1.09 mm). Interception loss was highest (34.4%) in D. hamiltonii and lowest in B. vulgaris (23.5%) and D. strictus (23.6%). Higher interception in bamboos make them suitable for soil conservation, but careful selection of species is required in low rainfall areas.


Asunto(s)
Antozoos , Monitoreo del Ambiente , Animales , Hidrología , India , Suelo
4.
Glob Chang Biol ; 26(12): 6989-7005, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32939921

RESUMEN

The response of organic carbon (C) concentrations in ecosystem solutions to environmental change affects the release of dissolved organic matter (DOM) from forests to surface and groundwaters. We determined the total organic C (TOC) concentrations (filtered <1-7 µm) and the ratios of TOC/dissolved organic nitrogen (DON) concentrations, electrical conductivity (EC), and pH in all major ecosystem solutions of a tropical montane forest from 1998 to 2013. The forest was located on the rim of the Amazon basin in Ecuador and experienced increasing numbers of days with >25°C, decreasing soil moisture, and rising nitrogen (N) deposition from the atmosphere during the study period. In rainfall, throughfall, mineral soil solutions (at the 0.15- and 0.30-m depths), and streamflow, TOC concentrations and fluxes decreased significantly from 1998 to 2013, while they increased in stemflow. TOC/DON ratios decreased significantly in rainfall, throughfall, soil solution at the 0.15-m depth, and streamflow. Based on Δ14 C values, the TOC in rainfall and mineral soil solutions was 1 year old and that of litter leachate was 10 years old. The pH in litter leachate decreased with time, that in mineral soil solutions increased, while those in the other ecosystem solutions did not change. Thus, reduced TOC solubility because of lower pH values cannot explain the negative trends in TOC concentrations in most ecosystem solutions. The increasing TOC concentrations and EC in stemflow pointed at an increased leaching of TOC and other ions from the bark. Our results suggest an accelerated degradation of DOM, particularly of young DOM, associated with the production of N-rich compounds simultaneously to changing climatic conditions and increasing N availability. Thus, environmental change increased the CO2 release to the atmosphere but reduced DOM export to surface and groundwater.


Asunto(s)
Ecosistema , Árboles , Carbono/análisis , Ecuador , Bosques , Nitrógeno , Suelo
5.
Proc Biol Sci ; 285(1884)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068676

RESUMEN

The evolution of vascular tissue is a key innovation enabling plants to inhabit terrestrial environments. Here, we demonstrate extra-vascular water transport in a giant, prop-rooted monocot from Lord Howe Island. Pandanus forsteri (Pandanaceae) produces gutter-like leaves that capture rainwater, which is then couriered along a network of channels to the tips of aerial roots, where it is stored by absorptive tissue. This passive mechanism of water acquisition, transport and storage is critical to the growth of aerial prop roots that cannot yet attain water via vascular conduction. This species therefore sheds light on the elaborate means by which plants have evolved to attain water.


Asunto(s)
Pandanaceae/anatomía & histología , Pandanaceae/fisiología , Lluvia , Hojas de la Planta/anatomía & histología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Agua/fisiología
6.
Environ Monit Assess ; 190(5): 316, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29713807

RESUMEN

This study aims to identify precipitation, throughfall, stemflow, precipitation, and interception processes in pure black pine, pure Scots pine, and mixed black pine-Scots pine forest ecosystems and present the precipitation partitioning according to different stand types. Throughfall and stemflow measurements were performed using five standard precipitation gauges in a pilot area established to represent pure black pine, pure Scots pine, and mixed black pine-Scots pine stands in the Bezirgan Basin. The total precipitation was measured in an open field close to the study area. Throughfall values were calculated as the percentage of precipitation measured in an open field. According to the results of the study, the throughfall values were 69.8% in black pine, 73.9% in Scots pine, and 77.7% in the mixed black pine-Scots pine stands; the stemflow values were 2.6% in black pine, 5.9% in Scots pine, and 3.1% in the mixed black pine-Scots pine stands; the amounts of precipitation reaching the forest floor were 72.3% in black pine, 79.8% in Scots pine, and 80.7% in the mixed black pine-Scots pine stands; and the interception values were found to be 27.7% in black pine, 20.2% in Scots pine, and 19.2% in the mixed black pine-Scots pine stands.


Asunto(s)
Monitoreo del Ambiente , Bosques , Tracheophyta/crecimiento & desarrollo , Mar Negro , Ecosistema , Pinus , Pinus sylvestris , Lluvia , Árboles , Turquía
7.
Environ Technol ; 36(13-16): 2001-12, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25686284

RESUMEN

Increased anthropogenic nitrogen emissions and more severe environmental issues (e.g. air pollution, soil acidification, and plant nutrient imbalances) are striking forest ecosystems. Data on NH4+ and NO3- concentrations in throughfall and stemflow were collected to estimate variation characteristics of nitrogen concentrations through forest hydrological processes across China. A typical study was carried out in the three forest types in the Jinyun Mountain region of Chongqing, from May to October 2012. Nitrogen concentrations in throughfall and stemflow are higher than those in atmospheric precipitation. DIN concentrations in atmospheric precipitation, throughfall, and stemflow, across China and in the Jinyun Mountain region, were 2.18 and 1.51, 3.19 and 3.88, and 5.14 and 3.92 mg N L(-1), respectively. NH4+ concentration was higher than NO3- concentration, suggesting NH4+ is the dominant nitrogen component in China. Additionally, across China, a linear relationship existed between DIN and NH4+, and between DIN and NO3- in atmospheric precipitation. DIN concentrations in throughfall and stemflow changed with the observed changes in precipitation, and DIN concentrations in precipitation positively correlated with those in throughfall and in stemflow were also observed. Moreover, average DIN concentrations in throughfall and stemflow varied in different forest types, resulting from differences in forest canopy structures and tree species characteristics. In the Jinyun Mountain region, both throughfall and stemflow DIN concentrations were the highest in the mixed broadleaved/coniferous forest, followed by evergreen broadleaved forest, and the lowest in moso bamboo forest. Monthly variations of NH4+ and NO3- concentrations, in throughfall and stemflow, were observed in the Jinyun Mountain region.


Asunto(s)
Contaminantes Atmosféricos/farmacocinética , Bosques , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Tallos de la Planta/metabolismo , Árboles/metabolismo , Contaminantes Atmosféricos/análisis , China , Nitrógeno/análisis
8.
Sci Total Environ ; 926: 171691, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38485024

RESUMEN

This study explores the complex interplay between vegetation and soil stability on slopes to enhance soil-bioengineering and slope stabilization techniques. We assess the multifaceted role of vegetation in soil stabilization, examining processes such as canopy interception, stemflow, and the effects of hydrological and mechanical changes induced by root systems and above-ground plant structures. Key underlying mechanisms and their effects on stability are reported, along with the evaluation of significant plant indicators from historical research. Our review revealed that plant coverage and root architecture are critical in reducing soil erosion, with plant roots increasing soil cohesion and reducing soil detachability. Above-ground vegetation provides a protective layer that decreases the kinetic energy of raindrops and allows for higher infiltration. The importance of species-specific root traits is emphasized as pragmatic determinants of erosion prevention. Additionally, the effects of root reinforcement on shallow landslides are dissected to highlight their dualistic nature. While root-soil interactions typically increase soil shear strength and enhance slope stability, it is crucial to discriminate among vegetation types such as trees, shrubs, and grasses due to their distinct root morphology, tensile strength, root area ratio, and depth. These differences critically affect their impact on slope stability, where, for instance, robust shrub roots may fortify soil to greater depths, whereas grass roots contribute significantly to topsoil shear strength. Grasses and herbaceous plants effectively controlled surface erosion, whereas shrubs mainly controlled shallow landslides. Therefore, it is vital to conduct a study that combines shrubs with grasses or herbaceous plants. Both above-ground and below-ground plant indicators, including root and shoot indicators, were crucial for improving slope stability. To accurately evaluate the impact of plant species on slope stability reinforcement, it is necessary to study the combination of hydro-mechanical coupling with both ground plant indicators under specific conditions.


Asunto(s)
Plantas , Árboles , Suelo/química , Raíces de Plantas/anatomía & histología , Resistencia al Corte
9.
Ecol Evol ; 13(3): e9868, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36937063

RESUMEN

Woody plant encroachment (WPE) has been found to alter ecosystem functioning and services in savannas. In rain-limited savannas, increasing woody cover can reduce streamflow and groundwater by altering evapotranspiration rates and rainfall partitioning, but the ecological relevance of this impact is not well known. This study quantified the altered partitioning of rainfall by two woody plant structural types (fine- and broad-leaved trees) across a gradient of encroachment in a semi-arid savanna in South Africa. Averaged across both plant functional types, loss of rainfall through canopy interception and subsequent evaporation roughly doubled (from 20.5% to 43.6% of total rainfall) with a roughly 13-fold increase in woody cover (from 2.4 to 31.4 m2/ha tree basal cover). Spatial partitioning changes comprised fourfold increases in stemflow (from 0.8% to 3.9% of total rainfall) and a decline in throughfall proportion of about two-fifths (from 80.2% to 47.3% of total rainfall). Changes in partitioning were dependent on plant functional type; rainfall interception by the fine-leaved multi-stemmed shrub Dichrostachys cinerea was almost double that of the broad-leaved tree Terminalia sericea at the highest levels of woody encroachment (i.e., 49.7% vs. 29.1% of total rainfall intercepted at tree basal area of 31.4 m2/ha). Partitioning was also dependent on rainfall characteristics, with the proportion of rainfall intercepted inversely related to rainfall event size and intensity. Therefore, increasing tree cover in African grassy ecosystems reduces the amount of canopy throughfall, especially beneath canopies of fine-leaved species in smaller rainfall events. Rainfall interception traits may thus confer a selective advantage, especially for fine-leaved woody plant species in semi-arid savannas.

10.
Sci Total Environ ; 858(Pt 2): 159928, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36343808

RESUMEN

Rainfall partitioning by the vegetation canopy represents a significant component of the local hydrological cycle by reshaping the amount and spatial distribution of rainfall. Measuring the components of rainfall partitioning, however, has been a challenging task due to laborious- and time-consuming field experiments. In this study, to probe the influences of long-term afforestation on dynamic patterns of rainfall partitioning, the dominant sand-stabilizing shrub Haloxylon ammodendron at three different ages was selected for field measurements during the 2020-2021 growing season. The throughfall percentage for young H. ammodendron (YH, 75.9 %) was significantly higher than that for middle-aged H. ammodendron (MAH, 63.4 %) and mature H. ammodendron (MH, 62.4 %) (p < 0.05 for all cases). However, the interception loss percentage of YH (22.3 %) was significantly lower than that for MAH (35.0 %) and MH (36.5 %) (p < 0.05 for all cases). No significant difference was found for stemflow percentage among YH (1.8 %), MAH (1.5 %) and MH (1.1 %). Smaller rainfall events contributed to a higher interception loss percentage and a lower net rainfall percentage for all ages. Both throughfall and stemflow percentage first showed increasing trends and then tended to be stable with increasing rainfall amount and duration, whereas interception loss percentage showed the opposite patterns. Rainfall partitioning was significantly correlated with the plant area index, stem basal area and canopy height (p < 0.05 for all cases), which may account for significant differences in rainfall partitioning patterns, as all shrubs experienced the same weather conditions. The average funneling ratio was 56.6, 26.7 and 17.9 for YH, MAH and MH, respectively. These results suggested that H. ammodendron afforestation can have a significant impact on rainfall partitioning by reducing net rainfall reaching the soil and may have some implications for local water budget and ecosystem management in oasis-desert ecotones.


Asunto(s)
Ecosistema , Lluvia , Arena , Movimientos del Agua , China
11.
Sci Total Environ ; 858(Pt 2): 159885, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334660

RESUMEN

As climate change intensifies, fires events are predicted to increase in forest ecosystems. Fire alters the ecosystem structure and consequently, the hydrological cycle. However, little is known about the impacts of forest fire on stemflow. A field experiment was conducted to evaluate the short-term response of stemflow production to low-severity fire in a coniferous and broadleaved mixed forest. Results demonstrated low-severity fire changed stemflow yield and had insignificant effect on the correlation between stemflow efficiency and rainfall or plant morphological variables. In unburned site Quercus acutissima and Pinus massoniana and in burned site Q. acutissima and P. massoniana, stemflow percentage averaged 3.86, 0.37, 1.20, and 0.47 %, whereas funneling ratio averaged 38.8, 4.2, 11.4, and 5.1, respectively. Fire substantially decreased the stemflow percentage and funneling ratio of Q. acutissima (P < 0.05) and slightly enhanced P. massoniana (P > 0.05). The responses of stemflow production to fire differed significantly between oak and pine trees. Fire made Q. acutissima become less effective in funneling rain to the forest ground, which is attributed to that the scaly bark was burned to highly furrowed bark that delivers less water to tree base. Burned P. massoniana was more productive in draining stemflow relative to unburned trees and is attributed to the bark which was still flaky regardless of. Additionally, the higher canopy openness allows more rain to funnel to the trunk. Stemflow efficiency was reduced in response to fire and limited the transfer of water and nutrients from canopy to soil and can reduce the competitiveness of Q. acutissima after fire disturbance.


Asunto(s)
Incendios , Pinus , Quercus , Quercus/fisiología , Ecosistema , Pinus/fisiología , Árboles/fisiología , Bosques , Agua
12.
MethodsX ; 11: 102448, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38023308

RESUMEN

The forest canopy harbors a diverse array of organisms. However, monitoring their biodiversity poses challenges due to limited accessibility and the vast taxonomic diversity. To address these challenges, we present a novel method for capturing arboreal biodiversity by harnessing stemflow as a source of DNA from organisms inhabiting trees. Our method involves encircling the tree trunk with gauze, directing the stemflow along the gauze into a funnel, and collecting it in a plastic bag. We employed dual collection systems to retrieve environmental DNA (eDNA) from the stemflow: the gauze trap, designed to capture macroscopic biological fragments, and the plastic bag trap, which collected the stemflow itself. The trapped fragments and stemflow were separately filtered, and eDNA was subsequently extracted from the filter membranes. To validate our method, we focused on foliose lichens, which are easily observable on tree surfaces. We performed eDNA metabarcoding and successfully detected a majority of the observed foliose lichen species, including those not identified through visual observation alone.•We have developed a non-invasive and straightforward method for monitoring arboreal biodiversity by collecting eDNA from stemflow, which has been validated using lichens for its efficacy.•This cost-effective approach minimizes disruptions to tree ecosystems and is expected to provide an efficient means of sampling and monitoring arboreal organisms.

13.
Sci Total Environ ; 825: 153943, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35189219

RESUMEN

Climate change is already causing considerable reductions in biodiversity in all terrestrial ecosystems. These consequences are expected to be exacerbated in biomes that are particularly exposed to change, such as those in the Mediterranean, and in certain groups of more sensitive organisms, such as epiphytic lichens. These poikylohydric organisms find suitable light and water conditions on trunks under the tree canopy. Despite their small size, epiphytic communities contribute significantly to the functionality of forest ecosystems. In this work, we surveyed epiphytic lichen communities in a Mediterranean area (Sardinia, Italy) and hypothesized that 1) the effect of microclimate on lichens at tree scale is mediated by the functional traits of these organisms and that 2) micro-refuge trees with certain morphological characteristics can mitigate the negative effects of future climate change. Results confirm the first hypothesis, while the second is only partially supported, suggesting that the capability of specific trees to host specific conditions may not be sufficient to maintain the diversity and ecosystem functionality of lichen communities in the Mediterranean.


Asunto(s)
Líquenes , Biodiversidad , Cambio Climático , Ecosistema , Bosques , Árboles
14.
Sci Total Environ ; 806(Pt 1): 150410, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34571219

RESUMEN

Understanding linkages between heterogeneous soil structures and non-uniform flow is fundamental for interpreting infiltration processes and improving hydrological simulations. Here, we utilized ground-penetrating radar (GPR) as a non-invasive technique to investigate those linkages and to complement current traditional methods that are labor-intensive, invasive, and non-repeatable. We combined time-lapse GPR surveys with different types of infiltration experiments to create three-dimensional (3D) diagrams of the wetting dynamics. We carried out the GPR surveys and validated them with in situ observations, independent measurements and field excavations at two experimental sites. Those sites were selected to represent different mechanisms that generate non-uniform flow: (1) preferential water infiltration initiated by tree trunk and root systems; and (2) lateral subsurface flow due to soil layering. Results revealed links between different types of soil heterogeneity and non-uniform flow. The first experimental site provided evidence of root-induced preferential flow paths along coarse roots, emphasizing the important role of coarse roots in facilitating preferential water movement through the subsurface. The second experimental site showed that water infiltrated through the restrictive layer mainly following the plant root system. The presented approach offers a non-invasive, repeatable and accurate way to detect non-uniform flow.


Asunto(s)
Radar , Suelo , Imagen de Lapso de Tiempo , Árboles , Movimientos del Agua
15.
Artículo en Inglés | MEDLINE | ID: mdl-35270501

RESUMEN

Although new inputs of acidic anions are decreasing, soil acidification still deserves more academic attention because of the effects of historical stores of SO42- already absorbed into soils. Forest canopy has large, species-specific effects on rainwater chemistry, for which the hydrological mechanism remains unclear. We investigated precipitation, throughfall, stemflow, and litter leachate across three forest types in a severely acid-polluted site located in Southwest China. Precipitation monitored over 4 months, representing summer, fall, winter, and spring, indicated neutral precipitation in Tieshanping with pH ranging from 6.58-7.33. Throughfall and litter leachate in Pinus massoniana Lamb. stands were enriched with greater cation and anion fluxes, as well as more dissolved organic carbon (DOC) flux. Rainwater from pure stands of Cinnamomum camphora (Linn) Presl yielded lower N and DOC inputs to soils with higher base saturation, which would reduce soil acidification and, therefore, improve the sustainability of forest ecosystems.


Asunto(s)
Ecosistema , Árboles , Animales , China , Bosques , Nutrientes , Ovinos , Suelo
16.
Front Plant Sci ; 13: 1113354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36798804

RESUMEN

The middle elevation forest of the Tianshan Mountains, dominated by the conifer tree Picea schrenkiana, is an important part of the mountain ecosystem of arid Northwestern China, which plays a pivotal role in carbon sequestration and water conservation. As the first interface of water transfer in a forest ecosystem, tree crown allocates precipitation regulating soil water supply and sustaining vegetation growth below the crown. In this study, four 20-m × 20-m sampling quadrats were randomly installed at each of three elevation sites (2,200 m, 1,800 m, and 1,450 m) on the northern slope of Mount Bogda, the main peak of the Eastern Tianshan Range. The effects of forest stand factors and incoming rainfall on forest crown allocation of precipitation were investigated, and the trade-off between water and carbon was also discussed. The results revealed that (1) the interception, throughfall, and stemflow ratio had values of 44.3%-50.0%, 49.6%-55.4%, and<0.5%, respectively; (2) there was a complementary relationship between stemflow ability and threshold rainfall when stemflow emerged, and the crown interception rainfall had a saturation value; and (3) the allocation of crown-intercepted rainfall was controlled by trunk diameter at breast height, crown height-to-width ratio, and leaf area index, which was why differences arose in the allocation of crown precipitation at differing elevations. With greater arbor biological carbon density, the crown interception ratio initially increased rapidly but then remained stable, indicating that once a natural forest stand is mature, its biomass carbon sequestration would not change further allocation of crown precipitation.

17.
Ecol Evol ; 11(9): 4310-4324, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33976812

RESUMEN

Kauri dieback, caused by Phytophthora agathidicida, is a biotic disturbance that poses a recent threat to the survival of kauri (Agathis australis) forests in New Zealand. Previous studies have shown that throughfall and stemflow play an important role in the kauri forests' internal nutrient cycle. However, the effects of P. agathidicida infection on canopy and forest floor nutrient fluxes in kauri forests remain unknown. Here, we measured throughfall, stemflow and forest floor water yield, nutrient (potassium, calcium, magnesium, manganese, silicon, sulfur, sodium, iron) concentrations and fluxes of ten kauri trees differing in soil P. agathidicida DNA concentration, and health status. We did not observe an effect of soil P. agathidicida DNA concentration on throughfall, stemflow, and forest floor water yield. Throughfall and forest floor nutrient concentrations and fluxes decreased (up to 50%) with increasing soil P. agathidicida DNA concentration. We found significant effects on potassium and manganese fluxes in throughfall; calcium and silicon fluxes in forest floor leachate. A decline in canopy and forest floor nutrient fluxes may result in soil nutrient imbalances, which in turn may negatively impact forest productivity and may increase the susceptibility of trees to future pathogen infection in these ecologically unique kauri forests. Given our findings and the increasing spread of Phytophthora species worldwide, research on the underlying physiological mechanisms linking dieback and plant-soil nutrient fluxes is critical.

18.
Sci Total Environ ; 660: 1367-1382, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30743931

RESUMEN

Quantitative knowledge of the spatial variability of soil infiltration processes caused by canopy rainfall redistribution has significant hydro-chemical consequences owing to their influence on nutrients leaching and groundwater recharge in agricultural ecosystems. The heterogeneity of throughfall and stemflow under the maize canopy was quantified in this study, and its subsequent effect on soil water distribution at the row scale was further examined. Throughfall at 15 locations within and between maize rows as well as stemflow was observed over three growing seasons of 2015, 2016 and 2017 on the Loess Plateau of China. Soil water content at five depths in the row and interrow positions were continuously monitored. The results showed that throughfall was significantly different among the five sampling sections between maize rows, with the highest throughfall in the center and a decreasing trend towards the maize row. Greater throughfall was observed on the windward side of the maize row than on the leeward side. These spatial patterns persisted for most rainfall events. However, much higher net rainfall (throughfall plus stemflow) was obtained in the row positions when stemflow was further considered. Net rainfall reaching the row positions resulted not only in earlier water infiltration, but also in deeper penetration. The results suggested that the presence of maize canopy altered the soil surface water flux and thus caused heterogeneous infiltration water in the soil, which has implications for guiding the placing of fertilizers/pesticides and soil erosion management in the maize field.


Asunto(s)
Lluvia , Suelo/química , Zea mays/fisiología , Agricultura , China , Agua/análisis
19.
Sci Total Environ ; 692: 631-639, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31539971

RESUMEN

Isotopic composition of gross rainfall has been extensively used as a conservative tracer to track water movement and other hydrological processes in vegetated ecosystems. Recent studies from forest ecosystems, however, demonstrated that vegetation canopies can alter the isotopic composition of rainwater during rainfall partitioning into throughfall and stemflow, likely leading to errors and biases in aforementioned studies. No known studies, to date, had investigated this topic in shrub-dominated arid and semi-arid ecosystems where water is typically the driving factor in ecological, hydrological and biogeochemical processes. In this study, event-based gross rainfall, the throughfall and stemflow induced by shrubs of Caragana korshinskii were measured and samples were collected within a water-limited arid desert ecosystem of northern China, and their water stable isotopes (18O and 2H) were also analyzed in the laboratory. We mainly aimed to investigate whether there is an isotopic enrichment or depletion in stemflow and throughfall in comparison to gross rainfall, and to evaluate the possible underlying mechanisms. Our results indicated an enrichment of both isotopes in stemflow, while a general more depletion in throughfall than in gross rainfall, which is presumably affected by a combinative effects of canopy evaporation, isotopic exchange, and selective canopy storage. Deuterium excess of stemflow were found to be significantly higher (P < 0.05) than that of gross rainfall and throughfall. Moreover, we detected the pronounced "amount effect", with a significant (P < 0.05) negative relationship between isotopic composition and the amount of gross rainfall, throughfall, and stemflow, respectively. Our study is expected to contribute to an improved understanding of physical processes and water routing in shrub canopies within vast arid desert ecosystems.


Asunto(s)
Caragana/metabolismo , Deuterio/análisis , Isótopos de Oxígeno/análisis , Lluvia/química , Movimientos del Agua , Agua/metabolismo , China , Hidrología , Agua/química
20.
Water Air Soil Pollut ; 230(2): 30, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30739961

RESUMEN

Our goal was to reconstruct soil recovery from Acid Rain based upon removal of stemflow at beech (Fagus sylvatica) stands of known historic and recent soil status. Fourteen beech stands in the Vienna Woods were selected in 1984 and again in 2012 to study changes in soil and foliar chemistry over time. A part of those stands had been strip cut, and to assess reversibility of soil acidification, we analyzed soils around beech stumps from different years of felling, representing the years when acidic stemflow ceased to affect the soil. Furthermore, it was hypothesized that changes of soil chemistry are reflected in the stemwood of beech. Half-decadal samples of tree cores were analyzed for Ca, Mg, K, Mn, Fe, and Al. Soil analyses indicated recovery in the top soil of the stemflow area but recovery was delayed in the between trees areas and deeper soil horizons. Differences in soil pH between proximal and distal area from beech stumps were still detectable after 30 years indicating that soils may not recover fully from acidification or do so at a rather slow rate. Stemwood contents indicated mobilization of base cations during the early 80s followed by a steady decrease thereafter. Backward reconstructions of soil pH and soil nutrients, building on regressions between recent stemwood and soil chemistry, could not be verified by measured soil data in 1984, but matched with declining cation foliar contents from 1984 to 2012. Dendrochemical reconstructions showed highest values in the 1980s, but measured soil exchangeable cation contents were clearly lower in 1984. Hence, we conclude that our reconstructions mimicked soil solution rather than soil exchanger chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA