Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.993
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 35: 337-370, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28142321

RESUMEN

Transcriptomics, the high-throughput characterization of RNAs, has been instrumental in defining pathogenic signatures in human autoimmunity and autoinflammation. It enabled the identification of new therapeutic targets in IFN-, IL-1- and IL-17-mediated diseases. Applied to immunomonitoring, transcriptomics is starting to unravel diagnostic and prognostic signatures that stratify patients, track molecular changes associated with disease activity, define personalized treatment strategies, and generally inform clinical practice. Herein, we review the use of transcriptomics to define mechanistic, diagnostic, and predictive signatures in human autoimmunity and autoinflammation. We discuss some of the analytical approaches applied to extract biological knowledge from high-dimensional data sets. Finally, we touch upon emerging applications of transcriptomics to study eQTLs, B and T cell repertoire diversity, and isoform usage.


Asunto(s)
Enfermedades Autoinmunes/diagnóstico , Inflamación/diagnóstico , Transcriptoma , Enfermedades Autoinmunes/inmunología , Conjuntos de Datos como Asunto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inflamación/inmunología , Almacenamiento y Recuperación de la Información , Terapia Molecular Dirigida , Monitorización Inmunológica , Pronóstico
2.
Cell ; 184(9): 2487-2502.e13, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33857424

RESUMEN

Precision oncology has made significant advances, mainly by targeting actionable mutations in cancer driver genes. Aiming to expand treatment opportunities, recent studies have begun to explore the utility of tumor transcriptome to guide patient treatment. Here, we introduce SELECT (synthetic lethality and rescue-mediated precision oncology via the transcriptome), a precision oncology framework harnessing genetic interactions to predict patient response to cancer therapy from the tumor transcriptome. SELECT is tested on a broad collection of 35 published targeted and immunotherapy clinical trials from 10 different cancer types. It is predictive of patients' response in 80% of these clinical trials and in the recent multi-arm WINTHER trial. The predictive signatures and the code are made publicly available for academic use, laying a basis for future prospective clinical studies.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Mutaciones Letales Sintéticas , Transcriptoma/efectos de los fármacos , Anciano , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/inmunología , Ensayos Clínicos como Asunto , Femenino , Estudios de Seguimiento , Humanos , Inmunoterapia , Masculino , Neoplasias/genética , Neoplasias/patología , Pronóstico , Estudios Prospectivos , Estudios Retrospectivos , Tasa de Supervivencia
3.
Cell ; 175(2): 372-386.e17, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30270042

RESUMEN

Intestinal mesenchymal cells play essential roles in epithelial homeostasis, matrix remodeling, immunity, and inflammation. But the extent of heterogeneity within the colonic mesenchyme in these processes remains unknown. Using unbiased single-cell profiling of over 16,500 colonic mesenchymal cells, we reveal four subsets of fibroblasts expressing divergent transcriptional regulators and functional pathways, in addition to pericytes and myofibroblasts. We identified a niche population located in proximity to epithelial crypts expressing SOX6, F3 (CD142), and WNT genes essential for colonic epithelial stem cell function. In colitis, we observed dysregulation of this niche and emergence of an activated mesenchymal population. This subset expressed TNF superfamily member 14 (TNFSF14), fibroblastic reticular cell-associated genes, IL-33, and Lysyl oxidases. Further, it induced factors that impaired epithelial proliferation and maturation and contributed to oxidative stress and disease severity in vivo. Our work defines how the colonic mesenchyme remodels to fuel inflammation and barrier dysfunction in IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino/fisiopatología , Mesodermo/fisiología , Animales , Proliferación Celular , Colitis/genética , Colitis/fisiopatología , Colon/fisiología , Células Epiteliales/metabolismo , Fibroblastos/fisiología , Heterogeneidad Genética , Homeostasis , Humanos , Inflamación , Mucosa Intestinal/inmunología , Mucosa Intestinal/fisiología , Intestinos/inmunología , Intestinos/fisiología , Células Madre Mesenquimatosas/fisiología , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos , Pericitos , Células RAW 264.7 , Factores de Transcripción SOXD/fisiología , Análisis de la Célula Individual/métodos , Tromboplastina/fisiología , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Vía de Señalización Wnt/fisiología
4.
Cell ; 174(3): 576-589.e18, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30033361

RESUMEN

Genome-wide association studies (GWAS) have identified rs11672691 at 19q13 associated with aggressive prostate cancer (PCa). Here, we independently confirmed the finding in a cohort of 2,738 PCa patients and discovered the biological mechanism underlying this association. We found an association of the aggressive PCa-associated allele G of rs11672691 with elevated transcript levels of two biologically plausible candidate genes, PCAT19 and CEACAM21, implicated in PCa cell growth and tumor progression. Mechanistically, rs11672691 resides in an enhancer element and alters the binding site of HOXA2, a novel oncogenic transcription factor with prognostic potential in PCa. Remarkably, CRISPR/Cas9-mediated single-nucleotide editing showed the direct effect of rs11672691 on PCAT19 and CEACAM21 expression and PCa cellular aggressive phenotype. Clinical data demonstrated synergistic effects of rs11672691 genotype and PCAT19/CEACAM21 gene expression on PCa prognosis. These results provide a plausible mechanism for rs11672691 associated with aggressive PCa and thus lay the ground work for translating this finding to the clinic.


Asunto(s)
Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética , ARN no Traducido/genética , Adulto , Alelos , Línea Celular Tumoral , Cromosomas Humanos Par 19/genética , Estudios de Cohortes , Regulación Neoplásica de la Expresión Génica/genética , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Genotipo , Proteínas de Homeodominio , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Pronóstico
5.
Am J Hum Genet ; 110(8): 1319-1329, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37490908

RESUMEN

Polygenic scores (PGSs) have emerged as a standard approach to predict phenotypes from genotype data in a wide array of applications from socio-genomics to personalized medicine. Traditional PGSs assume genotype data to be error-free, ignoring possible errors and uncertainties introduced from genotyping, sequencing, and/or imputation. In this work, we investigate the effects of genotyping error due to low coverage sequencing on PGS estimation. We leverage SNP array and low-coverage whole-genome sequencing data (lcWGS, median coverage 0.04×) of 802 individuals from the Dana-Farber PROFILE cohort to show that PGS error correlates with sequencing depth (p = 1.2 × 10-7). We develop a probabilistic approach that incorporates genotype error in PGS estimation to produce well-calibrated PGS credible intervals and show that the probabilistic approach increases classification accuracy by up to 6% as compared to traditional PGSs that ignore genotyping error. Finally, we use simulations to explore the combined effect of genotyping and effect size errors and their implication on PGS-based risk-stratification. Our results illustrate the importance of considering genotyping error as a source of PGS error especially for cohorts with varying genotyping technologies and/or low-coverage sequencing.


Asunto(s)
Genómica , Polimorfismo de Nucleótido Simple , Incertidumbre , Genotipo , Genómica/métodos , Secuenciación Completa del Genoma , Polimorfismo de Nucleótido Simple/genética
6.
Am J Hum Genet ; 110(11): 1888-1902, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37890495

RESUMEN

Admixed individuals offer unique opportunities for addressing limited transferability in polygenic scores (PGSs), given the substantial trans-ancestry genetic correlation in many complex traits. However, they are rarely considered in PGS training, given the challenges in representing ancestry-matched linkage-disequilibrium reference panels for admixed individuals. Here we present inclusive PGS (iPGS), which captures ancestry-shared genetic effects by finding the exact solution for penalized regression on individual-level data and is thus naturally applicable to admixed individuals. We validate our approach in a simulation study across 33 configurations with varying heritability, polygenicity, and ancestry composition in the training set. When iPGS is applied to n = 237,055 ancestry-diverse individuals in the UK Biobank, it shows the greatest improvements in Africans by 48.9% on average across 60 quantitative traits and up to 50-fold improvements for some traits (neutrophil count, R2 = 0.058) over the baseline model trained on the same number of European individuals. When we allowed iPGS to use n = 284,661 individuals, we observed an average improvement of 60.8% for African, 11.6% for South Asian, 7.3% for non-British White, 4.8% for White British, and 17.8% for the other individuals. We further developed iPGS+refit to jointly model the ancestry-shared and -dependent genetic effects when heterogeneous genetic associations were present. For neutrophil count, for example, iPGS+refit showed the highest predictive performance in the African group (R2 = 0.115), which exceeds the best predictive performance for the White British group (R2 = 0.090 in the iPGS model), even though only 1.49% of individuals used in the iPGS training are of African ancestry. Our results indicate the power of including diverse individuals for developing more equitable PGS models.


Asunto(s)
Herencia Multifactorial , Población Blanca , Humanos , Herencia Multifactorial/genética , Población Blanca/genética , Fenotipo , Población Negra/genética , Pueblo Asiatico/genética , Estudio de Asociación del Genoma Completo/métodos
7.
Genet Epidemiol ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38797991

RESUMEN

Genome-wide association studies (GWAS) have been helpful in identifying genetic variants predicting cancer risk and providing new insights into cancer biology. Increasing use of genetically informed care, as well as genetically informed prevention and treatment strategies, have also drawn attention to some of the inherent limitations of cancer genetic data. Specifically, genetic endowment is lifelong. However, those recruited into cancer studies tend to be middle-aged or older people, meaning the exposure most likely starts before recruitment, as opposed to exposure and recruitment aligning, as in a trial or a target trial. Studies in survivors can be biased as a result of depletion of the susceptibles, here specifically due to genetic vulnerability and the cancer of interest or a competing risk. In addition, including prevalent cases in a case-control study will make the genetics of survival with cancer look harmful (Neyman bias). Here, we describe ways of designing GWAS to maximize explanatory power and predictive utility, by reducing selection bias due to only recruiting survivors and reducing Neyman bias due to including prevalent cases alongside using other techniques, such as selection diagrams, age-stratification, and Mendelian randomization, to facilitate GWAS interpretability and utility.

8.
Circulation ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315434

RESUMEN

BACKGROUND: Long QT syndrome is a lethal arrhythmia syndrome, frequently caused by rare loss-of-function variants in the potassium channel encoded by KCNH2. Variant classification is difficult, often because of lack of functional data. Moreover, variant-based risk stratification is also complicated by heterogenous clinical data and incomplete penetrance. Here we sought to test whether variant-specific information, primarily from high-throughput functional assays, could improve both classification and cardiac event risk stratification in a large, harmonized cohort of KCNH2 missense variant heterozygotes. METHODS: We quantified cell-surface trafficking of 18 796 variants in KCNH2 using a multiplexed assay of variant effect (MAVE). We recorded KCNH2 current density for 533 variants by automated patch clamping. We calibrated the strength of evidence of MAVE data according to ClinGen guidelines. We deeply phenotyped 1458 patients with KCNH2 missense variants, including QTc, cardiac event history, and mortality. We correlated variant functional data and Bayesian long QT syndrome penetrance estimates with cohort phenotypes and assessed hazard ratios for cardiac events. RESULTS: Variant MAVE trafficking scores and automated patch clamping peak tail currents were highly correlated (Spearman rank-order ρ=0.69; n=433). The MAVE data were found to provide up to pathogenic very strong evidence for severe loss-of-function variants. In the cohort, both functional assays and Bayesian long QT syndrome penetrance estimates were significantly predictive of cardiac events when independently modeled with patient sex and adjusted QT interval (QTc); however, MAVE data became nonsignificant when peak tail current and penetrance estimates were also available. The area under the receiver operator characteristic curve for 20-year event outcomes based on patient-specific sex and QTc (area under the curve, 0.80 [0.76-0.83]) was improved with prospectively available penetrance scores conditioned on MAVE (area under the curve, 0.86 [0.83-0.89]) or attainable automated patch clamping peak tail current data (area under the curve, 0.84 [0.81-0.88]). CONCLUSIONS: High-throughput KCNH2 variant MAVE data meaningfully contribute to variant classification at scale, whereas long QT syndrome penetrance estimates and automated patch clamping peak tail current measurements meaningfully contribute to risk stratification of cardiac events in patients with heterozygous KCNH2 missense variants.

9.
Circulation ; 149(23): e1239-e1311, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38718139

RESUMEN

AIM: The "2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy" provides recommendations to guide clinicians in the management of patients with hypertrophic cardiomyopathy. METHODS: A comprehensive literature search was conducted from September 14, 2022, to November 22, 2022, encompassing studies, reviews, and other evidence on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through May 23, 2023, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE: Hypertrophic cardiomyopathy remains a common genetic heart disease reported in populations globally. Recommendations from the "2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy" have been updated with new evidence to guide clinicians.


Asunto(s)
American Heart Association , Cardiología , Cardiomiopatía Hipertrófica , Humanos , Cardiología/normas , Cardiomiopatía Hipertrófica/terapia , Cardiomiopatía Hipertrófica/diagnóstico , Manejo de la Enfermedad , Estados Unidos
10.
Am J Hum Genet ; 109(9): 1582-1590, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055210

RESUMEN

For the genomics community, allele frequencies within defined groups (or "strata") are useful across multiple research and clinical contexts. Benefits include allowing researchers to identify populations for replication or "look up" studies, enabling researchers to compare population-specific frequencies to validate findings, and facilitating assessment of variant pathogenicity in clinical contexts. However, there are potential concerns with stratified allele frequencies. These include potential re-identification (determining whether or not an individual participated in a given research study based on allele frequencies and individual-level genetic data), harm from associating stigmatizing variants with specific groups, potential reification of race as a biological rather than a socio-political category, and whether presenting stratified frequencies-and the downstream applications that this presentation enables-is consistent with participants' informed consents. The NHLBI Trans-Omics for Precision Medicine (TOPMed) program considered the scientific and social implications of different approaches for adding stratified frequencies to the TOPMed BRAVO (Browse All Variants Online) variant server. We recommend a novel approach of presenting ancestry-specific allele frequencies using a statistical method based upon local genetic ancestry inference. Notably, this approach does not require grouping individuals by either predominant global ancestry or race/ethnicity and, therefore, mitigates re-identification and other concerns as the mixture distribution of ancestral allele frequencies varies across the genome. Here we describe our considerations and approach, which can assist other genomics research programs facing similar issues of how to define and present stratified frequencies in publicly available variant databases.


Asunto(s)
Motivación , Medicina de Precisión , Etnicidad/genética , Frecuencia de los Genes/genética , Genómica/métodos , Humanos
11.
Gastroenterology ; 166(2): 298-312.e14, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37913894

RESUMEN

BACKGROUND & AIMS: The highly heterogeneous cellular and molecular makeup of pancreatic ductal adenocarcinoma (PDAC) not only fosters exceptionally aggressive tumor biology, but contradicts the current concept of one-size-fits-all therapeutic strategies to combat PDAC. Therefore, we aimed to exploit the tumor biological implication and therapeutic vulnerabilities of a clinically relevant molecular PDAC subgroup characterized by SMAD4 deficiency and high expression of the nuclear factor of activated T cells (SMAD4-/-/NFATc1High). METHODS: Transcriptomic and clinical data were analyzed to determine the prognostic relevance of SMAD4-/-/NFATc1High cancers. In vitro and in vivo oncogenic transcription factor complex formation was studied by immunoprecipitation, proximity ligation assays, and validated cross model and species. The impact of SMAD4 status on therapeutically targeting canonical KRAS signaling was mechanistically deciphered and corroborated by genome-wide gene expression analysis and genetic perturbation experiments, respectively. Validation of a novel tailored therapeutic option was conducted in patient-derived organoids and cells and transgenic as well as orthotopic PDAC models. RESULTS: Our findings determined the tumor biology of an aggressive and chemotherapy-resistant SMAD4-/-/NFATc1High subgroup. Mechanistically, we identify SMAD4 deficiency as a molecular prerequisite for the formation of an oncogenic NFATc1/SMAD3/cJUN transcription factor complex, which drives the expression of RRM1/2. RRM1/2 replenishes nucleoside pools that directly compete with metabolized gemcitabine for DNA strand incorporation. Disassembly of the NFATc1/SMAD3/cJUN complex by mitogen-activated protein kinase signaling inhibition normalizes RRM1/2 expression and synergizes with gemcitabine treatment in vivo to reduce the proliferative index. CONCLUSIONS: Our results suggest that PDAC characterized by SMAD4 deficiency and oncogenic NFATc1/SMAD3/cJUN complex formation exposes sensitivity to a mitogen-activated protein kinase signaling inhibition and gemcitabine combination therapy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gemcitabina , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína smad3/metabolismo
12.
Biostatistics ; 25(2): 354-384, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36881693

RESUMEN

Naive estimates of incidence and infection fatality rates (IFR) of coronavirus disease 2019 suffer from a variety of biases, many of which relate to preferential testing. This has motivated epidemiologists from around the globe to conduct serosurveys that measure the immunity of individuals by testing for the presence of SARS-CoV-2 antibodies in the blood. These quantitative measures (titer values) are then used as a proxy for previous or current infection. However, statistical methods that use this data to its full potential have yet to be developed. Previous researchers have discretized these continuous values, discarding potentially useful information. In this article, we demonstrate how multivariate mixture models can be used in combination with post-stratification to estimate cumulative incidence and IFR in an approximate Bayesian framework without discretization. In doing so, we account for uncertainty from both the estimated number of infections and incomplete deaths data to provide estimates of IFR. This method is demonstrated using data from the Action to Beat Coronavirus erosurvey in Canada.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Teorema de Bayes , Incidencia , SARS-CoV-2
13.
Biostatistics ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579199

RESUMEN

The study of treatment effects is often complicated by noncompliance and missing data. In the one-sided noncompliance setting where of interest are the complier and noncomplier average causal effects, we address outcome missingness of the latent missing at random type (LMAR, also known as latent ignorability). That is, conditional on covariates and treatment assigned, the missingness may depend on compliance type. Within the instrumental variable (IV) approach to noncompliance, methods have been proposed for handling LMAR outcome that additionally invoke an exclusion restriction-type assumption on missingness, but no solution has been proposed for when a non-IV approach is used. This article focuses on effect identification in the presence of LMAR outcomes, with a view to flexibly accommodate different principal identification approaches. We show that under treatment assignment ignorability and LMAR only, effect nonidentifiability boils down to a set of two connected mixture equations involving unidentified stratum-specific response probabilities and outcome means. This clarifies that (except for a special case) effect identification generally requires two additional assumptions: a specific missingness mechanism assumption and a principal identification assumption. This provides a template for identifying effects based on separate choices of these assumptions. We consider a range of specific missingness assumptions, including those that have appeared in the literature and some new ones. Incidentally, we find an issue in the existing assumptions, and propose a modification of the assumptions to avoid the issue. Results under different assumptions are illustrated using data from the Baltimore Experience Corps Trial.

14.
Biostatistics ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255368

RESUMEN

Dynamic prediction models capable of retaining accuracy by evolving over time could play a significant role for monitoring disease progression in clinical practice. In biomedical studies with long-term follow up, participants are often monitored through periodic clinical visits with repeat measurements until an occurrence of the event of interest (e.g. disease onset) or the study end. Acknowledging the dynamic nature of disease risk and clinical information contained in the longitudinal markers, we propose an innovative concordance-assisted learning algorithm to derive a real-time risk stratification score. The proposed approach bypasses the need to fit regression models, such as joint models of the longitudinal markers and time-to-event outcome, and hence enjoys the desirable property of model robustness. Simulation studies confirmed that the proposed method has satisfactory performance in dynamically monitoring the risk of developing disease and differentiating high-risk and low-risk population over time. We apply the proposed method to the Alzheimer's Disease Neuroimaging Initiative data and develop a dynamic risk score of Alzheimer's Disease for patients with mild cognitive impairment using multiple longitudinal markers and baseline prognostic factors.

15.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36585781

RESUMEN

Genetic similarity matrices are commonly used to assess population substructure (PS) in genetic studies. Through simulation studies and by the application to whole-genome sequencing (WGS) data, we evaluate the performance of three genetic similarity matrices: the unweighted and weighted Jaccard similarity matrices and the genetic relationship matrix. We describe different scenarios that can create numerical pitfalls and lead to incorrect conclusions in some instances. We consider scenarios in which PS is assessed based on loci that are located across the genome ('globally') and based on loci from a specific genomic region ('locally'). We also compare scenarios in which PS is evaluated based on loci from different minor allele frequency bins: common (>5%), low-frequency (5-0.5%) and rare (<0.5%) single-nucleotide variations (SNVs). Overall, we observe that all approaches provide the best clustering performance when computed based on rare SNVs. The performance of the similarity matrices is very similar for common and low-frequency variants, but for rare variants, the unweighted Jaccard matrix provides preferable clustering features. Based on visual inspection and in terms of standard clustering metrics, its clusters are the densest and the best separated in the principal component analysis of variants with rare SNVs compared with the other methods and different allele frequency cutoffs. In an application, we assessed the role of rare variants on local and global PS, using WGS data from multiethnic Alzheimer's disease data sets and European or East Asian populations from the 1000 Genome Project.


Asunto(s)
Genoma , Genómica , Análisis de Componente Principal , Frecuencia de los Genes , Simulación por Computador , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
16.
Stem Cells ; 42(3): 173-199, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38096483

RESUMEN

The key role of cancer stem cells (CSCs) in tumor development and therapy resistance makes them essential biomarkers and therapeutic targets. Numerous agents targeting CSCs, either as monotherapy or as part of combination therapy, are currently being tested in clinical trials to treat solid tumors and hematologic malignancies. Data from ongoing and future clinical trials testing novel approaches to target tumor stemness-related biomarkers and pathways may pave the way for further clinical development of CSC-targeted treatments and CSC-guided selection of therapeutic regimens. In this concise review, we discuss recent progress in developing CSC-directed treatment approaches, focusing on clinical trials testing CSC-directed therapies. We also consider the further development of CSC-assay-guided patient stratification and treatment personalization.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/uso terapéutico , Neoplasias/terapia , Biomarcadores de Tumor/metabolismo , Células Madre Neoplásicas/metabolismo
17.
Stat Appl Genet Mol Biol ; 23(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38235525

RESUMEN

Population stratification (PS) is one major source of confounding in both single nucleotide polymorphism (SNP) and haplotype association studies. To address PS, principal component regression (PCR) and linear mixed model (LMM) are the current standards for SNP associations, which are also commonly borrowed for haplotype studies. However, the underfitting and overfitting problems introduced by PCR and LMM, respectively, have yet to be addressed. Furthermore, there have been only a few theoretical approaches proposed to address PS specifically for haplotypes. In this paper, we propose a new method under the Bayesian LASSO framework, QBLstrat, to account for PS in identifying rare and common haplotypes associated with a continuous trait of interest. QBLstrat utilizes a large number of principal components (PCs) with appropriate priors to sufficiently correct for PS, while shrinking the estimates of unassociated haplotypes and PCs. We compare the performance of QBLstrat with the Bayesian counterparts of PCR and LMM and a current method, haplo.stats. Extensive simulation studies and real data analyses show that QBLstrat is superior in controlling false positives while maintaining competitive power for identifying true positives under PS.


Asunto(s)
Modelos Genéticos , Polimorfismo de Nucleótido Simple , Haplotipos , Teorema de Bayes , Fenotipo , Estudio de Asociación del Genoma Completo
18.
J Pathol ; 263(2): 217-225, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38551073

RESUMEN

Environmental factors like the pathogenicity island polyketide synthase positive (pks+) Escherichia coli (E. coli) could have potential for risk stratification in colorectal cancer (CRC) screening. The association between pks+ E. coli measured in fecal immunochemical test (FIT) samples and the detection of advanced neoplasia (AN) at colonoscopy was investigated. Biobanked FIT samples were analyzed for both presence of E. coli and pks+ E. coli and correlated with colonoscopy findings; 5020 CRC screening participants were included. Controls were participants in which no relevant lesion was detected because of FIT-negative results (cut-off ≥15 µg Hb/g feces), a negative colonoscopy, or a colonoscopy during which only a nonadvanced polyp was detected. Cases were participants with AN [CRC, advanced adenoma (AA), or advanced serrated polyp (ASP)]. Existing DNA isolation and quantitative polymerase chain reaction (qPCR) procedures were used for the detection of E. coli and pks+ E. coli in stool. A total of 4542 (90.2%) individuals were E. coli positive, and 1322 (26.2%) were pks+ E. coli positive. The prevalence of E. coli in FIT samples from individuals with AN was 92.9% compared to 89.7% in FIT samples of controls (p = 0.010). The prevalence of pks+ E. coli in FIT samples from individuals with AN (28.6%) and controls (25.9%) was not significantly different (p = 0.13). The prevalences of pks+ E. coli in FIT samples from individuals with CRC, AA, or ASP were 29.6%, 28.3%, and 32.1%, respectively. In conclusion, the prevalence of pks+ E. coli in a screening population was 26.2% and did not differ significantly between individuals with AN and controls. These findings disqualify the straightforward option of using a snapshot measurement of pks+ E. coli in FIT samples as a stratification biomarker for CRC risk. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Colorrectales , Detección Precoz del Cáncer , Escherichia coli , Heces , Sintasas Poliquetidas , Humanos , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/diagnóstico , Heces/microbiología , Heces/enzimología , Escherichia coli/aislamiento & purificación , Escherichia coli/enzimología , Escherichia coli/genética , Masculino , Detección Precoz del Cáncer/métodos , Femenino , Persona de Mediana Edad , Anciano , Sintasas Poliquetidas/genética , Colonoscopía , Factores de Riesgo , Adenoma/microbiología , Adenoma/diagnóstico , Medición de Riesgo , Biomarcadores de Tumor , Estudios de Casos y Controles
19.
Brain ; 147(1): 267-280, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38059801

RESUMEN

The heterogenous aetiology of Parkinson's disease is increasingly recognized; both mitochondrial and lysosomal dysfunction have been implicated. Powerful, clinically applicable tools are required to enable mechanistic stratification for future precision medicine approaches. The aim of this study was to characterize bioenergetic dysfunction in Parkinson's disease by applying a multimodal approach, combining standardized clinical assessment with midbrain and putaminal 31-phosphorus magnetic resonance spectroscopy (31P-MRS) and deep phenotyping of mitochondrial and lysosomal function in peripheral tissue in patients with recent-onset Parkinson's disease and control subjects. Sixty participants (35 patients with Parkinson's disease and 25 healthy controls) underwent 31P-MRS for quantification of energy-rich metabolites [ATP, inorganic phosphate (Pi) and phosphocreatine] in putamen and midbrain. In parallel, skin biopsies were obtained from all research participants to establish fibroblast cell lines for subsequent quantification of total intracellular ATP and mitochondrial membrane potential (MMP) as well as mitochondrial and lysosomal morphology, using high content live cell imaging. Lower MMP correlated with higher intracellular ATP (r = -0.55, P = 0.0016), higher mitochondrial counts (r = -0.72, P < 0.0001) and higher lysosomal counts (r = -0.62, P = 0.0002) in Parkinson's disease patient-derived fibroblasts only, consistent with impaired mitophagy and mitochondrial uncoupling. 31P-MRS-derived posterior putaminal Pi/ATP ratio variance was considerably greater in Parkinson's disease than in healthy controls (F-tests, P = 0.0036). Furthermore, elevated 31P-MRS-derived putaminal, but not midbrain Pi/ATP ratios (indicative of impaired oxidative phosphorylation) correlated with both greater mitochondrial (r = 0.37, P = 0.0319) and lysosomal counts (r = 0.48, P = 0.0044) as well as lower MMP in both short (r = -0.52, P = 0.0016) and long (r = -0.47, P = 0.0052) mitochondria in Parkinson's disease. Higher 31P-MRS midbrain phosphocreatine correlated with greater risk of rapid disease progression (r = 0.47, P = 0.0384). Our data suggest that impaired oxidative phosphorylation in the striatal dopaminergic nerve terminals exceeds mitochondrial dysfunction in the midbrain of patients with early Parkinson's disease. Our data further support the hypothesis of a prominent link between impaired mitophagy and impaired striatal energy homeostasis as a key event in early Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Humanos , Fosfocreatina/metabolismo , Mitocondrias/metabolismo , Cuerpo Estriado/metabolismo , Adenosina Trifosfato/metabolismo
20.
Am J Respir Crit Care Med ; 210(5): 581-592, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38984912

RESUMEN

Pulmonary arterial hypertension (PAH) is a complex fatal condition that requires aggressive treatment with close monitoring. Significant progress has been made over the last three decades in the treatment of PAH, but, despite this progress, survival has remained unacceptably low. In the quest to improve survival, therapeutic interventions play a central role. In the last few years, there have been remarkable attempts to identify novel treatments. Finally, we have had a breakthrough with the discovery of the fourth treatment pathway in PAH. Activin signaling inhibition distinguishes itself as a potential antiproliferative intervention as opposed to the traditional therapies, which mediate their effect primarily by vasodilatation. With this novel treatment pathway, we stand at an important milestone with an exciting future ahead and the natural question of when to use an activin signaling inhibitor for the treatment of PAH. In this state-of-the-art review, we focus on the placement of this novel agent in the PAH treatment paradigm, based on the available evidence, with special focus on the U.S. patient population. This review also provides an expert opinion of the current treatment algorithm in important subgroups of patients with comorbidities from the U.S. perspective.


Asunto(s)
Hipertensión Arterial Pulmonar , Humanos , Estados Unidos , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/fisiopatología , Hipertensión Arterial Pulmonar/terapia , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/terapia , Antihipertensivos/uso terapéutico , Activinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA